Transition-Invariants (T-Invariants)

Let N= (P, T,F,V,mo) be a eS-Net.

m Any nontrivial integer solution x of the homogenous linear equation system
C - x =0 is called transition-invariant (T-invariant) of N.

m A T-invariant x is called proper, if x > 0.
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Transition-Invariants (T-Invariants)

Let N= (P, T,F,V,mo) be a eS-Net.
m Any nontrivial integer solution x of the homogenous linear equation system
C - x =0 is called transition-invariant (T-invariant) of N.
m A T-invariant x is called proper, if x > 0.

m A T-invariant x is called realizable in N, if there exists a word g € W(T) with
G = x and a reachable marking m such that m[q>m.
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Transition-Invariants (T-Invariants)

Let N= (P, T,F,V,mo) be a eS-Net.
m Any nontrivial integer solution x of the homogenous linear equation system
C - x =0 is called transition-invariant (T-invariant) of N.
m A T-invariant x is called proper, if x > 0.

m A T-invariant x is called realizable in N, if there exists a word g € W(T) with
G = x and a reachable marking m such that m[q>m.

m N is called covered with T-invariants, if there exists a T-invariant x of N with all
components positive, i.e. greater than 0.
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Transition-Invariants (T-Invariants)

Let N= (P, T,F,V,mo) be a eS-Net.

m Any nontrivial integer solution x of the homogenous linear equation system
called transition-invariant (T-invariant) of N.
m A T-invariant x is called proper, if x > 0.

m A T-invariant x is called realizable in N, if there exists a word g € W T) with
SEMPEIS I \___
g = x and a reachable marking m such that m[q>-m.

m N is called covered with T-invariants, if there exists a T-invariant x of N with all
components positive, i.e. greater than 0.

Proper T-invariants denote possible cycles of the reachability graph - realizable
T-invariants denote cycles which indeed may occur.
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Example

T-invariants of

are as follows:
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7. Petri-Nets

Example

T-invariants of

are as follows:

where A1, A2 integers.
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Theorem

Let N=(S,T,F,V,mg) be a eS-Net. If there exists a marking m, such that N live
and bounded at m, then N covered by T-invariants.
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Theorem

Let N=(S,T,F,V,mg) be a eS-Net. If there exists a marking m, such that N live
and bounded at m, then N covered by T-invariants.

Proof: Let N live and bounded at some m.

As N is live at m, there exists a word g1 € Ly(m), which contains all transitions in T and the
marking m + Agq; is reachable from m.
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Theorem
Let N=(S,T,F,V,mg) be a eS-Net. If there exists a marking m, such that N live
and bounded at m, then N covered by T-invariants.

Proof: Let N live and bounded at some m.

As N is live at m, there exists a word g1 € Ly(m), which contains all transitions in T and the
marking m + Agq; is reachable from m.

Moreover, N is live at m + Agq; as well. Therefore, there exits a word g2 € Ly(m), which
contains all transitions in T and N is live at the marking m + Aqiqz.
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Theorem

Let N=(S,T,F,V,mg) be a eS-Net. If there exists a marking m, such that N live
and bounded at m, then N covered by T-invariants.

Proof: Let N live and bounded at some m.

As N is live at m, there exists a word g1 € Ly(m), which contains all transitions in T and the
marking m + Agq; is reachable from m.

Moreover, N is live at m + Agq; as well. Therefore, there exits a word g2 € Ly(m), which
contains all transitions in T and N is live at the marking m + Aqiqz.

There exists an infinite sequence of markings (m;), where m; := m+ Agq; ... g;, such that:
mlgr>-mi[q2>ma ... mi[qip1>miqy ...

As N is bounded at m, there is only a finite number of markings which are reachable.
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Theorem

Let N=(S,T,F,V,mg) be a eS-Net. If there exists a marking m, such that N live
and bounded at m, then N covered by T-invariants.

Proof: Let N live and bounded at some m.

As N is live at m, there exists a word g1 € Ly(m), which contains all transitions in T and the
marking m + Agq; is reachable from m.

Moreover, N is live at m + Agq; as well. Therefore, there exits a word g2 € Ly(m), which
contains all transitions in T and N is live at the marking m + Aqiqz.

There exists an infinite sequence of markings (m;), where m; := m+ Agq; ... g;, such that:
mlgr>-mi[q2>ma ... mi[qip1>miqy ...

As N is bounded at m, there is only a finite number of markings which are reachable.
Therefore, there exist i,j € NAT : i < j such that m; = m;. Thus

mi[Git1-..qj=mj = m;
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Theorem

Let N=(S,T,F,V,mg) be a eS-Net. If there exists a marking m, such that N live
and bounded at m, then N covered by T-invariants. -
_—

Proof: Let N live and bounded at some m.

As N is live at m, there exists a word q < Ly(m), which contains all transitions in T and the
marking m + Agq; is reachable from m.
—_—

Moreover, N_is live at m + Aq; as well. Therefore, there exits a word g2 € Ly(m), which
contains all transitions in T and N is live at the marking m + Aqiqz.

There exists an infinite sequence of markings (m;), where m; := m+ Agq; ... g;, such that:
mlqgr>=mi[q2>=ma...mi[qiy1>=miq1 ... ™", "“'4
As N is bounded at m, there is only a finite number of markings which are reachable.
Therefore, there exist i,j € NAT : i < j such that m; = m;. Thus : .
»J J I 'y # QA o
mi[qiy1 ... qj=mj=m; aQ»u,g[e
y I,
As all these g; mention all transitions, we finally conclude c oVve~

X=Gqiy1+...+Gj 3{— ,.n\/o\_\,/a_,\D!

is a T-Invariant which covers N.
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Useful application of the theorem:

Whenever N is not covered by T-invariants, then for every marking it holds N not live
or not bounded.

m@f(}}i? ”

4 ra Vo inumnad

Distributed Systems Part 2 Transactional Distributed Systems Dr.-Ing. Thomas Hornung


schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift


Place-Invariants (P-Invariants)

Let N= (P, T,F,V,mo) be a eS-Net.

m Any nontrivial integer solution y of the homogeneous linear equation system
y - C =0 is called place-invariant (P-invariant) of N.

m A P-invariant y is called proper P-invariant, if y > 0.
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Place-Invariants (P-Invariants)

Let N= (P, T,F,V,mo) be a eS-Net.

m Any nontrivial integer solution y of the homogeneous linear equation system
y - C =0 is called place-invariant (P-invariant) of N.

m A P-invariant y is called proper P-invariant, if y > 0.

m N is called covered with P-invariants, if there exists a P-invariant y with all
components positive, i.e. greater than 0.
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Place-Invariants (P-Invariants)

Let N= (P, T,F,V,mo) be a eS-Net.

m Any nontrivial integer solution y of the homogeneous linear equation system
y - C =0 is called place-invariant (P-invariant) of N.
———— ——————

m A P-invariant y is called proper P-invariant, if y > 0.

m N is called covered with P-invariants, if there exists a P-invariant y with all
components positive, i.e. greater than 0.

If y is a P-invariant, then for any marking m the sum of the number of tokens on the
—_—
places p is invariant with respect to the flrlng of the transitions weighted by y(p).
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Example

P-invariants of

i
N

are as follows:
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7. Petri-Nets Seite 117

Example

P-invariants of

are as follows:

YW=Al1]3 A=A
{ o
where A an integer. = n 4 ) . C = ® © 0 o
S e
A -”g
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Theorem
Let N=(P,T,F,V,mo) a eS-Net and let y a P-invariant of N. Then:

me Ry(mo)=y-m' =y-mg.
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Theorem
Let N= (P, T,F,V,mg) a eS-Net and let y a P-invariant of N. Then:
me Ry(mo)=y-m' =y-mg.

Proof: 1—-”\ _ ™o [c’) = m
Assume mg[ g ~m. Then m = my @and also:

y-m' =y-mg +y-(C-§)=

—

T = T _ T

=y-my +(y-C)-g=y-my +0-g=y-mg .

y - mq (y-C)-g=y-mg q=y- -mg
o o

Distributed Systems Part 2

Transactional Distributed Systems

Dr.-Ing. Thomas Hornung


schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift


Corollary:

m Let y P-invariante of N, m marking.

y~mT7éy~m0T:>m§§RN(mg).

Distributed Systems Part 2 Transactional Distributed Systems ng. Thomas Hornung



Corollary:

m Let y P-invariante of N, m marking.

y-m' #y-mg = m¢ Ry(mo).
m Let y proper P-invariant of N. Let p € P such that y(p) > 0.

Then, for any initial marking, p is bounded.

Proof: y -mg =y-m" > y(p)-m(p) > m(p).
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Corollary:
m Let y P-invariante of N, m marking.

y-m' #y-mg = m¢ Ry(mo).
m Let y proper P-invariant of N. Let p € P such that y(p) > 0. y("’, =

Then, for any initial marking, p is bounded.
-_—

Proof: y -mg =y-m" > y(p)-m(p) > m(p).

m Let N be covered by P-invariants. N is bounded for any initial marking.
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Note, the following net is bounded for any initial marking, however does not have a

P-invariant:
p O— 1]
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Note, the following net is bounded for any initial marking, however does not have a
P-invariant:

P O—=[1] A9%° Afp)=1
33

P-invariants allow sufficient tests for non-reachability and boundedeness.
—— e ——
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Example: Prove freedom from deadlocks.

ng. Thomas Hornung
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Example: Prove freedom from deadlocks.

Y = (0,1,0,0,1,0,0)
Y, = (0,0,1,0,0,1,0)
Y3 = (0,0,0,1,0,0,1)
Y4 = (1,1,1,1,0,0,0)
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Example: Prove freedom from deadlocks.

S fes) 2 L

fpg ) = A1
Y‘(.f.)- o[?

1\
Y = (0,1,0,0,1,0,0)
Y, = (0,0,1,0,0,1,0)
Y3 =(0,0,0,1,0,0,1)
Y4 = (1,1,1,1,0,0,0)
Initial marking is given by mo = (2,0,0,0,1,1,1). Assume there exist a dera‘d-m}king m, mo[ g >=m. Then
it must hold m(p;) = m(p2) = m(p3) = 0. Because of Y; it follows m(pp) = 2. As m dead it follows
m(ps) = m(ps) = m(ps) = 0. However this contradicts Yimy = Yim:

S ~of €0 —.A-\é—g

( ?. qol 0: 0lc}l O\ o

P-invariants:

corOoOHM
oroOoROR
HoOROOR

Distributed Systems Part 2 Transactional Distributed Systems Dr.-Ing. Thomas Hornung


schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift


Section 7.5 Place Capacities

Sometimes when modelling we would like to fix an upper bound for the number of
tokens in a place.
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Section 7.5 Place Capacities

Sometimes when modelling we would like to fix an upper bound for the number of
tokens in a place.

m Let N= (P, T,F,V,mg) be a eS-Net, ¢ a w-marking of P and let mg < c.
(N, c) is called eS-Net with capacities. c(p), p € P is called capacity of p.
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Section 7.5 Place Capacities

Sometimes when modelling we would like to fix an upper bound for the number of
tokens in a place.

m Let N= (P, T,F,V,mg) be a eS-Net, ¢ a w-marking of P and let mg < c.
(N, c) is called eS-Net with capacities. c(p), p € P is called capacity of p.

m For eS-nets with capacities the notion of being enabled is adapted:

a transition t € T is enabled at marking m, if t= < m and
m+ At < c.
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Section 7.5 Place Capacities

Sometimes when modelling we would like to fix an upper bound for the number of
tokens in a place.

m Let N= (P, T,F,V,mg) be a eS-Net, ¢ a w-marking of P and let mg < c.
(N, c) is called eS-Net with capacities. c(p),p € P is called capacity of p.

m For eS-nets with capacities the notion of being enabled is adapted:

a transition t € T is enabled at marking m, if t= < mfand
——
m+ At < c.

m Capacities graphically are labels of places - no label means capacity w.
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Any eS-net with capacities can be simulated by a eS-Net without capacities.
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Any eS-net with capacities can be simulated by a eS-Net without capacities.

Construction

m Let p a palce with capacity k = c(p), k > 1. Let p« be the complementary place
of p which is assigned the initial marking k — mo(p).
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Any eS-net with capacities can be simulated by a eS-Net without capacities.

Construction

m Let p a palce with capacity k = c(p), k > 1. Let p be the complementary place
of p which is assigned the initial marking k — mo(p).
m Whenever for a transition t we have At(p) > 0, we introduce an arc from p to

t with multiplicity At(p);
whenever At(p) < 0, we introduce an arc from t to p with multiplicity —At(p).
— —_—

Dr.-Ing. Thomas Hornung
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A eS-Net with capacities and its simulation by a bounded eS-Net.

Nq(k = 4):

p %
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Section 7.6 S-Nets with Colors

m eS-Nets in practice may become huge and difficult to understand.

m Sometimes such nets exhibit certain regularities which give rise to questions how
to reduce the size of the net without losing modeling properties.
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What about a n-philosopher problem with n >> 37
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What about a n-philosopher problem with n >> 37

Why not introduce tokens with individual information?

Distributed Systems Part 2 Transactional Distributed Systems Ing. Thomas Hornung
Y Y g g


schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift

schaetzl
Bleistift


Abstraction 5-philosopher problem

Note: the intention of the marking shown only is to demonstrate ,,individual* tokens.

g1g92g3
9495

start
eating
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Abstraction 5-philosopher problem

Note: the intention of the marking shown only is to demonstrate ,,individual* tokens.

start
eating

What about being enabled and firing?
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Colored System-Nets

A colored System-Net distinguishes different kinds of sorts for markings - the so called
colors - and functions over these sorts which are used to label the edges of the net.
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Colored System-Nets

A colored System-Net distinguishes different kinds of sorts for markings - the so called
colors - and functions over these sorts which are used to label the edges of the net.

Generalizing eS-Nets, in a colored net a transition will be called enabled, if certain
conditions are true, which are based on the functions which are assigned to the edges
of the transitions surrounding.
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Colored System-Nets

A colored System-Net distinguishes different kinds of sorts for markings - the so called
colors - and functions over these sorts which are used to label the edges of the net.

Generalizing eS-Nets, in a colored net a transition will be called enabled, if certain
conditions are true, which are based on the functions which are assigned to the edges
of the transitions surrounding.

Thus, we have colors, to characterize markings (place colors), and colors, to
characterize the firing of transitions (transition colors).
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Colored System-Nets

A colored System-Net distinguishes different kinds of sorts for markings - the so called
colors - and functions over these sorts which are used to label the edges of the net.

Generalizing eS-Nets, in a colored net a transition will be called enabled, if certain
conditions are true, which are based on the functions which are assigned to the edges
of the transitions surrounding.

Thus, we have colors, to characterize markings (place colors), and colors, to
characterize the firing of transitions (transition colors).

As a marking of a place now can be built out of different kind of tokens, we introduce
multisets.

m Let A be a set. A multiset m over A is given by a maping m: A — NAT.

m Let a € A. If m[a] = k then there exist k occurences of a in m.
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Colored System-Nets

A colored System-Net distinguishes different kinds of sorts for markings - the so called
colors - and functions over these sorts which are used to label the edges of the net.

Generalizing eS-Nets, in a colored net a transition will be called enabled, if certain
conditions are true, which are based on the functions which are assigned to the edges
of the transitions surrounding.

Thus, we have colors, to characterize markings (place colors), and colors, to
characterize the firing of transitions (transition colors).
—— e ——

As a marking of a place now can be built out of different kind of tokens, we introduce
multisets.
—_—

A £ S
m Let Abea set. X_multiset P over A is given by a maping 41 : A — NAT.
mletacAlf p‘t[a] = k then there exist k occurences of a in f.

m A multiset oftenly is written as a (formal) sum, e.g. [Apple, Apple, Pear] is
written as 2 - Apple + 1 - Pear. =z >
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A colored version of the 3-Philosopher-Problem

Colors

C(g) = {g1, 82,83}, C(i) = {ph1,ph2, ph3} place colors
C(b) = {ph1, ph2, ph3}, C(e) = {ph1, ph2, ph3} transition colors
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Colors

C(6) = {81.22.85). C(i) = {phy.pha. phs} place colors

C(b) = {ph1, ph2, ph3}, C(e) = {ph1,pho.ph3} transition colors
Functions

ID(ph;) :==1-ph;,1<j<3

151—{-1 83 if j=1,
RL(phy) = { 1.g1+T g ifje{23}
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Multiplicities

A multiplicity assigned to an edge between a place p and a transition t is a mapping
from the set of transition colors of t into the set of multisets over the colors of p.
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Multiplicities
A multiplicity assigned to an edge between a place p and a transition t is a mapping
from the set of transition colors of t into the set of multisets over the colors of p.

In the example:
V(b,i)=V(i,e) =ID, V(g,b) = V(e,g) =RL

where:
ID(phj) :=1- phj,l <j<3

g +1l-g ifj=1
RL(ph;) &t =
(p { g-1+1-g ifje{23}.

ID denotes the identity mapping.

Dr.-Ing. Thomas Hornung
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Multiplicities

A multiplicity assigned to an edge between a place p and a transition t is a mapping
from the set of transition colors of t into the set of multisets over the colors of p.

In the example:

V(b,i)=V(i,e) =ID, V(g,b) = V(e,g) =RL
where:

ID(phj) :=1- phj,l <j<3

g +1l-g ifj=1
RL(ph;) &t =
(p { g-1+1-g ifje{23}.

ID denotes the identity mapping.

Marking

Markings are multisets over the respective place colors.
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Multiplicities

A multiplicity assigned to an edge between a place p and a transition t is a mapping
from the set of transition colors of t into the set of multisets over the colors of p.

In the example:
V(b,i)=V(i,e) =ID, V(g,b) = V(e,g) = RL,

where:
ID(phj) :=1-ph;,1 <53
_d-attogs ifj=1,
RL(ph;j) = e
(ph) l-ga1+1l-g ifje{23}

ID denotes the identity mapping.

Marking

Markings are multisets over the respective place colors.

In the example:

1. 1- 1. if-p= . X
mo(P) = { &1 + &2 + 83 ! ‘P/g7 JP

0 otherwise. ¥ P =
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A colored Net CN = (P, T, F,C,V,mg) is given by:
m Anet (P, T,F).
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A colored Net CN = (P, T, F,C,V,mg) is given by:
m Anet (P, T,F).

m A mapping C which assignes to each x € PU T a finite nonempty set C(x) of
colors.

Distributed Systems Part 2 Transactional Distributed Systems Dr.-Ing. Thomas Hornung



A colored Net CN = (P, T, F,C,V,mg) is given by:
m Anet (P, T,F).

m A mapping C which assignes to each x € PU T a finite nonempty set C(x) of
colors.

m Mapping V assignes to each edge f € F a mapping V/(f).

Let f be an edge connecting palce p and transition t.
V(f) is a mapping from C(t) into the set of multisets over C(p).
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A colored Net CN = (P, T, F, C,V,mo) is given by:
m Anet (P, T,F).

m A mapping C which assignes to each x € PU T a finite nonempty set C(x) of
colors. \/: F- /VN
’p ———)J’

Let f be an edge connecting palce p and transition t. < -—-3,-
%\ J\q.(— V(f) is a mapping from C(t) into the set of multisets over C(p).

m Mapping V assignes to each edge f € F a mapping V/(f).

m myg is the initial marking given by a mapping which assignes to each place p a
multiset mo(p) over C(p).
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Let CN= (P, T,F,C,V,mg) be a colored System-Net.

m A marking m of P is mapping which assignes to each place p a multiset m(p)
over C(p).
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Let CN= (P, T,F,C,V,mg) be a colored System-Net.

m A marking m of P is mapping which assignes to each place p a multiset m(p)
over C(p).

m A transition t is enabled in color d € C(t) at m, if for all pre-places p € Ft there
holds:

V(p, t)(d) < m(p).
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Let CN= (P, T,F,C,V,mg) be a colored System-Net.

m A marking m of P is mapping which assignes to each place p a multiset m(p)

over C(p).
m A transition t is enabled in color d € C(t) at m, if for all pre-places p € Ft there
holds:

V(p, t)(d) < m(p).

pB\]—

m Assume t is enabled in color d at marking m. Firing of t in color d transforms m

to a marking m’: W\ (o“ 2 r____/‘_—___gv—

m(p) — V(p. £)(d) + V{(t.p)(df prEFt?F Y
p € tF
m(p) — V(p, t)(d) if p € Ft,, =/
"o (p) + V(t, p)(d) e SP
m(p) + V(t, p)(d if p & Ft, )
g g [;JE tF,l J 2P
m(p) otherwise.
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Fold and Unfold of a Colored System-Net

Folding

By folding of a eS-Net we can reduce the number of places and transitions; places and
transitions are represented by appropriate place and transition colors, on which certain
functions defining the multiplicities are defined.

Dr.-Ing. Thomas Hornung
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Fold and Unfold of a Colored System-Net

Folding

By folding of a eS-Net we can reduce the number of places and transitions; places and

transitions are represented by appropriate place and transition colors, on which certain
functions defining the multiplicities are defined.

Let N= (P, T,F,V,mp) a eS-Net. A folding is defined by 7 and 7:

m 7 ={q,...,q} a (disjoint) partiion o1 2, = ‘S ; T""‘\’\ /\JUW/%

m 7={u,...,un} a (disjoint) partition of T.

- L0 Py P
EPLI&‘lffl rﬁtjq

-0
{\/
1
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Two special cases

Call GN(,7) :=(P', T',F’,C', V', my) the result of folding.
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Two special cases
Call GN(,7) :=(P', T',F’,C', V', my) the result of folding.

m All elements of 7, T are one-elementary:

= N and GN(m, ) are isomorph,
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Two special cases
Call GN(,7) :=(P', T',F’,C', V', my) the result of folding.

m All elements of 7, 7 are one-elementary:
2l

= N and GN(,7) are isomorph, =/ V0 41@3
s p

m 7,7 contain only one element:

= |P'| = |T’'| = 1,"the model is represented by the labellings" .

Flim b vt
> o@
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7. Peti

ets

3-Philosopher-Problem
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3-Philosopher-Problem

Folding 7 = {{g1, &2, g3}, {i1, 2, i3} }, 7 = {{b1, b2, b3}, {e1, e, e3}}.
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3-Philosopher-Problem

Folding m = {{g1, 82, &3 ,{11, izyla}} T = {{blv b, bs} {61762263}5
Colors from foI%g: 5
C(g) = {e1, 82,83}, C(i) = {11, i2, i3}, C(b) = {b1, by, b3}, C(e) = {e1, e, e3}

Multiplicities: ID, RL analogously to previous version.

—_—
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3-Philosopher-Problem?

—>{é )
9'):{9170%(]:&1 ig, i3}, 4

(
C(t') = {b1,bs, b3, €1, €9, €3},
my(s") = g1+ g2 + g3,

V g1+ g3 fallst = by, \ﬁ g1+ gy fallst = ey,

g1+ go falls t = by, g+ g fallst = e,
g2+ g3 falls t = b';,

Iisd 4! o g: i YT )92ty falls t = €3,
VO =1; " @ist—e, VD=1 pisi—s,
iy falls t = ey, iy falls t = by,

i;g falls t = €3, 'i;; falls t = b(;A
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Given 7 = {q1,...,qc}, 7 ={u1,..., upn}.
The folding GN(w,7) := (P, T',F', C', V', mg) of N is defined as follows:
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Given 7 = {q1,...,qc}, 7 ={u1,..., upn}.
The folding GN(w,7) := (P, T',F', C', V', mg) of N is defined as follows:

m P {pl ks T =t ),
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Given 7 = {q1,...,qc}, 7 ={u1,..., upn}.
The folding GN(w,7) := (P, T',F', C', V', mg) of N is defined as follows:

w P = (Bl ) T =t 8,
m C'(p))=gqfiri=1,...,k C’(tjf):uj-fﬁrjzl,...,n,
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Given 7 = {q1,...,qc}, 7 ={u1,..., upn}.

The folding GN(w,7) := (P, T',F', C', V', mg) of N is defined as follows:
m Pr=Apn o ph Ti= At
m C'(p))=gqfiri=1,...,k C’(tjf):uj- fiir j=1,...,n,

w Fli= {(p,t))| C'(p') x C'(t)NF #£0} U
{(t',p) | C'(') x C'(p') N F # 0},
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Given 7 = {q1,...,qc}, 7 ={u1,..., upn}.
The folding GN(w,7) := (P, T',F', C', V', mg) of N is defined as follows:
m P={pl,...,p 1 T =={t],.... t;},
C'(p))=gq;fiiri=1,... k; C’(tjf):uj- fiir j=1,...,n,
w Fli= {(p,t) ] C'(p') x C'(E') N F # 0} U
{(t", ") | C'(t') x C'(p") N F # 0},
f'=(p',t') € F': V(') is defined (t € C’'(t')):

Vi) = X () p

peC’(p')
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Given 7 = {q1,...,qc}, 7 ={u1,..., upn}.
The folding GN(w,7) := (P, T',F', C', V', mg) of N is defined as follows:
m P={pl,...,p 1 T =={t],.... t;},
C'(p))=gq;fiiri=1,... k; C’(tjf):uj- fiir j=1,...,n,
w Fli= {(p,t) ] C'(p') x C'(E') N F # 0} U
{(t", ") | C'(t') x C'(p") N F # 0},
f'=(p',t') € F': V(') is defined (t € C’'(t')):

Vi) = X () p

peC’(p')

f'=(t',p') € F': V(') is defined (t € C’'(t')):

Vi = >t (p)-p

peC’(p')
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Given 7 ={qr,...,qc}, 7 ={u1,..., un}.
The folding GN(w,7) := (P, T',F', C', V', mg) of N is defined as follows:

o P g, P T = (68,
C'(p))=gq;fiiri=1,... k; C’(t)—ujfurj—l
m F = {(p,t)|C(p)xC{H)NF#A0}U
{(t,p") | C'(t") x C'(p') N F # 0},
f'=(p',t') € F': V(') is defined (t € C’'(t')):
VI (F/)( >, t(p)p

pEC’(p’)

f'=(t',p') € F': V(') is defined (t € C’'(t')):

- [vieok > e

PEC’(p")

my(p') ==Y mo(p) - p.

peC’(p')
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Unfolding

Let GN = (P, T,F,C,V,m) a CN-Net.

The Unfolding of GN is a eS-Net GN* := (P*, T*, F*, V*, mg) given as follows:
m P :={(p,c)|p€P,ceC(p)}
m T :={(t,d)|te T,de C(t)},
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Unfolding

Let GN = (P, T,F,C,V,m) a CN-Net.

The Unfolding of GN is a eS-Net GN* := (P*, T*, F*, V*, mg) given as follows:
m P :={(p,c)|p€P,ceC(p)}
m T :={(t,d)|te T,de C(t)},

F*:= A{((p, ), (t,d)) | (p, 1) € F, V(p, t)(d)[c] > 0} U
{((t, d), (p, ) | (t,p) € F, V(t, p)(d)[p] > O}.
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Unfolding

Let GN = (P, T,F,C,V,m) a CN-Net.

The Unfolding of GN is a eS-Net GN* := (P*, T*, F*, V*, mg) given as follows:
m P :={(p,c)|p€P,ceC(p)}
m T :={(t,d)|te T,de C(t)},

F*:= A{((p, ), (t,d)) | (p, 1) € F, V(p, t)(d)[c] > 0} U
{((t, d), (p, ) | (t,p) € F, V(t, p)(d)[p] > O}.

= V*((p, ), (t,d)) = V(p, t)(d)[c],
= V*((t, d), (p, ) == V(t,p)(d)[c],
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Unfolding
Let GN = (P, T, F,C,V, mo) a CN-Net.
The Unfolding of GN is a eS-Net GN* := (P*, T*, F*, V*, mg) given as follows:
m P*:={(p,c) | p€P,ceC(p)}
m T ={(t,d)|teT,deC(t)},
F=:= {((p,c), (t,d)) | (p, 1) € F, V(p, t)(d)[c] >0} U
{((t,d),(p,c)) | (t,p) € F, V(t, p)(d)[p] > O}.
Vi((p, ©), (t, d)) := V(p, t)(d)[c]
V*((t,d),(p, c)) := V(t, p)(d)]c]. S

mg (p, ¢) := mo(p)[c]-
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Definition
Let E be a certain property of a net, e.g. boundedness, liveness, or reachability.

A CS-Net GN has property E, whenever its unfolding GN* has property E.
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Definition
Let E be a certain property of a net, e.g. boundedness, liveness, or reachability.

A CS-Net GN has property E, whenever its unfolding GN* has property E.

Analysis of colored System Nets
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Definition
Let E be a certain property of a net, e.g. boundedness, liveness, or reachability.

A CS-Net GN has property E, whenever its unfolding GN* has property E.
Analysis of colored System Nets

= Analyse unfolding:

Advantage: Methods exist,
Pitfall: Unfoldings may be huge eS-Nets.

Dr.-Ing. Thomas Hornung

Distributed Systems Part 2 Transactional Distributed Systems



Definition
Let E be a certain property of a net, e.g. boundedness, liveness, or reachability.

A CS-Net GN has property E, whenever its unfolding GN* has property E.

Analysis of colored System Nets

m Analyse unfolding:
e

Advantage: Methods exist,
Pitfall: Unfoldings may be huge eS-Nets.
/_\

m Analyse colored net:

m Reachahility graph and coverability graph can be defined in analogous way
to eS-Nets.

m There exists a theory for invariants, as well.

m Tools for simulation and analysis are available.

Dr.-Ing. Thomas Hornung
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