Informatik III

Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Christian Schindelhauer

Wintersemester 2006/07

14. Vorlesung

08.12.2006

Reduktionen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Unentscheidbare Probleme

- Das Halteproblem
- Das Leerheitsproblem einer Turingmaschine

> Ein einfaches nicht berechenbares Problem

Das Postsche Korrespondenzproblem

Abbildungsreduktionen

- Definition
- Anwendungen
- Äquivalenzproblem zweier Turingmaschen
- Der Satz von Rice
- > Turing-Reduktionen

Wiederholung: Abbildungsreduktion

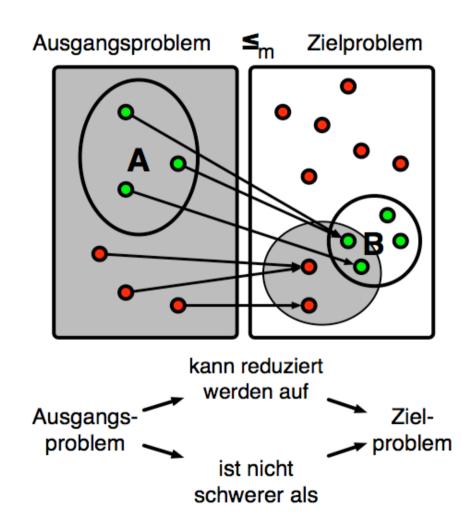
Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

➤ Definition

 Eine Funktion f: Σ*→Σ* ist
 berechenbar, falls eine Turing-Maschine für jede Eingabe w mit dem Ergebnis f(w) auf dem Band hält

➤ Definition (Abbildungsreduktion, Mapping Reduction, Many-one)

- Eine Sprache A ist kann durch Abbildung auf eine Sprache B reduziert werden: A ≤_m B,
 - falls es eine berechenbare Funktion f: $\Sigma^* \rightarrow \Sigma^*$ gibt,
 - so dass für alle w: $w \in A \Leftrightarrow f(w) \in B$
- Die Funktion f heißt die Reduktion von A auf B.



Reduktionen und Rekursive Aufzählbarkeit

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

>Theorem

Falls A ≤_m B und B ist rekursiv aufzählbar, dann ist A rekursiv aufzählbar.

> Beweis

- Sei M, eine Turing-Maschine, die B akzeptiert.
- Betrachte die Akzeptor-TM N:
- N = "Auf Eingabe w:
 - Berechne f(w)
 - Führe die Berechnung von M auf Eingabe f(w) durch
 - N gibt aus, was M ausgibt"
- Falls f(w) ∈ B,
 - dann akzeptiert M
 - dann ist auch $w \in A$
- Falls f(w) ∉B,
 - dann akzeptiert M nicht
 - dann ist auch w ∉ A

Nicht-Rekursive Aufzählbarkeit und Reduktionen

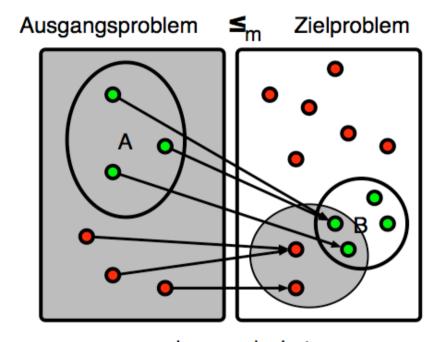
Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Theorem

 Falls A ≤_m B und B ist rekursiv aufzählbar, dann ist A rekursiv aufzählbar.

> Korollar

 Falls A ≤_m B und A ist nicht rekursiv aufzählbar, dann ist B nicht rekursiv aufzählbar.



Zusammenfassung: Abbildungsreduktionen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- \succ Eine Sprache A ist kann durch Abbildung auf eine Sprache B reduziert werden: A \leq_m B,
 - falls es eine berechenbare Funktion
 f: Σ*→Σ* gibt,
 - so dass für alle w: $w \in A \Leftrightarrow f(w) \in B$
 - Die Funktion f heißt die **Reduktion** von A auf B.

> Theorem

 Falls A ≤_m B und B ist entscheidbar, dann ist A entscheidbar.

> Korollar

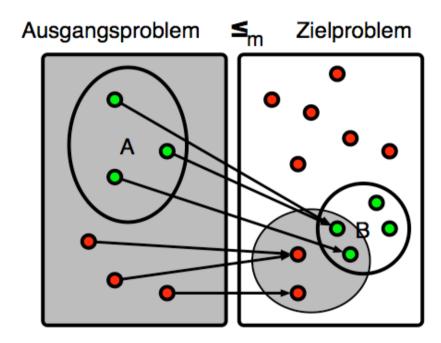
 Falls A ≤_m B und A ist nicht entscheidbar, dann ist B auch nicht entscheidbar.

> Theorem

 Falls A ≤_m B und B ist rekursiv aufzählbar, dann ist A rekursiv aufzählbar.

> Korollar

 Falls A ≤_m B und A ist nicht rekursiv aufzählbar, dann ist B nicht rekursiv aufzählbar.



Ein nicht rekursiv aufzählbares und nicht rekursiv koaufzählbares Problem

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻ Definition

- Das TM-Äquivalenzproblem
 - Gegeben: TM M₁ und TM M₂
 - Gesucht: Ist $L(M_1) = L(M_2)$?
- Definition als Sprache:
 - $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ sind TMs und } L(M_1) = L(M_2) \}$

>Theorem

- EQ_{TM} ist weder rekursiv aufzählbar noch rekursiv ko-aufzählbar.

> Beweisidee:

- Reduktion: A_{TM} ≤_m EQ_{TM}____
 - äquivalent zu A_{TM} ≤_m EQ_{TM}
 - beweist, dass \overline{EQ}_{TM} nicht rekursiv aufzählbar ist.
- Reduktion: A_{TM} ≤_m EQ_{TM}
 - beweist, dass EQ_{TM} nicht rekursiv aufzählbar ist.

$\overline{\mathbf{A}_{\mathsf{TM}}} \leq_{\mathsf{m}} \mathbf{EQ}_{\mathsf{TM}}$

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- > Reduktionsfunktion: F
- F = "Auf Eingabe <M,w>, wobei M eine TM ist und w ein Wort
 - Konstruiere Maschinen M₁ und M₂ wie folgt
 - M₁ = "Für jede Eingabe:
 - Verwerfe"
 - M₂ = "Für jede Eingabe:
 - Führe M auf w aus
 - Falls M akzeptiert, akzeptiert M₂"
 - F gibt <M₁, M₂> aus"
- > Zu beweisen:
 - F ist berechenbar
 - die Kodierung der TM kann automatisch erfolgen
 - $< M, w > \in A_{TM} \Leftrightarrow F(< M, w >) \in EQ_{TM}$

 \rightarrow M ist TM und F($\langle M, w \rangle$) = $\langle M_1, M_2 \rangle$

- wobei $L(M_1) = \emptyset$ und
- $-L(M_2) = \Sigma^*$, falls M(w) akzeptiert
- $L(M_2) = \emptyset$, falls M(w) nicht akzeptiert
- **➤** Daraus folgt:
 - $< M, w > \in A_{TM} \Leftrightarrow F(< M, w >) \notin EQ_{TM}$

$A_{TM} \leq_m EQ_{TM}$

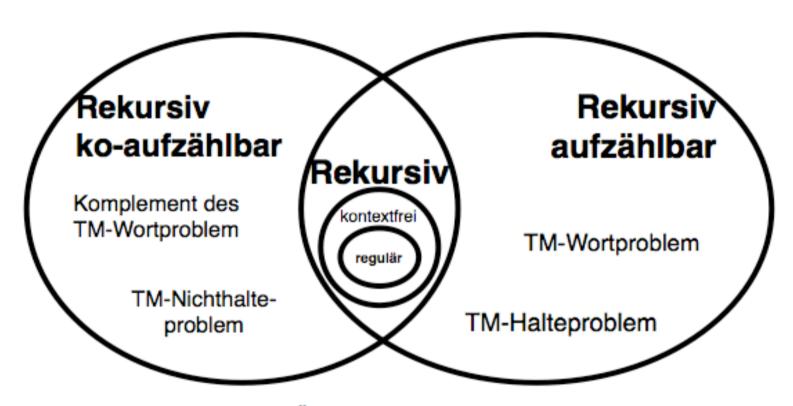
Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- > Reduktionsfunktion: F
- > **F** = "Auf Eingabe < M, w>, wobei M eine TM ist und w ein Wort
 - Konstruiere Maschinen M₁ und M₂ wie folgt
 - M₁ = "Für jede Eingabe:
 - Akzeptiere"
 - M₂ = "Für jede Eingabe:
 - Führe M auf w aus
 - Falls M akzeptiert, akzeptiert M₂"
 - F gibt <M₁, M₂> aus"
- > Zu beweisen:
 - F ist berechenbar
 - die Kodierung der TM kann automatisch erfolgen
 - $\langle M, w \rangle \in A_{TM} \Leftrightarrow F(\langle M, w \rangle) \in EQ_{TM}$

- > M ist TM und F(<M,w>) = < M₁,M₂>
 - wobei $L(M_1) = \Sigma^*$ und
 - $L(M_2) = \Sigma^*$, falls M(w) akzeptiert
 - $L(M_2) = \emptyset$, falls M(w) nicht akzeptiert
- ➤ Daraus folgt:
 - $\langle M, w \rangle \in A_{TM} \iff F(\langle M, w \rangle) \in EQ_{TM}$

Überblick

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer



TM-Äquivalenzproblem

Der Satz von Rice

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

➤ Jede Menge von Turing-Maschinen, die über eine funktionale Eigenschaft definiert werden, ist nicht entscheidbar.

>Theorem

- Sei $K \subseteq \mathbf{P}(\Sigma^*)$ eine nicht triviale Klasse von rekursiv aufzählbaren Sprachen, d.h.
 - K ist nicht leer und
 - K beinhaltet nicht alle rekursiv aufzählbare Sprachen
- Dann ist die folgende Sprache nicht entscheidbar

$$L_{\mathsf{K}} = \{ \langle \mathsf{M} \rangle \mid M \text{ ist eine TM und } L(M) \in K \}$$

≻Beispiele

 $L_1 = \{ \langle M \rangle \mid M \text{ ist eine TM, die eine reguläre Sprache akzeptiert} \}$

 $L_2 = \{ \langle M \rangle \mid M \text{ ist eine TM, welche keine Eingabe akzeptiert} \}$

$$L_3 = {\langle M \rangle \mid M \text{ ist eine TM, so dass } M(10) = 1}$$

Beweis des Satzes von Rice - 1. Teil

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Theorem

- Sei K \subseteq **P**(Σ^*) eine nicht triviale Klasse von rekursiv aufzählbaren Sprachen, d.h.
 - K ist nicht leer und
 - K beinhaltet nicht alle rekursiv aufzählbare Sprachen
- Dann ist die folgende Sprache nicht entscheidbar

 $\mathsf{L}_\mathsf{K} = \{ \langle \mathsf{M} \rangle \mid M \text{ ist eine TM und } L(M) \in K \}$

 \succ Beweis: 1. Fall: \emptyset ∉ K

- Reduktion: A_{TM} ≤_m L_K:

- Da die Klasse K nicht trivial ist,
- existiert eine Sprache A ∈ K
- Sei M_A eine TM mit $L(M_A) = A$

> Betrachte Reduktionsfunktion F:

- F = "Auf Eingabe <M, w>:
 - Konstruiere TM M':
 M' = "Für Eingabe x:
 - Führe M auf Eingabe w aus
 - Falls M das Wort w akzeptiert,
 - * führe TM M_△ auf x aus,
 - * gib Ergebnis $M_A(x)$ aus
 - Ansonsten verwerfe "
 - F gibt <M'> aus"

> Korrektheit der Reduktion:

- Falls <M, w> \in A_{TM}
 - F(<M, w>) = TM, die A akzeptiert
 - daraus folgt: F(<M, w>) ∈ L_K
- Falls <M, w> ∉ A_{TM}
 - F(<M, w>) = TM, die nichts akzeptiert
 - daraus folgt: F(<M, w>) ∉ L_K

Beweis des Satzes von Rice - 1. Teil

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> 1. Fall: Ø ∉ K

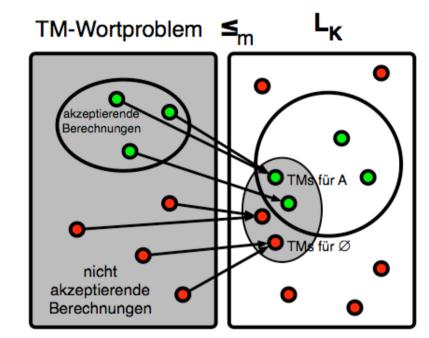
➤ Reduktion: A_{TM} ≤_m L_K:

> Betrachte Reduktionsfunktion F:

- F = "Auf Eingabe <M, w>:
 - Konstruiere TM M':
 M' = "Für Eingabe x:
 - Führe M auf Eingabe w aus
 - Falls M das Wort w akzeptiert,
 - * führe TM M auf x aus,
 - * gib Ergebnis $M_A(x)$ aus
 - Ansonsten verwerfe "
 - F gibt <M'> aus"

> Korrektheit der Reduktion:

- Falls <M, w> \in A_{TM}
 - F(<M, w>) = TM, die A akzeptiert
 - daraus folgt: $F(\langle M, w \rangle) \in L_{\kappa}$
- Falls <M, w> ∉ A_{TM}
 - F(<M, w>) = TM, die nichts akzeptiert
 - daraus folgt: F(<M, w>) ∉ L_K



Beweis des Satzes von Rice - 2. Teil

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Theorem

- Sei $K \subseteq \mathbf{P}(\Sigma^*)$ eine nicht triviale Klasse von rekursiv aufzählbaren Sprachen, d.h.
 - K ist nicht leer und
 - K beinhaltet nicht alle rekursiv aufzählbare Sprachen
- Dann ist die folgende Sprache nicht entscheidbar

 $L_{\mathsf{K}} = \{ \langle \mathsf{M} \rangle \mid M \text{ ist eine TM und } L(M) \in K \}$

- \succ Beweis: 2. Fall: $\varnothing \in K$
 - Reduktion: A_{TM} ≤_m L_K:
 - Da die Klasse K nicht trivial ist,
 - existiert eine Sprache B ∉ K
 - Sei M_B die TM mit $L(M_B) = B$

> Betrachte Reduktionsfunktion F:

- F = "Auf Eingabe <M, w>:
 - Konstruiere TM M':M' = "Für jede Eingabe x:
 - Führe M auf Eingabe w aus
 - Falls M das Wort w akzeptiert,
 - * führe TM M_R auf x aus,
 - * gib Ergebnis M_B(x) aus
 - Ansonsten verwerfe "
 - F gibt <M'> aus"

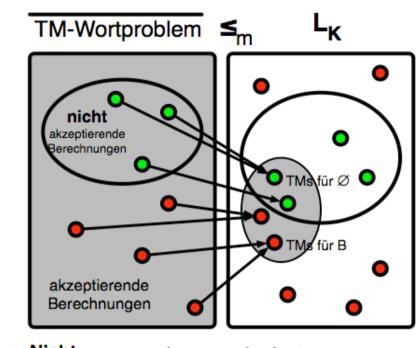
> Korrektheit der Reduktion:

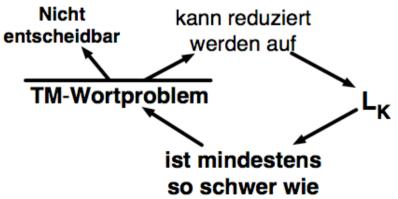
- Falls <M, w> \in A_{TM}
 - F(<M, w>) = TM, die B akzeptiert
 - daraus folgt: F(<M, w>) ∉ L_k
- Falls <M, w> $\notin A_{TM}$
 - F(<M, w>) = TM, die nichts akzeptiert
 - daraus folgt: F(<M, w>) ∈ L_K

Beweis des Satzes von Rice - 2. Teil

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- \triangleright Beweis: 2. Fall: $\varnothing \in K$
- ➤ Reduktion: A_{TM} ≤_m L_K:
- > Betrachte Reduktionsfunktion F:
 - F = "Auf Eingabe <M, w>:
 - Konstruiere TM M':
 M' = "Für Eingabe x:
 - Führe M auf Eingabe w aus
 - Falls M das Wort w akzeptiert,
 - * führe TM Ma auf x aus,
 - * gib Ergebnis M_A(x) aus
 - Ansonsten verwerfe "
 - F gibt <M'> aus"
- > Korrektheit der Reduktion:
 - Falls <M, w> ∈ A_{TM}
 - F(<M, w>) = TM, die A akzeptiert
 - daraus folgt: F(<M, w>) ∈ L_K
 - Falls <M, w> \notin A_{TM}
 - F(<M, w>) = TM, die nichts akzeptiert
 - daraus folgt: F(<M, w>) ∉ L_K





Turing-Reduktionen: Vorüberlegung

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Die Abbildungsreduktion ist ein "schwacher" Reduktionsbegriff

≻ Gedankenexperiment:

- Sei B eine entscheidbare Sprache
- Dann gibt es ein haltendes Programm M, das B entscheidet.
- Wir benutzen M nun als Unterprogramm
- Wenn ein Programm M' jetzt ein anderes Problem A entscheiden will,
 - kann es M beliebig häufig als Unterprogramm verwenden
 - weil M immer hält
- Wenn das Programm M' auf jeder Ausgabe von M immer hält und eine Entscheidung trifft,
 - dann löst es A mit Hilfe von B.
- A ist entscheidbar,
 - weil man M und M' zu einem Programm verschmelzen kann.
- ➤ Diese Art Reduktion ist nicht durch den Begriff der Abbildungsreduktion abgedeckt.

Orakel-Turing-Maschinen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻ Definition

- Ein Orakel für eine Sprache B
 - ist eine externe Einheit, welche für ein gegebenes Wort w entscheidet, ob w ein Element von B ist.
- Eine Orakel-Turing-Maschine (OTM), ist eine modifizierte Turing-Maschine,
 - welche beliebig häufig ein Orakel befragen kann.
 - Hierzu schreibt die OTM die Anfrage auf ein separates Orakelband
 - und findet nach dem Schreiben des Endsymbols
 - sofort die Antwort auf dem selben Band.

> Beobachtung:

- Orakel müssen nicht notwendigerweise berechenbar sein.
- Z.B. mit dem Halteproblem als Orakel lässt sich das TM-Wortproblem lösen:
 - 1. Frage Halteproblem-Orakel, ob gegebene TM M auf gegebener Eingabe w hält
 - 2. Falls nein, gib nein aus.
 - 3. Falls ja, führe M auf Eingabe w aus
 - 4. Gib Ergebnis von M(w) aus

Ende der 14. Vorlesung

Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Christian Schindelhauer

Wintersemester 2006/07

14. Vorlesung

08.12.2006