Freiburg, 13 July 2007 Due until 20 July 2007

Exercises of lecture **Mobile Ad Hoc Networks** Summer 2007 Sheet 12

SECTION 1: Mobility models

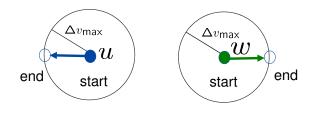


Figure 1: Pedestrian Mobility

- 1. Let u and w be two pedestrians with a link established between them. Both of them can move at the maximum speed of 2.0 m/s with the aid of a transport mean. The transmission range of their mobile devices are 50 meters.
 - (a) Based on V_{max} , explain how can the transmission power be dynamically changed to maintain the link between them.

Time	u(x,y)	w(x,y)
0	(2,2)	(4,3)
2	(1,3)	(5,4)
4	(1,5)	(6,5)
6	(1,7)	(7,6)
8	(1,9)	(8,7)
10	(1,11)	(9,8)

Table 1:	Pedestrian	location,	with 1	unit: 1	meter
----------	------------	-----------	--------	---------	-------

(b) If the actual position of u and w over 10 seconds are as indicated in Table 1, argue if the method used in the previous question is efficient in terms of energy consumption.