Exercises of lecture
 Mobile Ad Hoc Networks

Summer 2007
Sheet 3

SECTION 1:

Max-Flow problem

1. Consider network of figure-1 with the capacities written over the edges as follows:

Figure 1:

- Apply Edmonds-Karp algorithm to find the max flow from source S to destination D. Show the path found during each step from S to D in separate figure.
- Find min-cut in the network given above.

Figure 2:
2. Consider the network of figure-2 with capacities written over the edges as follows:

- Apply Edmonds-Karp algorithm to find max aggregated flow from sources S1, S2 to destination D1, D2.

SECTION 2:

Random Placement Model

1. According to Figure 3, consider a quadratic area that consists of 16 squares and the size of each square is $5 \mathrm{~m} \times 5 \mathrm{~m}$. We want to place each sensor randomly and uniformly in each square of the area so that they are connected to each other.

Figure 3:

- Based on the random placement model, if we have 16 sensor nodes, what is the probability that exactly 1 sensor node is placed in one square?
- However, to ensure the desired connectivity of all sensor nodes in the area, how many sensor nodes should be prepared?

