Mobile Ad Hoc Networks Theory of Data Flow and Random Placement

3rd Week 02.05.-04.05.2007

Christian Schindelhauer schindel@informatik.uni-freiburg.de

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer

Unit Disk Graphs

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Motivation:

- Received Signal Strength decreases proportionally to d^{-γ},
 - where γ is the path loss exponent
- Connections only exists if the signal/noise ratio is beyond a threshold

Definition

- Given a finite point set V in \mathbf{R}^2 or \mathbf{R}^3 ,
- then a Unit Disk Graph with radius r G=(V,E) of the point set is defined by the undirected edge set:

 $E = \{\{u, v\} \mid ||u, v||_2 \le r\}$

– where $||u,v||_2$ is the Euclidean distance:

$$||u,v||_2 = \sqrt{(u_x - v_x)^2 + (u_y - v_y)^2}$$

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Motivation

- Throwing nodes from a plane
- Natural processes lead to a random placement

Definition

- A set of points is placed randomly in an area A₀ if every position occurs with equal probability, i.e.
- the probability density function (pdf)
 f(x) is a constant

Properties of Random Placement

The probability that a node falls in a specific area B of the overall area A₀ is

$$Pr[a \text{ node falls in } B] = \frac{|B|}{|A_0|}$$

- where |B| denotes the area of B

≻ Lemma

- The probability that k of n nodes fall in an area B with $p = |B|/|A_0|$ is

$$Pr\left[\begin{array}{cc}k \text{ of } n \text{ nodes}\\\text{fall in area }B\end{array}\right] = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-1}$$

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Data Flow in Networks

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Motivation:
 - Optimize data flow from source to target
 - Avoid bottlenecks
- Definition:
 - (Single-commodity) Max flow problem
 - Given
 - a graph G=(V,E)
 - a capacity function w: $E \rightarrow \mathbf{R}_{0}^{+}$,
 - source set S and target set T
 - Find a maximum flow from S to T
- > A flow is a function $f : E \rightarrow R_0^+$ with
 - for all $e \in E$: f(e) \leq w(e)
 - for all e ∉ E: f(e) = 0
 - for all $u, v \in V$: $f(u, v) \ge 0$

-
$$\forall u \in V \setminus (S \cup T)$$

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

The size of a flow is:

 $\sum_{u \in S} \sum_{v \in V} f(u, v)$

Finding the Max Flow

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- In every natural pipe system the maximum flow is computed by nature
- Computer Algorithms for finding the max flow:
 - Linear Programming
 - The flow equalities are the constraints of a linear optimization problem
 - Use Simplex (or ellipsoid method) for solving this linear equation system
 - Ford-Fulkerson
 - As long there is an open path (a path which improves the flow) increase the flow on this path
 - Edmonds-Karp
 - Special case Ford-Fulkerson
 - Use Breadth-First-Search to find the paths

Min Cut in Networks

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Motivation:

- Find the bottleneck in a network
- Definition:
 - Min cut problem
 - Given
 - a graph G=(V,E)
 - a capacity function w: $E \rightarrow \mathbf{R}_{0}^{+}$,
 - source set S and target set T
 - Find a minimum cut between S and T

A cut C is a set of edges such that

- there is no path from any node in S to any node in T
- The size of a cut C is:

 $\sum w(e)$ $e \in C$

Min-Cut-Max-Flow Theorem

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻Theorem

For all graphs, all capacity functions, all sets of sources and sets of targets

the minimum cut equals the maximum flow.

>Algorithms for minimum cut

-like algorithms for max flow.

Multi-Commodity Flow Problem

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Motivation:

- Theoretical model of all communication optimization for point-to-point communication with capacities
- Definition
 - Multi-commodity flow problem
 - Given
 - a graph G=(V,E)
 - a capacity function w: $E \rightarrow \mathbf{R}_{0}^{+}$,
 - commodities K₁, .., K_k:
 - $K_i = (s_i, t_i, d_i)$ with
 - s_i is the source node
 - t_i is the target node
 - d_i is the demand
- Find flows f₁,f₂,...,f_k for all commodities obeying
 - Capacity: $\sum_{i=1}^{\kappa} f_i(u,v) \le w(u,v)$

- Flow property:
$$\forall v \notin \{s_i, t_i\}$$
 : $\sum_{u \in V} f_i(u, v) = \sum_{u \in V} f_i(v, u)$
- Demand: $\sum_{v \in V} f_i(s_i, v) = \sum_{u \in V} f_i(u, t_i) = d_i$

Solving Multi-Commodity Flow Problems

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- The Multi-Commodity Flow Problem can be solved by linear programming
 - Use equality as constraints
 - Use Simplex or Ellipsoid Algorithm
- There exist weakened versions of mincut-max-flow theorems

Minimum Density for Connectivity

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> Gupta, Kumar

 Critical Power for Asymptotic Connectivity in Wireless Networks

Motivation:

 How many nodes need to be placed to achieve a connected UDG (unitdisk graph)

≻ Theorem

 In the square area A₀ it is necessary and sufficient to uniformly random place n nodes to achieve a connected UDG where

$$c \cdot \pi r^2 \cdot n = |A_0| \log n$$

- for some constant factor c.

Equivalent description:

$$\Theta\left(\frac{n}{\log n}\right) = \frac{|A_0|}{r^2}$$

Why so Many Nodes?

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Sufficient condition for unconnectedness
 - At least one node in a square of edge length r
 - 8 neighbored squares are empty
- > Probability for none of the n nodes in surrounding squares: $\sqrt{2} \sqrt{n}$

> Note that for $x \in [0,0.75]$:

$$e^{-2x} \le (1-x) \le e^{-x}$$

- > Therefore (for large enough A_0) $\left(1 - \frac{8r^2}{|A_0|}\right)^n \ge e^{-\frac{16r^2n}{|A_0|}}$ 16n
- > The expected number of such isolated nodes is at least

$$n \cdot e^{-\frac{16r^2n}{|A_0|}}$$

 \succ If $\ r^2 = \omega \left(\frac{|A_0| \ln n}{n} \right) \ {\rm then} \ {\rm the expected number of} \$

unconnected nodes is at least 1

Are so Many Nodes Sufficient?

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Sufficient property of connectivity

- In the adjacent squares of edge length r/3 is at least one node
- > Probability that at least one node is in such a square: $2 \times n$

$$1 - \left(1 - \frac{r^2}{9|A_0|}\right)^r$$

Choose

$$r^2 = c \cdot \frac{|A_0| \ln n}{n}$$

> Then the above probability is:

$$1 - \left(1 - \frac{c\ln n}{9n}\right)^n \ge 1 - e^{-\frac{c}{9}\ln n} = 1 - n^{-\frac{c}{9}}$$

- > Choose c>9
 - then the chance of such an occupied neighbored square is bounded by o(n⁻¹)
 - Multiplying this probability with 4n for all neighbored squares gives an upper bound on the probability that each node does not have neighbors to the four sides
- > Then, the error probability is bounded by o(1)

Network Flow in Random Unit Disk Graphs

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> Motivation:

 What is the communication capability of the network

➤ Theorem

Assume that in the square area A₀ if n nodes are uniformly random placed where

$$\Theta\left(\frac{n}{\log n}\right) = \frac{|A_0|}{r^2}$$

- Assume that there is a multi-commodity flow problem in UDG where each node sends to each other node a packet of size 1
- Then each demand d can be satisfied if the capacity of each edge is

$$O\left(\frac{W}{\sqrt{n\log n}}\right)$$

– where $W=n^2$ is the sum of all packets

Proof Sketch

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

First observation:

- for

$$\Theta\left(\frac{n}{\log n}\right) = \frac{|A_0|}{r^2}$$

 the random placement leads to a grid like structure where each cell of cell length r/3

Second observation:

 The network is mainly a grid with m x m cells, where

$$m = \Theta\left(\sqrt{\frac{n}{\log n}}\right)$$

- On the average each cell has log n nodes and has this number edges to the neighbored cells
- In a grid such a demand can be routed with capacity n²/m (horizontal or vertical cut is bottleneck)
- In this network the minimum cut is now $m \log n = (n \log n)^{1/2}$
- The multicommodity flow is therefore W/(n log n) $^{1/2}$

Discussion

Randomly placed connected UDGs need an overhead of a factor of O(log n) nodes

- to become connected

Then the networks behave like grids

- up to some polylogarithmic factor

> The bottleneck of grids is the width

– in the optimal case of square-like formations this is $n^{1/2}$.

➢ If the overhead of a factor O(log n) is not achieved

- then the randomly placed UDG is not connected

This is another case of the coupon-collector problem

How many cards do you need to collect until you possess each of n coupons

Thank you!

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Mobile Ad Hoc Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

3rd Week 02.05.2007