Mobile Ad Hoc Networks
Routing
8th Week
13.06.-09.06.2007

Christian Schindelhauer
schindel@informatik.uni-freiburg.de

University of Freiburg
Computer Networks and Telematics
Prof. Christian Schindelhauer
Network Layer

➢ Routing Protocol
 – Find communication paths
 – Transport of information along this paths

➢ Protocol Classes
 – Proactive: routing tables, continuous updates
 – Reactive: update on demand
 – Hybrid: partial tables, partial on demand

➢ Distributed Routing Variants
 – Distance vector protocols
 – Link state protocols
 – Further variants: flooding, potential algorithms, etc.
The Shortest Path Problem

Given:
- A directed Graph $G = (V,E)$
- Start node
- and edge weights $w : E \rightarrow \mathbb{R}$

Define Weight of Shortest Path
- $\delta(u,v)$ = minimal weight $w(p)$ of a path p from u to v
- $w(p) =$ sum of all edge weights $w(e)$ of edges e of path p

Find:
- The shortest paths from s to all nodes in G

Solution set:
- is described by a tree with root s
- Every node points towards the root s
Dijkstra(G, w, s)
begin
 Init-Single-Source(G, w)
 $S ← \emptyset$
 $Q ← V$
 while $Q ≠ \emptyset$ do
 $u ←$ Element aus Q mit minimalen Wert $d(u)$
 $S ← S \cup \{u\}$
 $Q ← Q \setminus \{u\}$
 for all $v ∈ \text{Adj}(u)$ do
 Relax(u, v)
 od
 od
end

Dijkstra’s algorithm has runtime $\Theta(|E| + |V| \log |V|)$

Init-Single-Source(G, w, s)
begin
 for all $v ∈ V$ do
 $d(v) ← \infty$
 $\pi(v) ← v$
 od
 $d(s) ← 0$
end

Relax(u, v)
begin
 if $d(v) > d(u) + w(u, v)$ then
 $d(v) ← d(u) + w(u, v)$
 $\pi(v) ← u$
 fi
end
Dijkstra: Example
Distance Vector Routing Protocol

- **Distance Table Data Structure**
 - Every node has a
 - row for each target
 - column for each direct neighbor

- **Distributed Algorithm**
 - Every node communicates only with his neighbors

- **Asynchronous**
 - Nodes do not use a round model

- **Self-termination**
 - Algorithm runs until no further changes occur
The “Count to Infinity” - Problem

- **Good news travel fast**
 - A new connection is announced quickly.

- **Bad news travel slow**
 - Connection fails
 - Neighbors increase the distance counter
 - “Count to Infinity”-Problem
Link-State Protocol

- **Link State Routers**
 - exchange information using **link state packets** (LSP)
 - Every router uses a (centralized) shortest-path-algorithm

- **LSP contains**
 - ID of creator of LSP
 - Costs of all edges from the creator
 - Sequence no. (SEQNO)
 - TTL-entry (time to live)

- **Reliable Flooding**
 - The current LSP of every node are stored
 - Forwarding of LSPs to all neighbors
 - except sending nodes
 - Periodically new LSPs are generated
 - with incremented SEQNO
 - TTL is decremented after every transmission
Why is Routing in MANET different?

- Host mobility
 - link failure/repair due to mobility may have different characteristics than those due to other causes

- Rate of link failure/repair may be high when nodes move fast

- New performance criteria may be used
 - route stability despite mobility
 - energy consumption
Unicast Routing Protocols

- Many protocols have been proposed

- Some have been invented specifically for MANET

- Others are adapted from previously proposed protocols for wired networks

- No single protocol works well in all environments
 - some attempts made to develop adaptive protocols
Routing Protocols

➢ Proactive Protocols:
 – Determine routes independent of traffic pattern
 – Traditional link-state and distance-vector routing protocols are proactive
 • Destination Sequenced Distance Vector (DSDV)
 • Optimized Link State Routing (OLSR)

➢ Reactive Protocols
 – Route is only determined when actually needed
 – Protocol operates on demand
 • Dynamic Source Routing (DSR)
 • Ad hoc On-demand Distance Vector (AODV)
 • Temporally Ordered Routing Algorithm (TORA)

➢ Hybrid Protocols:
 – Combine these behaviors
 • Zone Routing Protocol (ZRP)
 • Greedy Perimeter Stateless Routing (GPSR)
Trade-Off

- **Latency of route discovery**
 - Proactive protocols may have lower latency since routes are maintained at all times
 - Reactive protocols may have higher latency because a route from X to Y will be found only when X attempts to send to Y

- **Overhead of route discovery/maintenance**
 - Reactive protocols may have lower overhead since routes are determined only if needed
 - Proactive protocols can (but not necessarily) result in higher overhead due to continuous route updating

- **Which approach achieves a better trade-off depends on the traffic and mobility patterns**
Flooding for Data Delivery

- Sender S broadcasts data packet P to all its neighbors
- Each node receiving P forwards P to its neighbors
- Sequence numbers used to avoid the possibility of forwarding the same packet more than once
- Packet P reaches destination D provided that D is reachable from sender S
- Node D does not forward the packet
Flooding for Data Delivery

Represents that connected nodes are within each other's transmission range

Represents a node that has received packet P

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Flooding for Data Delivery

- Broadcast transmission

- Represents transmission of packet P

- Represents a node that receives packet P for the first time

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Tutorial on Mobile Ad Hoc Networks: Routing, MAC and Transport Issues
http://www.crhc.uiuc.edu/wireless/talks/2006.infocom.ppt
Flooding for Data Delivery

• Node H receives packet P from two neighbors: potential for collision
• Node C receives packet P from G and H, but does not forward it again, because node C has already forwarded packet P once.
Nodes J and K both broadcast packet P to node D
Since nodes J and K are hidden from each other, their transmissions may collide
=> Packet P may not be delivered to node D at all, despite the use of flooding
• Node D **does not forward** packet P, because node D is the **intended destination of packet P**.
Flooding for Data Delivery

- Flooding completed
- Nodes unreachable from S do not receive packet P (e.g., node Z)
- Nodes for which all paths from S go through the destination D also do not receive packet P (example: node N)
Flooding for Data Delivery

- Flooding may deliver packets to too many nodes (in the **worst case**, all nodes reachable from sender may receive the packet)
Flooding for Data Delivery: Advantages

- Simplicity

- May be more efficient than other protocols when the rate of information transmission is low enough that the overhead of explicit route discovery/maintenance incurred by other protocols is relatively higher
 - this scenario may occur, for instance, when nodes transmit small data packets relatively infrequently, and many topology changes occur between consecutive packet transmissions

- Potentially higher reliability of data delivery
 - Because packets may be delivered to the destination on multiple paths
Flooding for Data Delivery: Disadvantages

- Potentially, very high overhead
 - Data packets may be delivered to too many nodes who do not need to receive them

- Potentially lower reliability of data delivery
 - Flooding uses broadcasting -- hard to implement reliable broadcast delivery without significantly increasing overhead
 - Broadcasting in IEEE 802.11 MAC is unreliable
 - In our example, nodes J and K may transmit to node D simultaneously, resulting in loss of the packet
 - In this case, destination would not receive the packet at all

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Flooding of Control Packets

- Many protocols perform (potentially limited) flooding of control packets, instead of data packets.

- The control packets are used to discover routes.

- Discovered routes are subsequently used to send data packet(s).

- Overhead of control packet flooding is amortized over data packets transmitted between consecutive control packet floods.
Dynamic Source Routing (DSR) [Johnson96]

- When node S wants to send a packet to node D, but does not know a route to D, node S initiates a route discovery.

- Source node S floods Route Request (RREQ).

- Each node appends own identifier when forwarding RREQ.
In a reactive protocol, how to forward a packet to destination?
- Initially, no information about next hop is available at all
- One (only?) possible recourse: Send packet to all neighbors – flood the network
- Hope: At some point, packet will reach destination and an answer is sent pack – use this answer for \textit{backward learning} the route from destination to source

\textbf{Practically: Dynamic Source Routing (DSR)}
- Use separate \textit{route request/route reply} packets to discover route
 - Data packets only sent once route has been established
 - Discovery packets smaller than data packets
- Store routing information in the discovery packets
DSR route discovery procedure

Search for route from 1 to 5

Node 5 uses route information recorded in RREQ to send back, via \textit{source routing}, a route reply
Route Discovery in DSR

Represents a node that has received RREQ for D from S

Tutorial by Nitin Vaidya presented on INFOCOM 2006
http://www.crhc.uiuc.edu/wireless/talks/2006.infocom.ppt
Route Discovery in DSR

Broadcast transmission

[S]

Represents transmission of RREQ

[X,Y] Represents list of identifiers appended to RREQ
Route Discovery in DSR

- Node H receives packet RREQ from two neighbors: potential for collision
• Node C receives RREQ from G and H, but does not forward it again, because node C has \textit{already forwarded} RREQ once.
Route Discovery in DSR

- Nodes J and K both broadcast RREQ to node D
- Since nodes J and K are hidden from each other, their transmissions may collide
• Node D does not forward RREQ, because node D is the intended target of the route discovery.
Route Discovery in DSR

- Destination D on receiving the first RREQ, sends a **Route Reply (RREP)**

- **RREP** is sent on a route obtained by reversing the route appended to received RREQ

- **RREP includes the route** from S to D on which RREQ was received by node D
Route Reply in DSR

RREP \{S,E,F,J,D\}

Represents RREP control message

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Route Reply in DSR

- Route Reply can be sent by reversing the route in Route Request (RREQ) only if links are guaranteed to be bi-directional
 - To ensure this, RREQ should be forwarded only if it received on a link that is known to be bi-directional

- If unidirectional (asymmetric) links are allowed, then RREP may need a route discovery for S from node D
 - Unless node D already knows a route to node S
 - If a route discovery is initiated by D for a route to S, then the Route Reply is piggybacked on the Route Request from D.

- If IEEE 802.11 MAC is used to send data, then links have to be bi-directional (since Ack is used)
Dynamic Source Routing (DSR)

- Node S on receiving RREP, caches the route included in the RREP

- When node S sends a data packet to D, the entire route is included in the packet header
 - hence the name source routing

- Intermediate nodes use the source route included in a packet to determine to whom a packet should be forwarded

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Packet header size grows with route length
When to Perform a Route Discovery

- When node S wants to send data to node D, but does not know a valid route node D

Tutorial by Nitin Vaidya presented on INFOCOM 2006
DSR modifications, extensions

- Intermediate nodes may send route replies in case they already know a route
 - Problem: stale route caches

- Promiscuous operation of radio devices – nodes can learn about topology by listening to control messages

- Random delays for generating route replies
 - Many nodes might know an answer – reply storms
 - NOT necessary for medium access – MAC should take care of it

- Salvaging/local repair
 - When an error is detected, usually sender times out and constructs entire route anew
 - Instead: try to locally change the source-designated route

- Cache management mechanisms
 - To remove stale cache entries quickly
 - Fixed or adaptive lifetime, cache removal messages, …
DSR Optimization: Route Caching

- Each node caches a new route it learns by any means.
- When node S finds route [S,E,F,J,D] to node D, node S also learns route [S,E,F] to node F.
- When node F forwards Route Reply RREP [S,E,F,J,D], node F learns route [F,J,D] to node D.
- When node E forwards Data [S,E,F,J,D] it learns route [E,F,J,D] to node D.
- A node may also learn a route when it overhears Data packets.
Use of Route Caching

- When node S learns that a route to node D is broken, it uses another route from its local cache, if such a route to D exists in its cache. Otherwise, node S initiates route discovery by sending a route request.

- Node X on receiving a Route Request for some node D can send a Route Reply if node X knows a route to node D.

- Use of route cache
 - can speed up route discovery
 - can reduce propagation of route requests

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Tutorial on Mobile Ad Hoc Networks: Routing, MAC and Transport Issues
http://www.crhc.uiuc.edu/wireless/talks/2006.infocom.ppt
Use of Route Caching

[P, Q, R] Represents cached route at a node
(DSR maintains the cached routes in a tree format)
Use of Route Caching:
Can Speed up Route Discovery

When node Z sends a route request for node C, node K sends back a route reply [Z,K,G,C] to node Z using a locally cached route.
Use of Route Caching: Can Reduce Propagation of Route Requests

Assume that there is no link between D and Z. Route Reply (RREP) from node K limits flooding of RREQ. In general, the reduction may be less dramatic.

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Tutorial on Mobile Ad Hoc Networks: Routing, MAC and Transport Issues
http://www.crhc.uiuc.edu/wireless/talks/2006.infocom.ppt
J sends a route error to S along route J-F-E-S when its attempt to forward the data packet S (with route SEFJD) on J-D fails. Nodes hearing RERR update their route cache to remove link J-D.
Dynamic Source Routing:
Advantages

- Routes maintained only between nodes who need to communicate
 - reduces overhead of route maintenance

- Route caching can further reduce route discovery overhead

- A single route discovery may yield many routes to the destination, due to intermediate nodes replying from local caches
Dynamic Source Routing: Disadvantages

- Packet header size grows with route length due to source routing

- Flood of route requests may potentially reach all nodes in the network

- Care must be taken to avoid collisions between route requests propagated by neighboring nodes
 - insertion of random delays before forwarding RREQ

- Increased contention if too many route replies come back due to nodes replying using their local cache
 - Route Reply Storm problem
 - Reply storm may be eased by preventing a node from sending RREP if it hears another RREP with a shorter route

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Dynamic Source Routing: Disadvantages

- An intermediate node may send Route Reply using a stale cached route, thus polluting other caches.

- This problem can be eased if some mechanism to purge (potentially) invalid cached routes is incorporated.

- For some proposals for cache invalidation, see [Hu00Mobicom]
 - Static timeouts
 - Adaptive timeouts based on link stability
Flooding of Control Packets

- How to reduce the scope of the route request flood?
 - Location Aided Routing LAR [Ko98Mobicom]
 - Query localization [Castaneda99Mobicom]

- How to reduce redundant broadcasts?
 - The Broadcast Storm Problem [Ni99Mobicom]
Location Aided Routing (LAR)

- **Advantages**
 - reduces the scope of route request flood
 - reduces overhead of route discovery

- **Disadvantages**
 - Nodes need to know their physical locations
 - Does not take into account possible existence of obstructions for radio transmissions

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Geographic Distance Routing (GEDIR) [Lin98]

- Location of the destination node is assumed known
- Each node knows location of its neighbors
- Each node forwards a packet to its neighbor closest to the destination
- Route taken from S to D shown below

![Diagram of a network with nodes S, A, B, C, D, E, F, and H, showing the geographic distance routing.](Diagram)

Tutorial by Nitin Vaidya presented on INFOCOM 2006

Geographic Distance Routing (GEDIR)

[Stojmenovic99]

- The algorithm terminates when same edge traversed twice consecutively

- Algorithm fails to route from S to E
 - Node G is the neighbor of C who is closest from destination E, but C does not have a route to E

![Diagram showing nodes A, B, C, D, E, F, G, H, and S with green arrows indicating the route and red arrows indicating the obstruction.](http://www.crhc.uiuc.edu/wireless/talks/2006.Infocom.ppt)
Routing with Guaranteed Delivery [Bose99Dialm]

- Improves on GEDIR [Lin98]

- Guarantees delivery (using location information) provided that a path exists from source to destination

- Routes around obstacles if necessary

- A similar idea also appears in [Karp00Mobicom]
Ad hoc On Demand Distance Vector routing (AODV)

- Very popular routing protocol
- Essentially same basic idea as DSR for discovery procedure
- Nodes maintain routing tables instead of source routing
- Sequence numbers added to handle stale caches
- Nodes remember from where a packet came and populate routing tables with that information
Ad Hoc On-Demand Distance Vector Routing (AODV)
[Perkins99Wmcsa]

- DSR includes source routes in packet headers

- Resulting large headers can sometimes degrade performance
 - particularly when data contents of a packet are small

- AODV attempts to improve on DSR by maintaining routing tables at the nodes, so that data packets do not have to contain routes

- AODV retains the desirable feature of DSR that routes are maintained only between nodes which need to communicate
AODV

- Route Requests (RREQ) are forwarded in a manner similar to DSR

- When a node re-broadcasts a Route Request, it sets up a reverse path pointing towards the source
 - AODV assumes symmetric (bi-directional) links

- When the intended destination receives a Route Request, it replies by sending a Route Reply

- Route Reply travels along the reverse path set-up when Route Request is forwarded
Route Requests in AODV

Represents a node that has received RREQ for D from S

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Route Requests in AODV

Broadcast transmission

Represents transmission of RREQ
Route Requests in AODV

Represents links on Reverse Path

Tutorial by Nitin Vaidya presented on INFOCOM 2006
http://www.crhc.uiuc.edu/wireless/talks/2006.infocom.ppt
• Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once
Reverse Path Setup in AODV

Tutorial by Nitin Vaidya presented on INFOCOM 2006

• Node D does not forward RREQ, because node D is the intended target of the RREQ
Route Reply in AODV

Represents links on path taken by RREP

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Tutorial on Mobile Ad Hoc Networks: Routing, MAC and Transport Issues
Route Reply in AODV

- An intermediate node (not the destination) may also send a Route Reply (RREP) provided that it knows a more recent path than the one previously known to sender S.

- To determine whether the path known to an intermediate node is more recent, destination sequence numbers are used.

- The likelihood that an intermediate node will send a Route Reply when using AODV not as high as DSR:
 - A new Route Request by node S for a destination is assigned a higher destination sequence number. An intermediate node which knows a route, but with a smaller sequence number, cannot send Route Reply.
Forward links are setup when RREP travels along the reverse path.

 Represents a link on the forward path.
Routing table entries used to forward data packet. Route is *not* included in packet header.
Timeouts

- A routing table entry maintaining a reverse path is purged after a timeout interval
 - timeout should be long enough to allow RREP to come back

- A routing table entry maintaining a forward path is purged if not used for a active_route_timeout interval
 - if no data is being sent using a particular routing table entry, that entry will be deleted from the routing table (even if the route may actually still be valid)
Link Failure Reporting

- A neighbor of node X is considered active for a routing table entry if the neighbor sent a packet within active_route_timeout interval which was forwarded using that entry.

- When the next hop link in a routing table entry breaks, all active neighbors are informed.

- Link failures are propagated by means of Route Error messages, which also update destination sequence numbers.
Route Error

- When node X is unable to forward packet P (from node S to node D) on link (X,Y), it generates a RERR message.

- Node X increments the destination sequence number for D cached at node X.

- The incremented sequence number N is included in the RERR.

- When node S receives the RERR, it initiates a new route discovery for D using destination sequence number at least as large as N.

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Tutorial on Mobile Ad Hoc Networks: Routing, MAC and Transport Issues
http://www.crhc.uiuc.edu/wireless/talks/2006.infocom.ppt
Link Failure Detection

- **Hello** messages: Neighboring nodes periodically exchange hello message
- Absence of hello message is used as an indication of link failure
- Alternatively, failure to receive several MAC-level acknowledgement may be used as an indication of link failure
- When node D receives the route request with destination sequence number N, node D will set its sequence number to N, unless it is already larger than N

Tutorial by Nitin Vaidya presented on INFOCOM 2006
Why Sequence Numbers in AODV

➢ To avoid using old/broken routes
 – To determine which route is newer

➢ To prevent formation of loops

- Assume that A does not know about failure of link C-D because RERR sent by C is lost
- Now C performs a route discovery for D. Node A receives the RREQ (say, via path C-E-A)
- Node A will reply since A knows a route to D via node B
- Results in a loop (for instance, C-E-A-B-C)
Why Sequence Numbers in AODV

- Loop C-E-A-B-C
Optimization: Expanding Ring Search

- Route Requests are initially sent with small Time-to-Live (TTL) field, to limit their propagation
 - DSR also includes a similar optimization

- If no Route Reply is received, then larger TTL tried
Summary: AODV

- Routes need not be included in packet headers

- Nodes maintain routing tables containing entries only for routes that are in active use

- At most one next-hop per destination maintained at each node
 - Multi-path extensions can be designed
 - DSR may maintain several routes for a single destination

- Unused routes expire even if topology does not change
Thank you!