Mobile Ad Hoc Networks
Mobility (III)
12th Week
10.07.-13.07.2007

Christian Schindelhauer
schindel@informatik.uni-freiburg.de
Models of Mobility
Particle Based Mobility: Vehicles
Reality

Simulation with GFM

![Graphs showing relative velocity vs netto distance for vehicles in reality and simulation.](image-url)
Modeling Worst Case Mobility

[S., Lukovszki, Rührup, Volbert 2003]

V: Pedestrian Model ↔ Maximum velocity \(\leq v_{\text{max}} \)

A: Vehicular Model ↔ Maximum acceleration \(\leq a_{\text{max}} \)
Modeling
Worst Case Mobility

- Synchronous round model
- In every round of duration Δ
 - Determine positions (speed vectors) of possible comm. partners
 - Establish (stable) communication links
 - Update routing information
 - Do the job, i.e. packet delivery, live video streams, telephone,…
MODELING

Worst Case Mobility: Crowds

- Crowdedness of node set
 - natural lower bound on network parameters (like diversity)

1. Pedestrian (v) model:
 - Maximum number of nodes that can collide with a given node in time span \([0, \Delta]\)
 \[
 \operatorname{crowd}_v(u) := \# \{ w \in S \setminus \{u\} : |u - w|_2 \leq 2v_{\max}\Delta \}
 \]

2. Vehicular (a) model:
 - Maximum number of nodes that may move to node \(u\) meeting it with zero relative speed in time span \([0, \Delta]\)
 \[
 \operatorname{crowd}_a(u) := \# \{ w \in S \setminus \{u\} : |u - w|_2 \leq \frac{1}{2}a_{\max}\Delta^2 \text{ and } |u' - w'|_2 \leq \frac{1}{2}a_{\max}\Delta \}
 \]

\[
\operatorname{crowd}(S) := \max_{u \in S} \operatorname{crowd}(u)
\]
Pedestrian model / Velocity bounded model

\[|u, w|_v := 2\Delta v_{\text{max}} + |u - w|_2 \]
Vehicular mobility model / Acceleration bounded model

\[|u, w|_a := \max\{|u-w|_2, |u-w+(u'-w')\Delta|_2+a_{\text{max}}\Delta^2\} \]
An edge g interferes with edge e in the

1. Pedestrian (v) model

 $$g \in \text{Int}_v(e) \iff \exists p \in e, \exists q \in g : |p-q|_2 \leq |g|_v$$

2. Vehicular (a) model

 $$g \in \text{Int}_a(e) \iff \exists p \in e, \exists q \in g : |p-q|_2 \leq |g|_a \text{ and } |p-q+\Delta(p'-q')|_2 \leq |g|_a$$

No interference

Interference
Theorem

In both mobility models we observe for all connected graphs G:

\[\text{Int}(G) \geq \text{crowd}(S) - 1 \]

Lemma

In both mobility models \(\alpha \in \{v, a\} \) every mobile spanner is also a mobile power spanner, i.e. for some \(\beta \geq 1 \) for all \(u, w \in S \) there exists a path \((u=p_0, p_1, \ldots, p_k=w) \) in G such that:

\[
\sum_{i=1}^{k} (|p_{i-1}, p_i|_{\alpha})^{\beta} \leq c \cdot (|u, w|_{\alpha})^{\beta}
\]
Modeling
Worst Case Mobility: Results
(II)

Theorem
Given a mobile spanner G for any of our mobility models then
- for every path system \mathcal{P} in a complete network C
- there exists a path system \mathcal{P}' in G such that

$$C_{\mathcal{P}'}(G) \equiv O(C_\mathcal{P}(G) \cdot \operatorname{Int}(G) \cdot \log n)$$

Theorem
The Hierarchical Grid Graph constitutes a mobile spanner with at most $O(\operatorname{crowd}(V) + \log n)$ interferences (for both mobility models).

The Hierarchical Grid Graph can be built up in $O(\operatorname{crowd}(V) + \log n)$ parallel steps using radio communication
Modeling - Worst Case Mobility: Hierarchical Grid Graph (pedestrians)

- Start with grid of box size Δv_{max}
- For $O(\log n)$ rounds do:
 - Determine a cluster head per box
 - Build up star-connections from all nodes to their cluster heads
 - Erase all non cluster heads
 - Connect neighbored cluster heads
 - Increase box size by factor 2

- od
Modeling - Worst Case Mobility: The Hierarchical Grid Graph (vehicular)

Algorithm:
- Consider coordinates \((x(s_i), y(s_i), x(s'_i), y(s'_i))\)
- Start with four-dimensional grid
 - with rectangular boxes of size \((6\Delta^2 a_{\text{max}}, 6\Delta^2 a_{\text{max}}, 2\Delta v_{\text{max}}, 2\Delta v_{\text{max}})\)
- Use the same algorithm as before
Theorem

There exist distributed algorithms that construct a mobile network G for velocity bounded and acceleration bounded model with the following properties:

1. G allows routing approximating the optimal congestion by $O(\log^2 n)$
2. Energy-optimal routing can be approximated by a factor of $O(1)$
3. G approximates the minimal interference number by $O(\log n)$
4. The degree is $O(\text{crowd}(S) + \log n)$
5. The diameter is $O(\log n)$

➢ Still no routing can satisfy small congestion and energy at the same time!
Discussion: Mobility is Helpful

- Positive impacts of mobility:

- Improves coverage of wireless sensor networks

- Helps security in ad hoc networks

- Decreases network congestion
 - can overcome the natural lower bound of throughput of $O(\sqrt{n})$
 - mobile nodes relay packets
 - literally transport packets towards the destination node
Models of Mobility
Random Waypoint Mobility Model

- move directly to a randomly chosen destination
- choose speed uniformly from $[v_{\text{min}}, v_{\text{max}}]$
- stay at the destination for a predefined pause time

[Johnson, Maltz 1996]

[Camp et al. 2002]
Mobility Increases the Network Capacity
Grossglauser & Tse 2002

➢ Model:
 - SINR-based communication
 - Scheduling policy without interference
 - Random Waypoint mobility model
 - Complete pair-to-pair communication

➢ Without mobility:
 - The capacity is at least $\Theta(n^{1/2})$
 - and at most $O(n^{1/2} \log n)$

➢ Routing
 - Split packets and send to closeby passing relay node
 - If a relay node is closeby to the destination the packet is transmitted

Fig. 1. In phase 1, each packet is transmitted by the source to a close-by relay node.

Fig. 2. In phase 2, a packet is handed off to its destination if the relay node is close by.
Mobility Increases the Network Capacity
Grossglauser & Tse 2002

➢ Signal-noise-ratio
- Node i transmits packet to node j with power $P_i(t)$ iff

$$\frac{P_i(t)\gamma_{ij}(t)}{N_0 + \frac{1}{L}\sum_{k\neq i} P_k(t)\gamma_{kj}(t)} > \beta$$

where $L=1$ is the processing gain
- $L > 1$ for CDMA (not considered here)
- where for $\alpha \geq 2$ the channel gain is

$$\gamma_{ij}(t) = \frac{1}{|X_i(t) - X_j(t)|^\alpha}$$

➢ Find a schedule (routing) such that the number of packets $M_i(t)$ reaching destination i at time t is at least $\lambda(n)$ in the limit
- If a relay node is closeby to the destination the packet is transmitted

$$\lim_{T \to \infty} \inf \frac{1}{T} \sum_{t=1}^{T} M_i(t) \geq \lambda(n)$$
Results without relaying
- Sender communicates directly to the destination if the destination is in reach
- Either long range communication leads to many interferences
- Or there is only a little chance to meet the destination which leads to small throughput

Capacity for demand R:

$$\lambda(n) = O \left(R \cdot n^{-\frac{1}{1+\frac{1}{2}\alpha}} \right)$$

Remember the channel gain

$$\gamma_{ij}(t) = \frac{1}{|X_i(t) - X_j(t)|^\alpha}$$
Mobility Increases the Network Capacity
Grossglauser & Tse 2002

- With relaying
 - There is a constant portion of feasible relaying nodes
 - This leads to a throughput of \(cR\) for demand \(R\) for a constant \(c > 0\)

\[
\lambda(n) = \Theta(R)
\]

- Disadvantage
 - Long delays

Fig. 3. The two-phase scheduling policy viewed as a queuing system, for a source-destination pair: in phase 1, a packet at \(S\) is served by a queue of capacity \(\Theta(1)\) and is forwarded either to the destination or to one of \(n-2\) relay nodes with equal probability. The service rate at each relay node \(R\) is \(\Theta(1/n)\), for a total session rate of \(\Theta(1)\).
Discussion: Mobility Models and Reality

- Discrepancy between
 - realistic mobility patterns and
 - benchmark mobility models

- Random trip models
 - prevalent mobility model
 - assume individuals move erratically
 - more realistic adaptations exist
 • really realistic?
 - earth bound or pedestrian mobility in the best case

- Group mobility
 - little known
 - social interaction or physical process?

- Worst case mobility
 - more general
 - gives more general results
 - yet only homogenous participants
 - network performance characterized by crowdedness
Thank you!