Peer-to-Peer Networks
DHT & CAN
2nd Week

Albert-Ludwigs-Universität Freiburg
Department of Computer Science
Computer Networks and Telematics
Christian Schindelhauer
Summer 2008
Peer-to-Peer Networks

Distributed Hash Tables (DHT)
Why Gnutella Does Not Really Scale

- **Gnutella**
 - graph structure is random
 - degree of nodes is small
 - small diameter
 - strong connectivity

- **Lookup is expensive**
 - for finding an item the whole network must be searched

- **Gnutella’s lookup does not scale**
 - reason: no structure within the index storage
Two Key Issues for Lookup

- Where is it?
- How to get there?

Napster:
 - Where? on the server
 - How to get there? directly

Gnutella
 - Where? don’t know
 - How to get there? don’t know

Better:
- Where is x?
 - at f(x)
- How to get there?
 - all peers know the route
(Bad) Idea: Use Hashing

- Give each of \(n \) peers a number 0,1,...,\(n-1 \)
 - use hash function
 - e.g. \(f(x) = (3x+1 \mod 23) \mod 7 \)
 - peers are connected on a chain

- Lookup
 - compute \(f(x) \)
 - forward message to \(f(x) \) along the chain

\[
\begin{align*}
\text{Peers:} & & & & & \\
0 & \rightarrow & 1 & \rightarrow & 2 & \rightarrow & 3 & \rightarrow & 4 & \rightarrow & 5 & \rightarrow & 6 \\
23 & & 0 & & 5 & & & & 1 & & & & 4 \\
 \text{Index entries:} & & & & & \\
f(23)=1 & & & & & f(1)=4
\end{align*}
\]
Problems with Pure Hashing

- **Insert and deletion of peers critical**
 - if a peer leaves without warning then network breaks up
 - inserting a peer implies readjusting the whole entries
 - hash function must be changed to new version
- **Lookup is not efficient**
 - takes linear time on the average
 - the peers in the middle see 50% of all lookups

Distributed Hash-Table (DHT)

- **Hash table**
 - does not work efficiently for inserting and deleting
- **Distributed Hash-Table**
 - peers are "hashed" to a position in an continuous set (e.g. line)
 - index data is also "hashed" to this set
- **Mapping of index data to peers**
 - peers are given their own areas depending on the position of the direct neighbors
 - all index data in this area is mapped to the corresponding peer
- **Literature**
Entering and Leaving a DHT

- **Distributed Hash Table**
 - peers are hashed to a position
 - index files are hashed according to the search key
 - peers store index data in their areas

- **When a peer enters**
 - neighbored peers share their areas with the new peer

- **When a peer leaves**
 - the neighbors inherit the responsibilities for the index data
Features of DHT

- **Advantages**
 - Each index entry is assigned to a specific peer
 - Entering and leaving peers cause only local changes
- **DHT is the dominant data structure in efficient P2P networks**
- **To do:**
 - network structure
Peer-to-Peer Networks

Content Addressable Network (CAN)
Index entries are mapped to the square $[0,1]^2$

- using two hash functions to the real numbers
- according to the search key

Assumption:
- hash functions behave a like a random mapping
Index entries are mapped to the square \([0,1]^2\)
- using two hash functions to the real numbers
- according to the search key

Assumption:
- hash functions behave a like a random mapping

Literature
First Peer in CAN

- In the beginning there is one peer owning the whole square
- All data is assigned to the (green) peer
CAN: The 2nd Peer Arrives

- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner
CAN: 2nd Peer Has Settled Down

- The new peer chooses a random point in the square
 - or uses a hash function applied to the peer's Internet address
- The peer looks up the owner of the point
 - and contacts the owner
- The original owner divides his rectangle in the middle and shares the data with the new peer
3rd Peer

- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner
- The original owner divides his rectangle in the middle and shares the data with the new peer
The new peer chooses a random point in the square
- or uses a hash function applied to the peers Internet address

The peer looks up the owner of the point
- and contacts the owner

The original owner divides his rectangle in the middle and shares the data with the new peer
The new peer chooses a random point in the square
• or uses a hash function applied to the peers Internet address

The peer looks up the owner of the point
• and contacts the owner

The original owner divides his rectangle in the middle and shares the data with the new peer
CAN: 4th Peer Added

- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner
- The original owner divides his rectangle in the middle and shares the data with the new peer
The new peer chooses a random point in the square
 • or uses a hash function applied to the peer’s Internet address

The peer looks up the owner of the point
 • and contacts the owner

The original owner divides his rectangle in the middle and shares the data with the new peer
CAN: All Peers Added

- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner
- The original owner divides his rectangle in the middle and shares the data with the new peer
On the Size of a Peer’s Area

- \(R(p) \): rectangle of peer \(p \)
- \(A(p) \): area of the \(R(p) \)
- \(n \): number of peers
- area of playground square: 1

Lemma
- For all peers we have
 \[
 E[A(p)] = \frac{1}{n}
 \]

Lemma
- Let \(P_{R,n} \) denote the probability that no peers falls into an area \(R \). Then we have
 \[
 P_{R,n} \leq e^{-n \text{Vol}(R)}
 \]
Expected Area of a Peer

- **Lemma**
 - For all peers we have $E[A(p)] = \frac{1}{n}$

- **Proof**
 - Let \{1,...,n\} be the peers
 - inserted in a random order
 - Then $\sum_{i=1}^{n} A(p) = 1$
 - Because of symmetry
 $\forall i \in \{1, \ldots, n\} : A(i) = A(1)$
 - Therefore
 $$1 = \sum_{i=1}^{n} A(i) = E \left[\sum_{i=1}^{n} A(i) \right] = \sum_{i=1}^{n} E[A(i)] = nE[A(1)]$$
On the Size of a Peer’s Area

- \(R(p) \): rectangle of peer \(p \)
- \(A(p) \): area of the \(R(p) \)
- \(n \): number of peers
- area of playground square: 1
- Lemma
 - For all peers we have \(E[A(p)] = \frac{1}{n} \)
- Lemma
 - Let \(P_{R,n} \) denote the probability that no peers falls into an area \(R \). Then we have
 \[
 P_{R,n} \leq e^{-n \text{Vol}(R)}
 \]
Lemma

- Let $P_{R,n}$ denote the probability that no peers falls into an area R. Then we have $P_{R,n} \leq e^{-n \text{Vol}(R)}$

Proof

- Let $x = \text{Vol}(R)$
- The probability that a peer does not fall into R is $1 - x$
- The probability that n peers do not fall into R is $(1 - x)^n$
- So, the probability is bounded by
 $$(1 - x)^n = ((1 - x)\frac{1}{x})^{nx} \leq e^{-nx}$$
- because
 $$m > 1 : \left(1 - \frac{1}{m}\right)^m \leq \frac{1}{e}$$
How Fair Are the Data Balanced

- **Lemma**
 - With probability n^{-c} a rectangle of size $(c \ln n)/n$ is not further divided

- **Proof**
 - Let $P_{R,n}$ denote the probability that no peers falls into an area R. Then we have
 \[P_{R,n} \leq e^{-n \text{Vol}(R)} \]
 \[P_{R,n} \leq e^{-n \frac{c \ln n}{n}} = e^{-c \ln n} = n^{-c} \]

- Every peer receives at most $c (\ln n) m/n$ elements
 - if all m elements are stored equally distributed over the area

- While the average peer stores m/n elements

- So, the number of data stored on a peer is bounded by $c (\ln n)$ times the average amount
Network Structure of CAN

- Let d be the dimension of the square, cube, hyper-cube
 - 1: line
 - 2: square
 - 3: cube
 - 4: ...

- Peers connect
 - if the areas of peers share a $(d-1)$-dimensional area
 - e.g. for $d=2$ if the rectangles touch by more than a point
Lookup in CAN

- Compute the position of the index using the hash function on the key value
- Forward lookup to the neighbored peer which is closer to the index
- Expected number of hops for CAN in d dimensions:
 - $O(n^{1/d})$
- Average degree of a node
 - $O(d)$
Insertions in CAN = Random Tree

- **Random Tree**
 - new leaves are inserted randomly
 - if node is internal then flip coin to forward to left or right sub-tree
 - if node is leaf then insert two leaves to this node

- **Depth of Tree**
 - in the expectation: $O(\log n)$
 - Depth $O(\log n)$ with high probability, i.e. $1-n^{-c}$

- **Observation**
 - CAN inserts new peers like leaves in a random tree
Leaving Peers in CAN

- If a peer leaves
 - he does not announce it
- Neighbors continue testing on the neighborhood
 - to find out whether peer has left
 - the first neighbor who finds a missing neighbor takes over the area of the missing peer
- Peers can be responsible for many rectangles
- Repeated insertions and deletions of peers lead to fragmentation
Defragmentation — The Simple Case

- To heal fragmented areas
 - from time to time areas are freshly assigned
- Every peer with at least two zones
 - erases smallest zone
 - finds replacement peer for this zone
- 1. case: neighboring zone is undivided
 - both peers are leaves in the random tree
 - transfer zone to the neighbor
Defragmentation — The Difficult Case

- Every peer with at least two zones
 - erases smallest zone
 - finds replacement peer for this zone

- 2. case: neighboring zone is further divided
 - Perform DFS (depth first search) in neighbor tree until two neighbored leafs are found
 - Transfer the zone to one leaf which gives up his zone
 - Choose the other leaf to receive the latter zone
Improvements for CAN

- More dimensions
- Multiples realities
- Distance metric for routing
- Overloading of zones
- Multiple hashing
- Topology adapted network construction
- Fairer partitioning
- Caching, replication and hot-spot management
Higher Dimensions

- Let d be the dimension of the square, cube, hyper-cube
 - 1: line
 - 2: square
 - 3: cube
 - 4: ...

- The expected path length is $O(n^{1/d})$
- Average number of neighbors $O(d)$

![Graph showing the expected path length and average number of neighbors for different dimensions.](image-url)
More Realities

- Build simultaneously \(r \) CANs with the same peers
- Each CAN is called a reality
- For lookup
 - greedily jump between realities
 - choose reality with the closest distance to the target
- Advantages
 - robuster network
 - faster search
More Realities

- Advantages
 - more robust
 - shorter paths

![Graph showing the relationship between number of hops and number of nodes for different numbers of realities. The graph has a y-axis labeled 'Number of hops' and an x-axis labeled 'Number of nodes'. The graph has lines representing 1 reality, 2 realities, 3 realities, and 4 realities. The line for 1 reality is the steepest, followed by 2 realities, 3 realities, and 4 realities.]
Realities vs. Dimensions

- Dimensionens reduce the lookup path length more efficiently
- Realities produce more robust networks

![Graph showing the relationship between number of neighbors and number of hops for different dimensions and realities.](image)
Peer-to-Peer Networks
End of 2nd Week

Albert-Ludwigs-Universität Freiburg
Department of Computer Science
Computer Networks and Telematics
Christian Schindelhauer
Summer 2008