

Peer-to-Peer Networks

Chord 3rd Week

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008

Peer-to-Peer Networks

Chord

Chord

- ► Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari Balakrishnan (2001)
- Distributed Hash Table
 - range {0,..,2^m-1}
 - for sufficient large m
- Network
 - ring-wise connections
 - shortcuts with exponential increasing distance

Peer-to-Peer-Networks Summer 2008

Chord as DHT

- n number of peers
- V set of peers
- k number of data stored
- K set of stored data
- m: hash value length
 - $m \ge 2 \log \max\{K,N\}$
- ► Two hash functions mapping to {0,..,2^{m-1}}
 - r_V(b): maps peer to {0,..,2^{m-1}}
 - r_K(i): maps index according to key i to {0,...,2^{m-1}}
- Index i maps to peer b = f_V(i)
 - f_V(i) := arg min_{b∈V}{(r_V(b)-r_K(i)) mod 2^m}

Peer-to-Peer-Networks Summer 2008

Pointer Structure of Chord

For each peer

- successor link on the ring
- predecessor link on the ring
- for all $i \in \{0,...,m-1\}$
 - Finger[i] := the peer following the value r_V(b+2ⁱ)
- For small i the finger entries are the same
 - store only different entries
- Lemma
 - The number of different finger entries is O(log n) with high probability, i.e.
 1-n^{-c}.

Peer-to-Peer-Networks Summer 2008

5

Balance in Chord

Theorem

- We observe in Chord for n peers and k data entries
 - Balance&Load: Every peer stores at most O(k/n log n) entries with high probability
 - Dynamics: If a peer enters the Chord then at most
 O(k/n log n) data entries need to be moved

Proof

• ...

Peer-to-Peer-Networks Summer 2008

Properties of the DHT

Lemma

- For all peers b the distance $|r_{V}(b.succ) r_{V}(b)|$ is
 - in the expectation 2^m/n,
 - $O((2^m/n) \log n)$ with high probability (w.h.p.)
 - 2^m/n^{c+1} für a constant c>0 with high probability
- In an interval of length w 2^m/n we find
 - $\Theta(w)$ peers, if $w=\Omega(\log n)$, w.h.p.
 - at most O(w log n) peers, if w=O(log n), w.h.p.

Lemma

• The number of nodes who have a pointer to a peer b is $O(log^2 n)$ w.h.p.

Lookup in Chord

- Theorem
 - The Lookup in Chord needs O(log n) steps w.h.p.
- Lookup for element s
 - Termination(b,s):
 - if peer b,b'=b.succ is found with $r_K(s)$ ∈ $[r_V(b), r_V(b')]$

• Routing:

```
Start with any peer b while not Termination(b,s) do for i=m downto 0 do if r_K(s) \in [r_V(b.finger[i]), r_V(finger[i+1])] then b \leftarrow b.finger[i] fi od
```

Peer-to-Peer-Networks Summer 2008

Lookup in Chord

Theorem

 The Lookup in Chord needs O(log n) steps w.h.p.

Proof:

- Every hops at least halves the distance to the target
- At the beginning the distance is at most
- The minimum distance between is 2^m/n^c w.h.p.
- Hence, the runtime is bounded by c log n w.h.p.

Peer-to-Peer-Networks Summer 2008

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Ç

How Many Fingers?

Lemma

- The out-degree in Chord is O(log n) w.h.p.
- The in-degree in Chord is O(log²n) w.h.p.

Proof

- The minimum distance between peers is $2^{m}/n^{c}$ w.h.p.
 - this implies that that the out-degree is O(log n) w.h.p.
- The maximum distance between peers is O(log n 2^m/n) w.h.p.
 - the overall length of all line segments where peers can point to a peer following a maximum distance is O(log²n 2^m/n)
 - in an area of size w=O(log²n) there are at most O(log²n) w.h.p.

10

Computer Networks and Telematics
Albert-Ludwigs-Universität Freiburg
Christian Schindelhauer

Peer-to-Peer-Networks Summer 2008

Inserting Peer

Theorem

 For integrating a new peer into Chord only O(log² n) messages are necessary.

Adding a Peer

- First find the target area in O(log n) steps
- The outgoing pointers are adopted from the predecessor and successor
 - the pointers of at most O(log n) neighbored peers must be adapted
- ► The in-degree of the new peer is O(log²n) w.h.p.
 - Lookup time for each of them
 - There are O(log n) groups of neighb ored peers
 - Hence, only O(log n) lookup steps with at most costs O(log n) must be used
 - Each update of has constant cost

Peer-to-Peer-Networks Summer 2008

Data Structure of Chord

For each peer

- successor link on the ring
- predecessor link on the ring
- for all i ∈ {0,..,m-1}
 - Finger[i] := the peer following the value r_V(b+2ⁱ)
- For small i the finger entries are the same
 - store only different entries
- Chord
 - needs O(log n) hops for lookup
 - needs O(log² n) messages for inserting and erasing of peers

Peer-to-Peer-Networks Summer 2008

Peer-to-Peer Networks

DHash++

Routing-Techniques for CHORD: DHash++

- Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek, Robert Morris (MIT)
 "Designing a DHT for low latency and high throughput", 2003
- Idea
 - Take CHORD
- Improve Routing using
 - Datenlayout
 - Recursion (instead of Iteration)
 - Next Neighbor-Election
 - Replication versus Coding of Data
 - Error correcting optimized lookup
- Modify transport protocol

Data Layout

- Distribute Data?
- Alternatives
 - Key location service
 - store only reference information
 - Distributed data storage
 - distribute files on peers
 - Distributed block-wise storage
 - either caching of data blacks
 - or block-wise storage of all data over the network

Recursive Versus Iterative Lookup

Iterative lookup

 Lookup peer performs search on his own

Recursive lookup

- Every peer forwards the lookup request
- The target peer answers the lookupinitiator directly

speedup by factor of 2

Peer-to-Peer-Networks Summer 2008

Recursive Versus Iterative Lookup

- DHash++ choses recursive lookup
 - speedup by factor of 2

Peer-to-Peer-Networks Summer 2008

18

Next Neighbor Selection

- RTT: Round Trip Time
 - time to send a message and receive the acknowledgment
- Method of Gummadi, Gummadi, Grippe, Ratnasamy, Shenker, Stoica, 2003, "The impact of DHT routing geometry on resilience and proximity"
 - Proximity Neighbor Selection (PNS)
 - Optimize routing table (finger set) with respect to (RTT)
 - method of choice for DHASH++
 - Proximity Route Selection(PRS)
 - Do not optimize routing table choose nearest neighbor from routing table

Next Neighbor Selection

- Gummadi, Gummadi, Grippe,
 Ratnasamy, Shenker, Stoica, 2003,
 "The impact of DHT routing geometry
 on resilience and proximity"
 - Proximity Neighbor Selection (PNS)
 - Optimize routing table (finger set) with respect to (RTT)
 - method of choice for DHASH++
 - Proximity Route Selection(PRS)
 - Do not optimize routing table choose nearest neighbor from routing table
- Simulation of PNS, PRS, and both
 - PNS as good as PNS+PRS
 - PNS outperforms PRS

Next Neighbor Selection

- DHash++ uses (only) PNS
 - Proximity Neighbor Selection
- It does not search the whole interval for the best candidate
 - DHash++ chooses the best of 16 random samples (PNS-Sample)
- The right figure shoes the (0.1,0.5,0.9)percentile of such a PNS-Sampling

Computer Networks and Telematics
Albert-Ludwigs-Universität Freiburg
Christian Schindelhauer

Peer-to-Peer-Networks Summer 2008

21

Cumulative Performance Win

Peer-to-Peer-Networks Summer 2008

Modified Transport Protocol

Discussion DHash++

- Combines a large quantity of techniques
 - for reducing the latecy of routing
 - for improving the reliability of data access
- Topics
 - latency optimized routing tables
 - redundant data encoding
 - improved lookup
 - transport layer
 - integration of components
- All these components can be applied to other networks
 - some of them were used before in others
 - e.g. data encoding in Oceanstore
- DHash++ is an example of one of the most advanced peer-topeer networks

Peer-to-Peer-Netzwerke

End of 3rd Week

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008

Mittwoch, 7. Mai 2008 25