Peer-to-Peer Networks

Chord
3rd Week

Albert-Ludwigs-Universität Freiburg
Department of Computer Science
Computer Networks and Telematics
Christian Schindelhauer
Summer 2008
Peer-to-Peer Networks

Chord
Chord

- Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari Balakrishnan (2001)

- Distributed Hash Table
 - range \(\{0, \ldots, 2^m-1\} \)
 - for sufficient large \(m \)

- Network
 - ring-wise connections
 - shortcuts with exponential increasing distance
Chord as DHT

- n number of peers
- V set of peers
- k number of data stored
- K set of stored data
- m: hash value length
 - $m \geq 2 \log \max\{K, N\}$
- Two hash functions mapping to $\{0, \ldots, 2^{m-1}\}$
 - $r_V(b)$: maps peer to $\{0, \ldots, 2^{m-1}\}$
 - $r_K(i)$: maps index according to key i to $\{0, \ldots, 2^{m-1}\}$
- Index i maps to peer $b = f_V(i)$
 - $f_V(i) := \text{arg min}_{b \in V}\{(r_V(b) - r_K(i)) \mod 2^m\}$
Pointer Structure of Chord

- For each peer
 - successor link on the ring
 - predecessor link on the ring
 - for all \(i \in \{0, \ldots, m-1\} \)
 - Finger\([i]\) := the peer following the value \(r(\sqrt{b} + 2^i) \)
- For small \(i \) the finger entries are the same
 - store only different entries
- Lemma
 - The number of different finger entries is \(O(\log n) \) with high probability, i.e. \(1-n^{-c} \).
Balance in Chord

- **Theorem**
 - We observe in Chord for n peers and k data entries
 - Balance&Load: Every peer stores at most $O(k/n \log n)$ entries with high probability
 - Dynamics: If a peer enters the Chord then at most $O(k/n \log n)$ data entries need to be moved

- **Proof**
 - ...
Properties of the DHT

Lemma

• For all peers b the distance \(|r_V(b.succ) - r_V(b)|\) is
 - in the expectation \(2^m/n\),
 - \(O((2^m/n) \log n)\) with high probability (w.h.p.)
 - \(2^m/n^{c+1}\) für a constant \(c>0\) with high probability

• In an interval of length \(w\) \(2^m/n\) we find
 - \(\Theta(w)\) peers, if \(w=\Omega(\log n)\), w.h.p.
 - at most \(O(w \log n)\) peers, if \(w=O(\log n)\), w.h.p.

Lemma

• The number of nodes who have a pointer to a peer b is \(O(\log^2 n)\) w.h.p.
Lookup in Chord

- **Theorem**
 - The Lookup in Chord needs $O(\log n)$ steps w.h.p.

- **Lookup for element s**
 - **Termination(b, s):**
 - if peer $b, b' = b.\text{succ}$ is found with $r_K(s) \in [r_V(b), r_V(b')]$

- **Routing:**
 Start with any peer b
 while not Termination(b, s) do
 for $i=m$ downto 0 do
 if $r_K(s) \in [r_V(b.\text{finger}[i]), r_V(\text{finger}[i+1])]$ then
 $b \leftarrow b.\text{finger}[i]$
 fi
 od
• **Theorem**
 - The Lookup in Chord needs $O(\log n)$ steps w.h.p.

• **Proof:**
 - Every hop at least halves the distance to the target
 - At the beginning the distance is at most
 - The minimum distance between is $2^m/n^c$ w.h.p.
 - Hence, the runtime is bounded by $c \log n$ w.h.p.
Lemma

- The out-degree in Chord is $O(\log n)$ w.h.p.
- The in-degree in Chord is $O(\log^2 n)$ w.h.p.

Proof

- The minimum distance between peers is $2^m/n^c$ w.h.p.
 - this implies that that the out-degree is $O(\log n)$ w.h.p.
- The maximum distance between peers is $O(\log n 2^m/n)$ w.h.p.
 - the overall length of all line segments where peers can point to a peer following a maximum distance is $O(\log^2 n 2^m/n)$
 - in an area of size $w=O(\log^2 n)$ there are at most $O(\log^2 n)$ w.h.p.
Inserting Peer

- **Theorem**
 - For integrating a new peer into Chord only $O(\log^2 n)$ messages are necessary.
Adding a Peer

- First find the target area in $O(\log n)$ steps
- The outgoing pointers are adopted from the predecessor and successor
 - the pointers of at most $O(\log n)$ neighbored peers must be adapted
- The in-degree of the new peer is $O(\log^2 n)$ w.h.p.
 - Lookup time for each of them
 - There are $O(\log n)$ groups of neighbored peers
 - Hence, only $O(\log n)$ lookup steps with at most costs $O(\log n)$ must be used
 - Each update of has constant cost
Data Structure of Chord

- **For each peer**
 - successor link on the ring
 - predecessor link on the ring
 - for all \(i \in \{0,\ldots,m-1\} \)
 - \(\text{Finger}[i] := \text{the peer following the value } r_v(b+2^i) \)
- **For small \(i \) the finger entries are the same**
 - store only different entries
- **Chord**
 - needs \(O(\log n) \) hops for lookup
 - needs \(O(\log^2 n) \) messages for inserting and erasing of peers
Peer-to-Peer Networks

DHash++
Routing-Techniques for CHORD: DHash++

- Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek, Robert Morris (MIT)
 „Designing a DHT for low latency and high throughput“, 2003
- Idea
 - Take CHORD
- Improve Routing using
 - Datenlayout
 - Recursion (instead of Iteration)
 - Next Neighbor-Election
 - Replication versus Coding of Data
 - Error correcting optimized lookup
- Modify transport protocol
Data Layout

- Distribute Data?
- Alternatives
 - Key location service
 - store only reference information
 - Distributed data storage
 - distribute files on peers
 - Distributed block-wise storage
 - either caching of data blocks
 - or block-wise storage of all data over the network
Recursive Versus Iterative Lookup

- **Iterative lookup**
 - Lookup peer performs search on his own
- **Recursive lookup**
 - Every peer forwards the lookup request
 - The target peer answers the lookup-initiator directly
- **DHash++ chooses recursive lookup**
 - speedup by factor of 2
Recursive Versus Iterative Lookup

- DHash++ chooses recursive lookup
 - speedup by factor of 2
Next Neighbor Selection

- **RTT**: Round Trip Time
 - time to send a message and receive the acknowledgment
- **Method of Gummadi, Gummadi, Grippe, Ratnasamy, Shenker, Stoica, 2003, „The impact of DHT routing geometry on resilience and proximity“**
 - Proximity Neighbor Selection (PNS)
 - Optimize routing table (finger set) with respect to (RTT)
 - method of choice for DHASH++
 - Proximity Route Selection (PRS)
 - Do not optimize routing table choose nearest neighbor from routing table
Next Neighbor Selection

- Gummar, Gummadi, Grippe, Ratnasamy, Shenker, Stoica, 2003, „The impact of DHT routing geometry on resilience and proximity“
 - Proximity Neighbor Selection (PNS)
 - Optimize routing table (finger set) with respect to (RTT)
 - Method of choice for DHash++
 - Proximity Route Selection (PRS)
 - Do not optimize routing table, choose nearest neighbor from routing table

- Simulation of PNS, PRS, and both
 - PNS as good as PNS+PRS
 - PNS outperforms PRS
Next Neighbor Selection

- DHash++ uses (only) PNS
 - Proximity Neighbor Selection
- It does not search the whole interval for the best candidate
 - DHash++ chooses the best of 16 random samples (PNS-Sample)
- The right figure shows the \((0.1,0.5,0.9)\)-percentile of such a PNS-Sampling
Cumulative Performance Win

- Following speedup
 - Light: Lookup
 - Dark: Fetch
 - Left: real test
 - Middle: simulation
 - Right: Benchmark latency matrix

![Cumulative Performance Win Diagram]

Latency optimization techniques (cumulative)

- Median latency (ms)

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>Recursive lookup</th>
<th>Proximity routing</th>
<th>Server selection</th>
<th>Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modified Transport Protocol

![Graph showing cumulative probability against latency for STP and TCP]

- Cumulative probability
- Latency (ms)
- STP
- TCP
Discussion DHash++

- Combines a large quantity of techniques
 - for reducing the latency of routing
 - for improving the reliability of data access

- Topics
 - latency optimized routing tables
 - redundant data encoding
 - improved lookup
 - transport layer
 - integration of components

- All these components can be applied to other networks
 - some of them were used before in others
 - e.g. data encoding in Oceanstore

- DHash++ is an example of one of the most advanced peer-to-peer networks
Peer-to-Peer-Netzwerke

End of 3rd Week

Albert-Ludwigs-Universität Freiburg
Department of Computer Science
Computer Networks and Telematics
Christian Schindelhauer
Summer 2008