Peer-to-Peer Networks
Pastry & Tapestry
4th Week

Albert-Ludwigs-Universität Freiburg
Department of Computer Science
Computer Networks and Telematics
Christian Schindelhauer
Summer 2008
Peer-to-Peer Networks

Pastry
Pastry

- Peter Druschel
 - Rice University, Houston, Texas
 - now head of Max-Planck-Institute for Computer Science, Saarbrücken/Kaiserslautern
- Antony Rowstron
 - Microsoft Research, Cambridge, GB
- Developed in Cambridge (Microsoft Research)
- Pastry
 - Scalable, decentralized object location and routing for large scale peer-to-peer-network
- PAST
 - A large-scale, persistent peer-to-peer storage utility
- Two names one P2P network
 - PAST is an application for Pastry enabling the full P2P data storage functionality
Pastry Overview

- Each peer has a 128-bit ID: nodeID
 - unique and uniformly distributed
 - e.g. use cryptographic function applied to IP-address
- Routing
 - Keys are matched to \(\{0,1\}^{128} \)
 - According to a metric messages are distributed to the neighbor next to the target
- Routing table has \(O(2^b(\log n)/b) + \ell \) entries
 - \(n \): number of peers

- \(\ell \): configuration parameter
- \(b \): word length
 - typical: \(b = 4 \) (base 16), \(\ell = 16 \)
 - message delivery is guaranteed as long as less than \(\ell/2 \) neighbored peers fail
- Inserting a peer and finding a key needs \(O((\log n)/b) \) messages
Routing Table

- **NodeID presented in base 2^b**
 - e.g. NodeID: 65A0BA13
- **For each prefix p and letter $x \in \{0, \ldots, 2^b-1\}$ add an peer of form px^* to the routing table of NodeID,** e.g.
 - $b=4$, $2^b=16$
 - 15 entries for $0^*, 1^*, \ldots, F^*$
 - 15 entries for $60^*, 61^*, \ldots, 6F^*$
 - ...
 - if no peer of the form exists, then the entry remains empty
- **Choose next neighbor according to a distance metric**
 - metric results from the RTT (round trip time)
- **In addition choose l neighbors**
 - $l/2$ with next higher ID
 - $l/2$ with next lower ID
Routing Table

- **Example b=2**
- **Routing Table**
 - For each prefix p and letter $x \in \{0,\ldots,2^b-1\}$, add an peer of form px^* to the routing table of NodeID
- **In addition choose ℓ neighbors**
 - $\ell/2$ with next higher ID
 - $\ell/2$ with next lower ID
- **Observation**
 - The leaf-set alone can be used to find a target
- **Theorem**
 - With high probability there are at most $O(2^b \frac{\log n}{b})$ entries in each routing table
Routing Table

- **Theorem**
 - With high probability there are at most $O(2^b (\log n)/b)$ entries in each routing table.

- **Proof**
 - The probability that a peer gets the same m-digit prefix is 2^{-bm}.
 - The probability that a m-digit prefix is unused is $(1 - 2^{-bm})^n \leq e^{-n/2^{bm}}$.
 - For $m = c (\log n)/b$ we get $e^{-n/2^{bm}} \leq e^{-n/2^c \log n} \leq e^{-n/n^c} \leq e^{-n^{c-1}}$.
 - With (extremely) high probability there is no peer with the same prefix of length $(1 + \varepsilon)(\log n)/b$.
 - Hence we have $(1 + \varepsilon)(\log n)/b$ rows with $2^{b}-1$ entries each.
A Peer Enters

- New node x sends message to the node z with the longest common prefix p
- x receives
 - routing table of z
 - leaf set of z
- z updates leaf-set
- x informs z-leaf set
- x informs peers in routing table
 - with same prefix p (if $\ell/2 < 2^b$)
- Number of messages for adding a peer
 - ℓ messages to the leaf-set
 - expected $(2^b - \ell/2)$ messages to nodes with common prefix
 - one message to z with answer
When the Entry-Operation Errs

- Inheriting the next neighbor routing table does not allow work perfectly
- Example
 - If no peer with 1* exists then all other peers have to point to the new node
 - Inserting 11
 - 03 knows from its routing table
 - 22,33
 - 00,01,02
 - 02 knows from the leaf-set
 - 01,02,20,21
- 11 cannot add all necessary links to the routing tables
Missing Entries in the Routing Table

- Assume the entry \(R_{i,j} \) is missing at peer \(D \)
 - \(j \)-th row and \(i \)-th column of the routing table
- This is noticed if message of a peer with such a prefix is received
- This may also happen if a peer leaves the network
- Contact peers in the same row
 - if they know a peer this address is copied
- If this fails then perform routing to the missing link
Lookup

- Compute the target ID using the hash function
- If the address is within the l-leaf set
 - the message is sent directly
 - or it discovers that the target is missing
- Else use the address in the routing table to forward the message
- If this fails take best fit from all addresses
Lookup in Detail

- **L**: \(\ell \)-leafset
- **R**: routing table
- **M**: nodes in the vicinity of \(D \) (according to RTT)
- **D**: key
- **A**: nodeID of current peer
- **R_{ij}**: \(j \)-th row and \(i \)-th column of the routing table
- **L_i**: numbering of the leaf set
- **D_i**: \(i \)-th digit of key \(D \)
- **shl(A)**: length of the largest common prefix of \(A \) and \(D \) (shared header length)

(1) if \((L_{\lfloor \ell \rfloor /2} \leq D \leq L_{\lceil \ell \rceil /2}) \) {
(2) \(/ \ D \) is within range of our leaf set
(3) forward to \(L_i \), s.th. \(| D - L_i | \) is minimal;
(4) } else {
(5) \(/ / \) use the routing table
(6) Let \(l = \text{shl}(D, A) \);
(7) if \((R_{ij}^{D_i} \neq \text{null}) \) {
(8) forward to \(R_{ij}^{D_i} \);
(9) }
(10) else {
(11) \(/ / \) rare case
(12) forward to \(T \in L \cup R \cup M \), s.th.
(13) \(\text{shl}(T, D) \geq l \),
(14) \(| T - D | < | A - D | \)
(15) }
(16) }
Routing — Discussion

- If the Routing-Table is correct
 - routing needs \(O((\log n)/b) \) messages

- As long as the leaf-set is correct
 - routing needs \(O(n/l) \) messages
 - unrealistic worst case since even damaged routing tables allow dramatic speedup

- Routing does not use the real distances
 - \(M \) is used only if errors in the routing table occur
 - using locality improvements are possible

- Thus, Pastry uses heuristics for improving the lookup time
 - these are applied to the last, most expensive, hops
Localization of the k Nearest Peers

- Leaf-set peers are not near, e.g.
 - New Zealand, California, India, ...
- TCP protocol measures latency
 - latencies (RTT) can define a metric
 - this forms the foundation for finding the nearest peers
- All methods of Pastry are based on heuristics
 - i.e. no rigorous (mathematical) proof of efficiency
- Assumption: metric is Euclidean
Locality in the Routing Table

- **Assumption**
 - When a peer is inserted the peers contacts a near peer
 - All peers have optimized routing tables

- **But:**
 - The first contact is not necessary near according to the node-ID

- **1st step**
 - Copy entries of the first row of the routing table of P
 - good approximation because of the triangle inequality (metric)

- **2nd step**
 - Contact fitting peer p of p with the same first letter
 - Again the entries are relatively close

- **Repeat these steps until all entries are updated**
Locality in the Routing Table

- **In the best case**
 - each entry in the routing table is optimal w.r.t. distance metric
 - this does not lead to the shortest path

- **There is hope for short lookup times**
 - with the length of the common prefix the latency metric grows exponentially
 - the last hops are the most expensive ones
 - here the leaf-set entries help
Localization of Near Nodes

- Node-ID metric and latency metric are not compatible
- If data is replicated on k peers then peers with similar Node-ID might be missed
- Here, a heuristic is used
- Experiments validate this approach
Experimental Results — Scalability

- Parameter $b=4$, $l=16$, $M=32$
- In this experiment the hop distance grows logarithmically with the number of nodes
- The analysis predicts $4 \log n$
- Fits well
Experimental Results
Distribution of Hops

- Parameter $b=4$, $l=16$, $M=32$, $n = 100,000$

- Result
 - deviation from the expected hop distance is extremely small

- Analysis predicts difference with extremely small probability
 - fits well
Experimental Results — Latency

- Parameter $b=4$, $l=16$, $M=3$
- Compared to the shortest path astonishingly small
 - seems to be constant

![Graph showing relative distance vs. number of nodes]
Critical View at the Experiments

- Experiments were performed in a well-behaving simulation environment
- With $b=4$, $L=16$ the number of links is quite large
 - The factor $2^b/b = 4$ influences the experiment
 - Example $n=100\,000$
 - $2^b/b \log n = 4 \log n > 60$ links in routing table
 - In addition we have 16 links in the leaf-set and 32 in M
- Compared to other protocols like Chord the degree is rather large
- Assumption of Euclidean metric is rather arbitrary
Experimentelle Untersuchungen
Knotenausfälle

- Parameter \(b=4, l=16, M=32, n = 5\,000 \)
- No fail: vor Ausfall
- No repair: 500 von 5000 Peers fallen aus
- Repair: Nach Reparatur der Routing-Tables
Peer-to-Peer Networks

Tapestry

Zhao, Kubiatowicz und Joseph (2001)
Tapestry

- Objects and Peers are identified by
 - Objekt-IDs (Globally Unique Identifiers GUIDs) and
 - Peer-IDs

- IDs
 - are computed by hash functions
 - like CAN or Chord
 - are strings on basis B
 - B=16 (hexadecimal system)
Neighborhood of a Peer (1)

- Every peer A maintains for each prefix x of the Peer-ID
 - if a link to another peer sharing this Prefix x
 - i.e. peer with ID B=xy has a neighbor A, if xy'=A for some y, y'
- Links sorted according levels
 - the level denotes the length of the common prefix
 - Level L = |x|+1
Neighborhood Set (2)

- For each prefix x and all letters j of the peer with ID A
 - establish a link to a node with prefix xj within the neighborhood set $N_{x,j}^A$
- Peer with Node-ID A has $b |A|$ neighborhood sets
- The neighborhood set of contains all nodes with prefix sj
 - Nodes of this set are denoted by (x,j)
Example of Neighborhood Sets

Neighborhood set of node 4221

<table>
<thead>
<tr>
<th>Level 4</th>
<th>Level 3</th>
<th>Level 2</th>
<th>Level 1</th>
</tr>
</thead>
</table>
| j=0 | 4220 | 420? | 40?? | 0???
| j=1 | 4221 | 421? | 41?? | 1???
| . | 4222 | 422? | 42?? | 2???
| . | 4223 | 423? | 43?? | 3???
| . | 4224 | 424? | 44?? | 4???
| . | 4225 | 425? | 45?? | 5???
| . | 4226 | 426? | 46?? | 6???
| j=7 | 4227 | 427? | 47?? | 7???

Peer-to-Peer-Networks
Summer 2008

Dienstag, 20. Mai 2008
Links

For each neighborhood set at most k Links are maintained

$$k \geq 1 : \left| \mathcal{N}^A_{x,j} \right| \leq k$$

Note:
- some neighborhood sets are empty
Properties of Neighborhood Sets

- **Consistency**
 - If $N_{x,j}^A = \emptyset$ für any A
 - then there are no (x,j) peers in the network
 - this is called a hole in the routing table of level $|x|+1$ with letter j

- **Network is always connected**
 - Routing can be done by following the letters of the ID $b_1b_2...b_n$

\[
\begin{align*}
N_{\emptyset,b_1}^A & \text{ 1st hop to node } A_1 \\
N_{b_1,b_2}^A & \text{ 2nd hop to node } A_2 \\
N_{b_1b_2,b_3}^A & \text{ 3rd hop to node } A_3 \\
\vdots & \\
\end{align*}
\]
Locality

- **Metric**
 - e.g. given by the latency between nodes

- **Primary node of a neighborhood set** \(N_{x,j}^A \)
 - The closest node (according to the metric) in the neighborhood set of A is called the primary node

- **Secondary node**
 - the second closest node in the neighborhood set

- **Routing table**
 - has primary and secondary node of the neighborhood table
Root Node

- Object with ID Y should stored by a so-called Root Node with this ID
- If this ID does not exist then a deterministic choice computes the next best choice sharing the greatest common prefix
Surrogate Routing

- Surrogate Routing
 - compute a surrogate (replacement root node)
 - If \((x,j)\) is a hole, then choose \((x,j+1),(x,j+2),\ldots\) until a node is found
 - Continue search in the next higher level
Example: Surrogate Routing

- Lookup of 4666 by peer 2716

Level 1, j=4

Level 2, j=6 does not exist, next link j=8

Level 3, j=6

Peer 4860 has no level 4 neighbors => end of search
Publishing Objects

- Peers offering an object (storage servers)
 - send message to the root node
- All nodes along the search path store object pointers to the storage server
Lookup

- Choose the root node of Y
- Send a message to this node
 - using primary nodes
- Abort search if an object link has been found
 - then send message to the storage server
Fault Tolerance

- **Copies of object IDs**
 - use different hash functions for multiple root nodes for objects
 - failed searches can be repeated with different root nodes

- **Soft State Pointer**
 - links of objects are erased after a designated time
 - storage servers have to republish
 - prevents dead links
 - new peers receive fresh information
Surrogate Routing

- **Theorem**
 - Routing in Tapestry needs $O(\log n)$ hops with high probability
Adding Peers

- Perform lookup in the network for the own ID
 - every message is acknowledged
 - send message to all neighbors with fitting prefix,
 - Acknowledged Multicast Algorithm
- Copy neighborhood tables of surrogate peer
- Contact peers with holes in the routing tables
 - so they can add the entry
 - for this perform multicast algorithm for finding such peers
Leaving of Peers

- Peer A notices that peer B has left
- Erase B from routing table
 - Problem holes in the network can occur
- Solution: Acknowledged Multicast Algorithm
- Republish all object with next hop to root peer B

Diagram:

- Peer A
- Peer B (marked with an X)
- Root

A green arrow points from Peer A to Peer B's location.
Pastry versus Tapestry

- Both use the same routing principle
 - Plaxton, Rajamaran und Richa
 - Generalization of routing on the hyper-cube

- Tapestry
 - is not completely self-organizing
 - takes care of the consistency of routing table
 - is analytically understood and has provable performance

- Pastry
 - Heuristic methods to take care of leaving peers
 - More practical (less messages)
 - Leaf-sets provide also robustness
Peer-to-Peer Networks

End of 4th Week

Albert-Ludwigs-Universität Freiburg
Department of Computer Science
Computer Networks and Telematics
Christian Schindelhauer
Summer 2008