

## Peer-to-Peer Networks

Hole Punching 7th Week

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008

## Peer-to-Peer Networks

# NAT, PAT & Firewalls

## **Network Address Translation**

#### Problem

- too few (e.g. one) IP addresses for too many hosts in a local network
- hide hosts IP addresses from the outer world
- Basic NAT (Static NAT)
  - replace internal IP by an external IP
- Hiding NAT
  - = PAT (Port Address Translation)
  - = NAPT (Network Address Port Translation)
  - Socket pair (IP address and port number) are transformed
  - to a single outside IP address
- Hosts in local network cannot be addressed from outside

## **DHCP Dynamic Host Configuration Protocol**

### **DHCP (Dynamic Host Configuration** Protocol)

- manual binding of MAC address
  - e.g. for servers
- automatic mapping
  - fixed, yet not pre-configured
- dynamic mapping
  - addresses may be reused
- Integration of new hosts without configuration
  - hosts fetches IP address from DHCP server
  - sever assigns address dynamically
  - when the hosts leaves the network the IP address may be reused by other hosts

- for dynamic mapping addresses must be refreshed
- if a hosts tries to reuse an outdated address the DHCP server denies this request
- problem: stealing of IP addresses
- ▶ P2P
  - DHCP is good for anonymity
    - if the DHCP is safe
  - DHCP is bad for contacting peers in local networks

Peer-to-Peer-Networks Summer 2008

Computer Networks and Telematics

## **Firewalls**

#### Types of Firewalls

- Host Firewall
- Network Firewall

#### Network Firewall

- differentiates between
  - external net
    - \* Internet, hostile
  - internal net
    - LAN, trustworthy
  - demilitarized zone
    - servers reachable from the external net

#### Host Firewall

- e.g. personal firewall
- controls the complete data traffic of a host
- protection against attacks from outside and inside (trojans)

#### Methods

- Packet Filter
  - blocks ports and IP addresses
- Content Filter
  - filters spam mails, viruses, ActiveX, JavaScript from html pages
- Proxy
  - transparent (accessible and visible) hots
  - channels the communication and attacks to secured hosts
- Stateful Inspection
  - observation of the state of a connection
- Firewalls can prevent Peer to Peer connections
  - on purpose or as a side effect
  - are treated here like NAT

Peer-to-Peer-Networks Summer 2008

## Types of Firewalls & NATs (RFC 3489)

#### Open Internet

addresses fully available

#### Firewall that blocks UDP

- no UDP traffic at all
- hopeless, maybe TCP works?

#### Symmetric UDP Firewall

- allows UDP out
- responses have to come back to the source of the request
- like a symmetric NAT, but no translation

#### Full-cone NAT

- if an internal address is mapped to an external address all packets from will be sent through this address
- External hosts can send packets to the external address which are delivered to the local address

#### Symmetric NAT

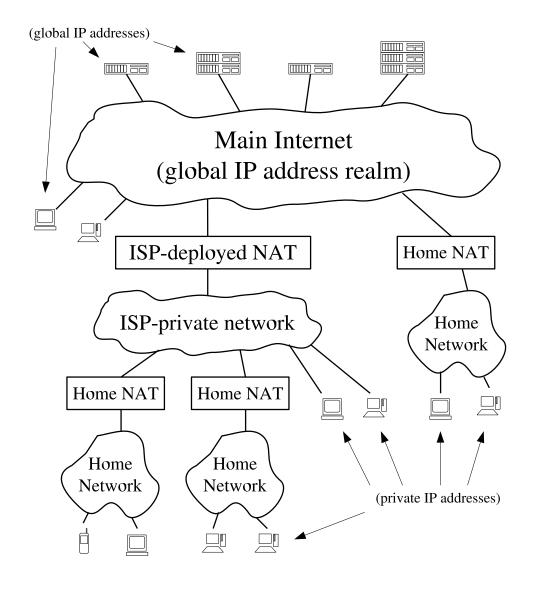
- Each internal request is mapped to a new port
- Only a contacted host can send a message inside
  - on the very same external port arriving on the internal port

#### Restricted cone NAT

- Internal address are statically mapped to external addresses
- All such UDP packets of one internal port use this external port
- All external hosts can use this port to sent a packet to this host if they have received a packet recently from the same internal port (to any external port)

#### Port restricted cone NAT

- All UDP packets from one internal address use the same external port
- External hosts must use this port to sent a packet to this host if they have received a packet recently from the same internal port to the same external port


Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics
Albert-Ludwigs-Universität Freiburg
Christian Schindelhauer

6

Dienstag, 10. Juni 2008

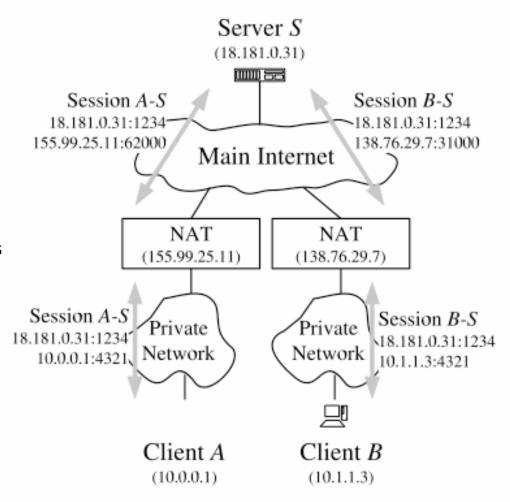
6

# Combination of NATs



**Peer-to-Peer Communication Accross Network Address Translators** 

Bryan Ford, Pyda Srisuresh, Dan Kegel


Peer-to-Peer-Networks Summer 2008

7

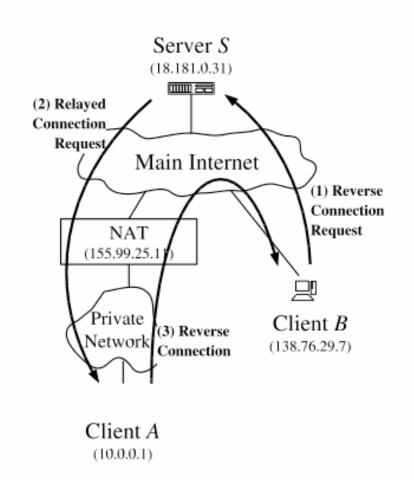
# Overcoming NAT by Relaying

### Relaying

- use a open (non-NATed) server to relay all UDP or TCP connections
- first both partners connect to the server
- then, the server relays all messages



#### **Peer-to-Peer Communication Accross Network Address Translators**


Bryan Ford, Pyda Srisuresh, Dan Kegel

Peer-to-Peer-Networks Summer 2008

8

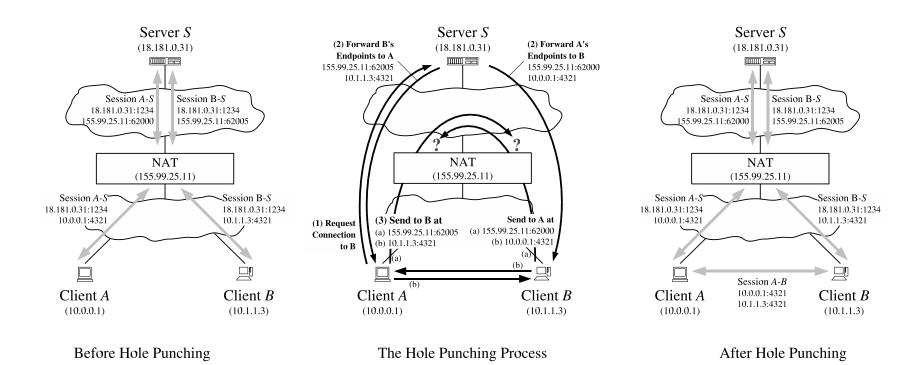
## **Connection Reversal**

- If only one peer is behind NAT
  - then the peer behind NAT always starts connection
- Use a server to announce a request for connection reversal
  - periodic check for connection requests is necessary



**Peer-to-Peer Communication Accross Network Address Translators** 

Bryan Ford, Pyda Srisuresh, Dan Kegel


Peer-to-Peer-Networks Summer 2008

9

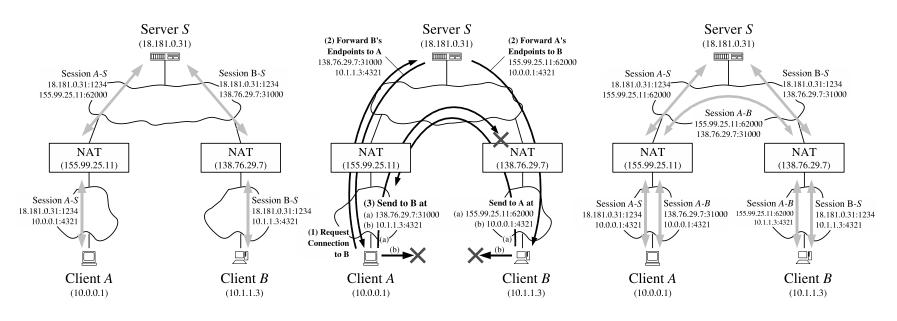
## Peer-to-Peer Networks

# UDP Hole Punching

- Dan Kegel (1999), NAT and Peer-to-Peer Networking,
   Technical Report Caltech
- A does not know B's address
- Algorithm
  - A contacts rendezvous server S and tells his local IP address
  - S replies to A with a message containing
    - B's public and private socket pairs
  - A sends UDP packets to both of this addresses
    - and stays at the address which works



#### Peers Behind a Common NAT


- Rendezvous server is used to tell the local IP addresses
- Test with local IP address establish the connections in the local net

Peer-to-Peer-Networks Summer 2008

Peer-to-Peer Communication Accross Network Address Translators 12

Bryan Ford, Pyda Srisuresh, Dan Kegel

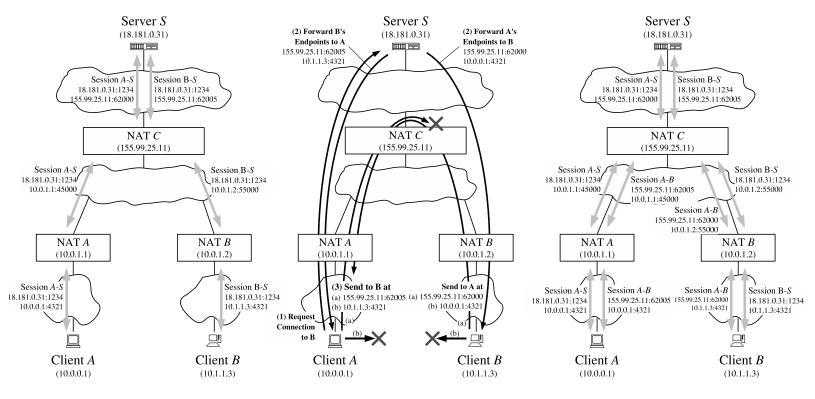
**Computer Networks and Telematics** Albert-Ludwigs-Universität Freiburg Christian Schindelhauer



Before Hole Punching

The Hole Punching Process

After Hole Punching


#### Peers Behind Different NATs

- Rendezvous server is used to tell the NAT IP addresses
- Test with NAT IP address establishes the connections
- Peers reuse the port from the Rendezvous server

Peer-to-Peer-Networks Summer 2008 Peer-to-Peer Communication Accross Network Address Translators

Bryan Ford, Pyda Srisuresh, Dan Kegel

13



Before Hole Punching

The Hole Punching Process

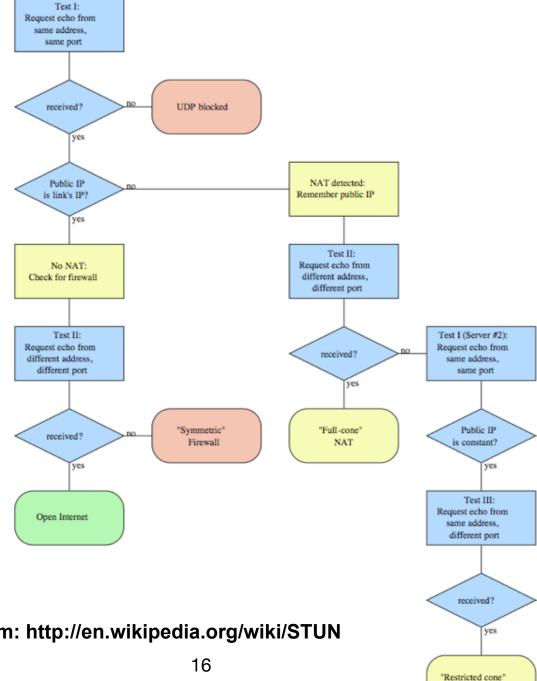
After Hole Punching

#### Peers Behind Multiple Levels of NAT

- Rendezvous server is used to tell the NAT IP addresses
- Test with NAT IP address establishes the connections
- Relies on loopback translation of NAT C

Peer-to-Peer-Networks Summer 2008 Peer-to-Peer Communication Accross Network Address Translators

Bryan Ford, Pyda Srisuresh, Dan Kegel


14

# Simple traversal of UDP over NATs (STUN)

- RFC 3489, J. Rosenberg, C. Huitema, R. Mahy, STUN Simple Traversal of User Datagram Protocol Through Network Address Translators (NATs), 2003
- Client-Server Protocol
  - Uses open client to categorize the NAT router
- UDP connection can be established with open client
  - Tells both clients the external ports and one partner establishes the connection
- Works for Full Cone, Restricted Cone and Port Restricted Cone
  - Both clients behind NAT router can initialize the connection
  - The Rendezvous server has to transmit the external addresses
- Does not work for Symmetric NATs

## **STUN Test**

Client communicates to at least two open **STUN** server



"Symmetric"

"Restricted port"

NAT

NAT

NAT

<u>NAT</u> <u>types</u>

> Peer-to-Peer-Networks Summer 2008

from: http://en.wikipedia.org/wiki/STUN

## Peer-to-Peer Networks

# TCP Hole Punching

## **TCP versus UDP Hole Punching**

| Category        | UDP | ТСР                                                              |  |  |
|-----------------|-----|------------------------------------------------------------------|--|--|
| Connection?     | no  | yes                                                              |  |  |
| Symmetry        | yes | no<br>client uses "connect", server uses "accept"<br>or "listen" |  |  |
| Acknowledgments | no  | yes<br>must have the correct sequence numbers                    |  |  |

Peer-to-Peer-Networks Summer 2008

## P2P-NAT

#### Peer-to-Peer Communication Accross Network Address Translators Bryan Ford, Pyda Srisuresh, Dan Kegel

#### Prerequisite

- change kernel to allow to listen and connect TCP connections at the same time
- use a Rendezvous Server S
- Client A and client B have TCP sessions with s

#### P2P-NAT

- Client A asks S about B's addresses
- Server S tells client A and client B the public and private addresses (IPaddress and port number) of A and B
- From the same local TCP ports used to register with S

- A and B synchronously make outgoing connection attempts to the others' public and private endpoints
- A and B
  - wait for outgoing attempts to succeed
  - wait for incoming connections to appear
  - if one outgoing connection attempt fails ("connection reset", "host unreachable") then the host retries after a short delay
- Use the first established connection
- When a TCP connection is made the hosts authenticate themselves

## P2P-NAT

Peer-to-Peer Communication
Accross Network Address
Translators
Bryan Ford, Pyda Srisuresh, Dan
Kegel

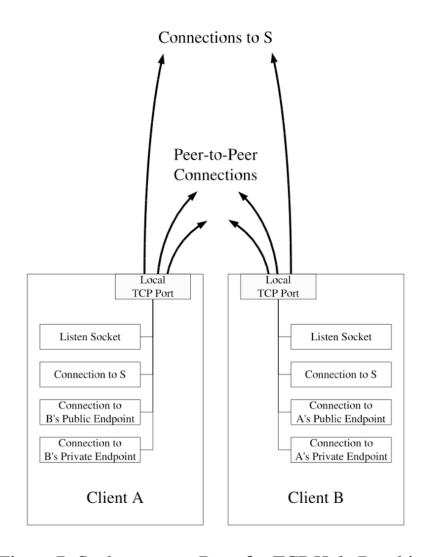



Figure 7: Sockets versus Ports for TCP Hole Punching

Peer-to-Peer-Networks Summer 2008

20

## P2P-NAT

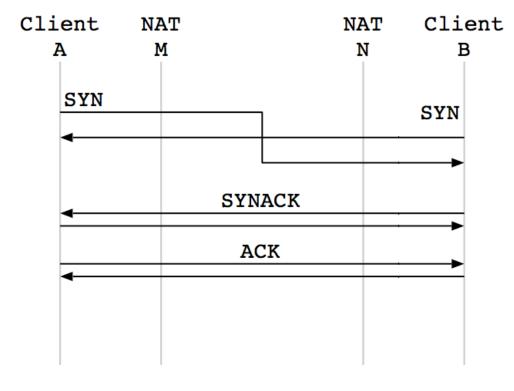
#### Peer-to-Peer Communication Accross Network Address Translators Bryan Ford, Pyda Srisuresh, Dan Kegel

- Behavior for nice NAT-routers of A
  - The NAT router of A learns of outgoing TCP-connection when A contacts B using the public address
    - A has punched a hole in its NAT
  - A's first attempts may bounce from B's NAT router
  - B's connection attempt through A's NAT hole is successful
  - A is answering to B's connection attempt
  - B's NAT router thinks that the connection is a standard client server.
- Some packets will be dropped by the NAT routers in any case
- This connection attempt may also work if B has punched a hole in his
   NAT router before A
  - The client with the weaker NAT router is the server in the TCP connection

Peer-to-Peer-Networks Summer 2008

## P2P-Nat Problems with Acks?

- Suppose A has punched the hole in his router
- A sends SYN-packet
- but receives a SYN packet from B without Ack
  - so the first SYN from A must be ignored
- A replies with SYN-ACK to B
- B replies with ACK to A
  - all is fine then


- Alternatively:
  - A might create a new stream socket associated with B's incoming connection start
    - a different stream socket from the socket that A hole punching TCP SYN message
    - this is regarded as a failed connection attempt
  - Also results in a working connection

## P2P-NAT The Lucky (?) Case

- What if both clients A and B succeed synchronously?
- When both clients answere to the SYN with a SYN-ACK
  - results in simultaneous TCP open
- Can result in the failure of the connection
  - depends on whether the TCP implementation accepts a simultaneous successful "accept()" and "connect()" operation
- Then, the TCP connection should work correctly
  - if the TCP implementation complies with RFC 793

- The TCP connection has been "magically" created itself from the wire
  - out of nowhere two fitting SYN-ACKs have been created.

## **P2P-NAT Working Principle**



**Picture from**Characterization

and Measurement of TCP Traversal through NATs and Firewalls Saikat Guha, Paul Francis

(d) P2PNAT

Peer-to-Peer-Networks Summer 2008

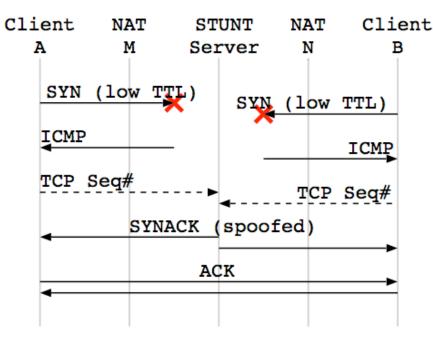
# Success Rate of UDP Hole Punching and P2P-NAT (2005)

|              | UDP     |        |         | ТСР   |          |        |         |        |
|--------------|---------|--------|---------|-------|----------|--------|---------|--------|
|              | Hole    |        |         | Hole  |          |        |         |        |
|              | Punc    | hing   | Hairpin |       | Punching |        | Hairpin |        |
| NAT Hardware |         |        |         |       |          |        |         |        |
| Linksys      | 45/46   | (98%)  | 5/42    | (12%) | 33/38    | (87%)  | 3/38    | (8%)   |
| Netgear      | 31/37   | (84%)  | 3/35    | (9%)  | 19/30    | (63%)  | 0/30    | (0%)   |
| D-Link       | 16/21   | (76%)  | 11/21   | (52%) | 9/19     | (47%)  | 2/19    | (11%)  |
| Draytek      | 2/17    | (12%)  | 3/12    | (25%) | 2/7      | (29%)  | 0/7     | (0%)   |
| Belkin       | 14/14   | (100%) | 1/14    | (7%)  | 11/11    | (100%) | 0/11    | (0%)   |
| Cisco        | 12/12   | (100%) | 3/9     | (33%) | 6/7      | (86%)  | 2/7     | (29%)  |
| SMC          | 12/12   | (100%) | 3/10    | (30%) | 8/9      | (89%)  | 2/9     | (22%)  |
| ZyXEL        | 7/9     | (78%)  | 1/8     | (13%) | 0/7      | (0%)   | 0/7     | (0%)   |
| 3Com         | 7/7     | (100%) | 1/7     | (14%) | 5/6      | (83%)  | 0/6     | (0%)   |
| OS-based NAT |         |        |         |       |          |        |         |        |
| Windows      | 31/33   | (94%)  | 11/32   | (34%) | 16/31    | (52%)  | 28/31   | (90%)  |
| Linux        | 26/32   | (81%)  | 3/25    | (12%) | 16/24    | (67%)  | 2/24    | (8%)   |
| FreeBSD      | 7/9     | (78%)  | 3/6     | (50%) | 2/3      | (67%)  | 1/1     | (100%) |
| All Vendors  | 310/380 | (82%)  | 80/335  | (24%) | 184/286  | (64%)  | 37/286  | (13%)  |

Table 1: User Reports of NAT Support for UDP and TCP Hole Punching

Peer-to-Peer Communication Accross Network Address Translators Bryan Ford, Pyda Srisuresh, Dan Kegel

Peer-to-Peer-Networks Summer 2008


## TCP Hole Punching with Small TTL

- NAT Servers can be punched with TCP Sync packets of small TTL
  - message passes NAT server
  - listening to outgoing messages help to learn the Sequence Number
- Technique used by
  - STUNT#1, #2
  - NATBlaster

- Both endpoints produce a SYN packet with small TTL
  - Packet passes NAT-router, yet does not reach target
- Both clients learn their own (!) sequence number
- STUNT (Rendezvous) server produces a spoofed SYNACK
  - with correct sequence number to both clients
- Both clients respond with ACK
- Hopefully, connection is established
- Problems:
  - Choice of TTL. Not possible if the two outermost NATs share an interface
  - ICMP-packet can be interpreted as fatal error
  - NAT may change the sequence number, spoofed SYNACK might be "out of window"
  - Third-party spoofer is necessary

## STUNT

Eppinger, TCP Connections for P2P Apps: A Software Approach to Solving the NAT Problem. Tech. Rep. CMU-ISRI-05-104, Carnegie Mellon University, Pittsburgh, PA, Jan. 2005.



(a) STUNT #1

Peer-to-Peer-Networks Summer 2008

#### Endpoints A produce a SYN packet with small TTL

 Packet passes NAT-router, yet does not reach target

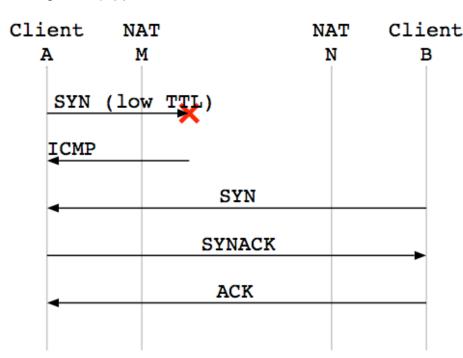
### Client A aborts attemption connect

accepts inbound connections

#### Client B

- learns address from Rendezvous server
- initiates regular connection to A

#### Client A answers with SYNACK


 Hopefully, connection is established

#### Problems:

- Choice of TTL.
- ICMP-packet must not be interpreted as fatal error
- NAT must accept an inbound SYN following an outbound SYN
  - unusual situation

## STUNT (version 2)

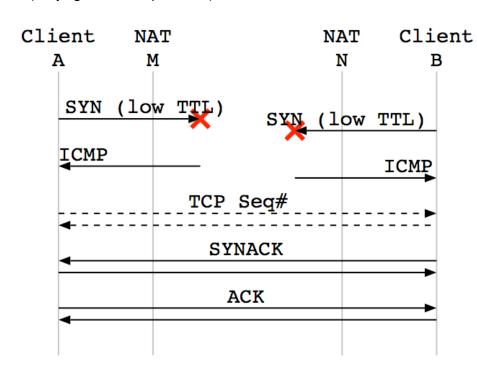
Guha, Takeda, Francis, NUTSS: A SIP-based Approach to UDP and TCP Network Connectivity. In Proceedings of SIGCOMM'04 Workshops (Portland, OR, Aug. 2004), pp. 43–48.



(b) STUNT #2

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Peer-to-Peer-Networks Summer 2008


28

## Both endpoints produce low TTL SYNpackets

- passes NAT router, but does not reach other NAT router
- Learn sequence number for own connection
  - exchange this information using Rendezvous server
- Both endpoints produce SYN-ACK packets
  - Both endpoints answer with ACKs
  - Connection established
- Problems
  - Choice of TTL
  - NATs must ignore ICMP-packet
  - NAT may change sequence numbers
  - NAT must allow symmetric SYN-Acks after own SYN packet
    - unusual

## **NATBlaster**

Biggadie, Ferullo, Wilson, Perrig, NATBLASTER: Establishing TCP connections between hosts behind NATs. In Proceedings of ACM SIGCOMM, ASIA Workshop (Beijing, China, Apr. 2005).

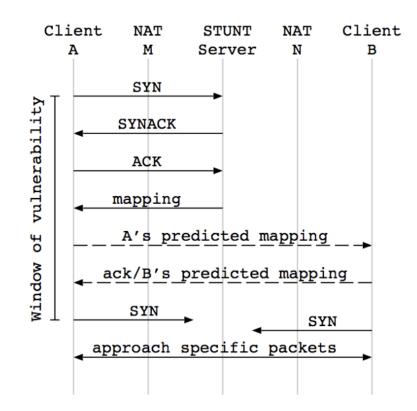


(c) NATBlaster

Peer-to-Peer-Networks Summer 2008

## **OS Issues of TCP Hole Punching**

| Approach          | NAT/Network Issues                       | Linux Issues                        | Windows Issues                          |
|-------------------|------------------------------------------|-------------------------------------|-----------------------------------------|
| STUNT #1          | Determining TTL                          | Superuser priv.                     | Superuser priv.                         |
|                   | ICMP error                               |                                     | Setting TTL                             |
|                   | TCP Seq# changes                         |                                     |                                         |
|                   | <ul> <li>IP Address Spoofi ng</li> </ul> |                                     |                                         |
| STUNT #2          | Determining TTL                          |                                     | Setting TTL                             |
|                   | ICMP error                               |                                     |                                         |
|                   | SYN-out SYN-in                           |                                     |                                         |
| NATBlaster        | Determining TTL                          | <ul> <li>Superuser priv.</li> </ul> | Superuser priv.                         |
|                   | ICMP error                               |                                     | Setting TTL                             |
|                   | <ul> <li>TCP Seq# changes</li> </ul>     |                                     | RAW sockets (post WinXP SP2)            |
|                   | SYN-out SYNACK-out                       |                                     |                                         |
| P2PNAT            | TCP simultaneous open                    |                                     | • TCP simultaneous open (pre WinXP SP2) |
|                   | Packet fbod                              |                                     |                                         |
| STUNT #1 no-TTL   | RST error                                | <ul> <li>Superuser priv.</li> </ul> | Superuser priv.                         |
|                   | TCP Seq# changes                         |                                     | TCP simultaneous open (pre WinXP SP2)   |
|                   | Spoofi ng                                |                                     |                                         |
| STUNT #2 no-TTL   | RST error                                |                                     |                                         |
|                   | SYN-out SYN-in                           |                                     |                                         |
| NATBlaster no-TTL | RST error                                | <ul> <li>Superuser priv.</li> </ul> | Superuser priv.                         |
|                   | TCP Seq# changes                         |                                     | RAW sockets (post WinXP SP2)            |
|                   | SYN-out SYNACK-out                       |                                     | • TCP simultaneous open (pre WinXP SP2) |


**from** Characterization and Measurement of TCP Traversal through NATs and Firewalls, Saikat Guha, Paul Francis

Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

30

## **Port Prediction**

- NAT router changes port addresses for incoming connections
- A knows the type of NAT
  - learns the mapping from the Rendezvous (STUNT) server
  - predicts its mapping
- B also predicts his mapping
- Both clients send SYN packets to the predicted ports
- Usually, NAT servers can be very well predicted, e.g.
  - outgoing port is 4901.
  - then the incoming port is 4902
    - if 4902 is not used, then it is 4903
      - \* and so on....



**Figure 6:** Port-prediction in TCP NAT-Traversal approaches. **from** Characterization and Measurement of TCP Traversal through NATs and Firewalls, Saikat Guha, Paul Francis

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Peer-to-Peer-Networks Summer 2008

31

## **How Skype Punches Holes**

- An Experimental Study of the Skype Peer-to-Peer VoIP System, Saikat Guha, Neil Daswani, Ravi Jain
  - Skype does not publish its technique
  - Yet, behavior can be easily tracked
- Techniques
  - Rendezvous Server
  - UDP Hole Punching
  - Port scans/prediction
  - Fallback: UDP Relay Server
    - success rate of Skype very high, seldomly used



## Peer-to-Peer Networks

**End of 7th Week** 

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008

Dienstag, 10. Juni 2008 33