Peer-to-Peer Networks

Security
10th Week

Albert-Ludwigs-Universität Freiburg
Department of Computer Science
Computer Networks and Telematics
Christian Schindelhauer
Summer 2008
Attacks

- **Denial-of-Service Attacks (DoS)**
 - or distributed denial of service attacks (DDoS)
 - one or many peers ask for a document
 - peers are slowed down or blocked completely

- **Sybil Attacks**
 - one attacker produces many fake peers under new IP addresses
 - or the attacker controls a bot-net

- **Use of protocol weaknesses**

- **Infiltration by malign peers**
 - Byzantine Generals

- **Timing attacks**
 - messages are slowed down
 - communication line is slowed down
 - a connection between sender and receiver can be established

- **Poisoning Attacks**
 - provide false information
 - wrong routing tables, wrong index files etc.

- **Eclipse Attack**
 - attack the environment of a peer
 - disconnect the peer
 - build a fake environment
Solutions to the Sybil Attack

• Survey paper by Levine, Shields, Margonin, 2006

▶ Trusted certification
 • only approach to completely eliminate Sybil attacks
 - according to Douceur
 • relies on centralized authority

▶ No solution
 • know the problem and deal with the consequences

▶ Resource testing
 • real world friends
 • test for real hardware or addresses
 - e.g. heterogeneous IP addresses

▶ Recurring cost and fees
 • check for storing ability

▶ Trusted devices
 • use special hardware devices which allow to connect to the network
Solutions to the Sybil Attack

- Survey paper by Levine, Shields, Margonin, 2006

- **In Mobile Networks**
 - use observations of the mobile node
 - e.g. GPS location, neighbor nodes, etc.

- **Auditing**
 - perform tests on suspicious nodes
 - or reward a peer who proves that it is not a clone peer

- **Reputation Systems**
 - assign each peer a reputation which grows over the time with each positive fact

- the reputation indicates that this peer might behave nice in the future

- Disadvantage:
 - peers might pretend to behave honestly to increase their reputation and change their behavior in certain situations
 - problem of Byzantine behavior
The Problem of Byzantine Generals

- 3 armies prepare to attack a castle
- They are separated and communicate by messengers
- If one army attacks alone, it loses
- If two armies attack, they win
- If nobody attacks the castle is besieged and they win
- One general is a renegade
 - nobody knows who
The Problem of Byzantine Generals

- The evil general X tries
 - to convince A to attack
 - to convince B to wait
- A tells B about X’s command
- B tells B about his version of X’s command
 - contradiction
- But is A, B, or X lying?
The Problem of Byzantine Generals

- The evil general X tries
 - to convince A to attack
 - to convince B to wait
- A tells B about X’s command
- B tells B about his version of X’s command
 - contradiction
- But is A, B, or X lying?
 -

Dienstag, 1. Juli 2008
Byzantine Agreement

- **Theorem**
 - The problem of three Byzantine generals cannot be solved (without cryptography)
 - It can be solved for 4 generals

- **Consider: 1 general, 3 officers problem**
 - If the general is loyal then all loyal officers will obey the command
 - In any case distribute the received commands to all fellow officers
 - What if the general is the renegade?

General A: Attack!

A: Attack!

A: don’t care!

Evildoer

A: Attack
Byzantine Agreement

- **Theorem**
 - The problem of four Byzantine generals can be solved (without cryptography)

- **Algorithm**
 - General A sends his command to all other generals
 - A sticks to his command if he is honest
 - All other generals forward the received command to all other generals
 - Every general computes the majority decision of the received commands and follows this command

General A: Attack!

Evildoer

A: Attack

B: Attack

C: Attack

D: Attack

A: Attack

B: Wait

C: Attack

D: Attack

Dienstag, 1. Juli 2008
Theorem
- The problem of four byzantine generals can be solved (without cryptography)

Algorithm
- General A sends his command to all other generals
 - A sticks to his command if he is honest
- All other generals forward the received command to all other generals
- Every generals computes the majority decision of the received commands and follows this command
General Solution of Byzantine Agreement

- **Theorem**
 - If \(m \) generals are traitors then \(2m+1 \) generals must be honest to get a Byzantine Agreement

- **This bound is sharp if one does not rely on cryptography**

- **Theorem**
 - If a digital signature scheme is working, then an arbitrarily large number of betraying generals can be dealt with

- **Solution**
 - Every general signs his command
 - All commands are shared together with the signature
 - Inconsistent commands can be detected
 - The evildoer can be exposed
P2P and Byzantine Agreement

- Digital signature can solve the problem of malign peers
- Problem: Number of messages
 - $O(n^2)$ messages in the whole network (for n peers)
- In „Scalable Byzantine Agreement“ von Clifford Scott Lewis und Jared Saia, 2003
 - a scalable algorithm was presented
 - can deal with $n/6$ evil peers
 - if they do not influence the network structure
 - use only $O(\log n)$ messages per node in the expectation
 - find agreement with high probability
Network of Lewis and Saia

- **Butterfly network with clusters of size** $c \log n$
 - clusters are bipartite expander graphs
 - Bipartite graph
 - is a graph with disjoint node sets A and B where no edges connect the nodes within A or within B
 - Expander graph
 - A bipartite graph is an expander graph if for each subset X of A the number of neighbors in B is at least $c|X|$ for a fixed constant $c > 0$
 - and vice versa for the subsets in B
Discussion

- **Advantage**
 - Very efficient, robust and simple method

- **Disadvantage**
 - Strong assumptions
 - The attacker does not know the internal network structure

- **If the attacker knows the structure**
 - Eclipse attack!
Cuckoo Hashing for Security

- Awerbuch, Scheideler, Towards Scalable and Robust Overlay Networks

Problem:
- Rejoin attacks

Solution:
- Chord network combined with
- Cuckoo Hashing
- Majority condition:
 - honest peers in the neighborhood are in the majority
- Data is stored with $O(\log n)$ copies
Cuckoo Hashing

- **Collision strategy for (classical) hashing**
 - uses two hash functions h_1, h_2
 - an item with key x is either stored at $h_1(x)$ or $h_2(x)$
 - easy lookup

- **Insert x**
 - try inserting at $h_1(x)$ or $h_2(x)$
 - if both positions are occupied then
 - kick out one element
 - and insert it at its other place
 - continue this with the next element if the position is occupied

Fig. 1. Examples of CUCKOO HASHING insertion. Arrows show possibilities for moving keys. (a) Key x is successfully inserted by moving keys y and z from one table to the other. (b) Key x cannot be accommodated and a rehash is necessary.

From Cuckoo Hashing
Rasmus Pagh, Flemming Friche Rodler
2004
Efficiency of Cuckoo Hashing

- **Theorem**
 - Let $\epsilon > 0$ then if at most n elements are stored, then Cuckoo Hashing needs a hash space of $2n + \epsilon$.

- **Three hash functions increase the load factor from 1/2 to 91%**

- **Insert**
 - needs $O(1)$ steps in the expectation
 - $O(\log n)$ with high probability

- **Lookup**
 - needs two steps
Chord

- Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari Balakrishnan (2001)
- Distributed Hash Table
 - range \(\{0, \ldots, 2^m - 1\} \)
 - for sufficient large \(m \)
- for this work the range is seen as \([0, 1)\)
- Network
 - ring-wise connections
 - shortcuts with exponential increasing distance
Lookup in Chord

Peer-to-Peer-Networks
Summer 2008

Dienstag, 1. Juli 2008
Data Structure of Chord

- For each peer
 - successor link on the ring
 - predecessor link on the ring
 - for all $i \in \{0,\ldots,m-1\}$
 - $\text{Finger}[i] :=$ the peer following the value $r \sqrt{(b+2^i)s}$
- For small i the finger entries are the same
 - store only different entries
- Chord
 - needs $O(\log n)$ hops for lookup
 - needs $O(\log^2 n)$ messages for inserting and erasing of peers
Cuckoo Hashing for Security

- Given n honest peers and εn dishonest peers
- **Goal**
 - For any adversarial attack the following properties for every interval $I \subseteq [0, 1)$ of size at least $(c \log n)$ we have
 - Balancing condition
 - I contains $\Theta(|I| \cdot n)$ nodes
 - Majority condition
 - the honest nodes in I are in the majority
- Then all majority decisions of $O(\log n)$ nodes give a correct result
Rejoin Attacks

- **Secure hash functions for positions in the Chord**
 - if one position is used
 - then in an $O(\log n)$ neighborhood more than half is honest
 - if more than half of all peers are honest

- **Rejoin attacks**
 - use a small number of attackers
 - check out new addresses until attackers fall in one interval
 - then this neighborhood can be ruled by the attackers
The Cuckoo Rule for Chord

Notation
- a region is an interval of size $1/2^r$ in $[0, 1)$ for some integer r that starts at an integer multiple of $1/2^r$
- There are exactly 2^r regions
- A k-region is a region of size (closest from above to) k/n, and for any point $x \in [0, 1)$
- the k-region $R_k(x)$ is the unique k-region containing x.

Cuckoo rule
- If a new node v wants to join the system, pick a random $x \in [0, 1)$.
- Place v into x and move all nodes in $R_k(x)$ to points in $[0, 1)$ chosen uniformly at random.

Theorem
- For any constants ϵ and k with $\epsilon < 1 - 1/k$, the cuckoo rule with parameter k satisfies the balancing and majority conditions for a polynomial number of rounds, with high probability, for any adversarial strategy within our model.
- The inequality $\epsilon < 1 - 1/k$ is sharp.
Operations

- **Data storage**
 - each data item is stored in the $O(\log^3 n)$ neighborhood as copies

- **Primitives**
 - robust hash functions
 - safe against attacks
 - majority decisions of each operation
 - use multiple routes for targeting location
Efficiency

- **Lookup**
 - works correctly with high probability
 - can be performed with $O(\log^5 n)$ messages

- **Inserting of data**
 - works in polylogarithmic time
 - needs $O(\log^5 n)$ messages

- **Copies stored of each data**: $O(\log^3 n)$
Discussion

› **Advantage**
 • Cuckoo Chord is safe against adversarial attacks
 • Cuckoo rule is simple and effective

› **Disadvantage**
 • Computation of secure hash function is complex
 • Considerate overhead for communication

› **Theoretical breakthrough**

› **Little impact to the practical world**
Peer-to-Peer Networks

End of 10th Week

Albert-Ludwigs-Universität Freiburg
Department of Computer Science
Computer Networks and Telematics
Christian Schindelhauer
Summer 2008