Exercise No. 1 Peer-To-Peer Networks Summer 2008

Exercise 1 Graph Topologies

Consider the following graph topologies for n nodes.

1)	ring	2)	balanced binary tree (for $n = 2^k, k \in \mathbb{N}$)	****
3)	two-dimensional torus (for $n = k^2, k \in \mathbb{N}$)	4)	hypercube (for $n = 2^k$, $k \in \mathbb{N}$)	
5)	complete graph	6)	star	

Indicate for each of the graph topologies the following parameters and sort them according to their asymptotical order.

- a) maximal degree of a node
- b) amount of edges
- c) diameter of the graph
- d) maximal amount of nodes that can be reached in d steps starting in one node
- e) minimal amount of nodes that have to be removed such that the graph is no longer connected

Exercise 2 Hash-Functions

Given is a hash-table with n slots S_i , $i \in \{0, 1, ..., n-1\}$. A hash-function h is a mapping of given integer values to those slots, as uniform as possible. A collision occurs, if the hash-function h maps a value to a slot that is already occupied.

- 1. Choose a hash-function h_d for n = 7 and show how the numbers 4, 13, 25, 34, 46, and 55 are mapped to the slots S_i .
 - How many collisions occur, how can they be treated?
 - Suppose a slot is removed, or a new slot S₇ is added. How does that change the mapping of h?
- 2. Suppose each number is mapped to a slot by a uniform random function h_r .
 - Using the same collision treatment as above, how many collisions occur in expectation value?
 - What happens when slots are removed/added?
 - What advantage has h_r compared to h_d if the slots change? Also think about n being much larger than the number of values to store.
 - There is a serious disadvantage of h_r . What is it?