Peer-to-Peer Networks
03: DHT

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg
Why Gnutella Does Not Really Scale

- Gnutella
 - graph structure is random
 - degree of nodes is small
 - small diameter
 - strong connectivity

- Lookup is expensive
 - for finding an item the whole network must be searched

- Gnutella’s lookup does not scale
 - reason: no structure within the index storage
Two Key Issues for Lookup

- Where is it?
- How to get there?

Napster:
 - Where? on the server
 - How to get there? directly

Gnutella
 - Where? don't know
 - How to get there? don't know

Better:
- Where is x?
 - at f(x)
- How to get there?
 - all peers know the route
(Bad) Idea: Use Hashing

- Give each of n peers a number 0,1,...,n-1
 - use hash function
 - e.g. \(f(x) = (3x + 1 \mod 23) \mod 7 \)
 - peers are connected on a chain

- Lookup
 - compute \(f(x) \)
 - forward message to \(f(x) \) along the chain
Problems with Pure Hashing

- Insert and deletion of peers critical
 - if a peer leaves without warning then network breaks up
 - inserting a peer implies readjusting the whole entries
 - hash function must be changed to new version
 - how to assign the numbers to peers?

- Lookup is not efficient
 - takes linear time on the average
 - the peers in the middle see 50% of all lookups
Distributed Hash-Table (DHT)

- Hash table
 - does not work efficiently for inserting and deleting
- Distributed Hash-Table
 - peers are "hashed" to a position in an continuous set (e.g. line)
 - index data is also "hashed" to this set
- Mapping of index data to peers
 - peers are given their own areas depending on the position of the direct neighbors
 - all index data in this area is mapped to the corresponding peer
- Literature

Pure (Poor) Hashing

DHT
Entering and Leaving a DHT

- Distributed Hash Table
 - peers are hashed to position
 - index files are hashed according to the search key
 - peers store index data in their areas

- When a peer enters
 - neighbored peers share their areas with the new peer

- When a peer leaves
 - the neighbors inherit the responsibilities for the index data
Features of DHT

- Advantages
 - Each index entries is assigned to a specific peer
 - Entering and leaving peers cause only local changes

- DHT is the dominant data structure in efficient P2P networks

- To do:
 - network structure
Peer-to-Peer Networks
03: DHT

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg