Peer-to-Peer Networks
05: Chord

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg
Chord

- Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari Balakrishnan (2001)

- Distributed Hash Table
 - range \{0,\ldots,2^m-1\}
 - for sufficient large \(m\)

- Network
 - ring-wise connections
 - shortcuts with exponential increasing distance
Chord as DHT

- n: number of peers
- V: set of peers
- k: number of data stored
- K: set of stored data
- m: hash value length
 - $m \geq 2 \log \max\{K, N\}$
- Two hash functions mapping to $\{0, \ldots, 2^{m-1}\}$
 - $r_V(b)$: maps peer to $\{0, \ldots, 2^{m-1}\}$
 - $r_K(i)$: maps index according to key
 - i to $\{0, \ldots, 2^{m-1}\}$
- Index i maps to peer $b = f_V(i)$
 - $f_V(i) := \arg \min_{b \in V} ((r_V(b) - r_K(i)) \mod 2^m)$
- For each peer
 - successor link on the ring
 - predecessor link on the ring
 - for all \(i \in \{0, \ldots, m-1\} \)
 - \(\text{Finger}[i] := \) the peer following the value \(rV(b+2^i) \)

- For small \(i \) the finger entries are the same
 - store only different entries

- Lemma
 - The number of different finger entries is \(O(\log n) \) with high probability, i.e. \(1-n^{-c} \).
Balance in Chord

- Theorem
 - We observe in Chord for n peers and k data entries
 - Balance&Load: Every peer stores at most $O(k/n \log n)$ entries with high probability
 - Dynamics: If a peer enters the Chord then at most $O(k/n \log n)$ data entries need to be moved

- Proof
 - …
Properties of the DHT

- **Lemma**
 - For all peers b the distance $|r_v(b\text{.succ}) - r_v(b)|$ is
 - in the expectation $2^m/n$,
 - $O((2^m/n) \log n)$ with high probability (w.h.p.)
 - at least $2^m/n^{c+1}$ für a constant $c>0$ with high probability
 - In an interval of length $w 2^m/n$ we find
 - $\Theta(w)$ peers, if $w=\Omega(\log n)$, w.h.p.
 - at most $O(w \log n)$ peers, if $w=O(\log n)$, w.h.p.

- **Lemma**
 - The number of nodes who have a pointer to a peer b is $O(\log_2 n)$ w.h.p.
Lookup in Chord

- Theorem
 - The Lookup in Chord needs $O(\log n)$ steps w.h.p.

- Lookup for element s
 - Termination(b,s):
 - if peer $b,b'=b.succ$ is found with $r_K(s) \in [r_V(b),r_V(b')]$
 - Routing:
 - Start with any peer b
 - while not Termination(b,s) do
 - for $i=m$ downto 0 do
 - if $r_K(s) \in [r_V(b.finger[i]),r_V(finger[i+1])]$ then
 - $b \leftarrow b.finger[i]$
 - fi
 - od
Theorem
- The Lookup in Chord needs $O(\log n)$ steps w.h.p.

Proof:
- Every hops at least halves the distance to the target
- At the beginning the distance is at most
- The minimum distance between is $2^m/n^c$ w.h.p.
- Hence, the runtime is bounded by $c \log n$ w.h.p.
How Many Fingers?

- **Lemma**
 - The out-degree in Chord is $O(\log n)$ w.h.p.
 - The in-degree in Chord is $O(\log^2 n)$ w.h.p.

- **Proof**
 - The minimum distance between peers is $2^m/n^c$ w.h.p.
 - this implies that that the out-degree is $O(\log n)$ w.h.p.
 - The maximum distance between peers is $O(\log n \ 2^m/n)$ w.h.p.
 - the overall length of all line segments where peers can point to a peer following a maximum distance is $O(\log_2 n \ 2^m/n)$
 - in an area of size $w=O(\log_2 n)$ there are at most $O(\log_2 n)$ w.h.p.
Inserting Peer

- **Theorem**
 - For integrating a new peer into Chord only $O(\log^2 n)$ messages are necessary.
Adding a Peer

- First find the target area in $O(\log n)$ steps
- The outgoing pointers are adopted from the predecessor and successor
 - the pointers of at most $O(\log n)$ neighbored peers must be adapted
- The in-degree of the new peer is $O(\log^2 n)$ w.h.p.
 - Lookup time for each of them
 - There are $O(\log n)$ groups of neighbored peers
 - Hence, only $O(\log n)$ lookup steps with at most costs $O(\log n)$ must be used
 - Each update of has constant cost
Data Structure of Chord

- For each peer
 - successor link on the ring
 - predecessor link on the ring
 - for all $i \in \{0, \ldots, m-1\}$
 - $\text{Finger}[i] := \text{the peer following the value } r_{\sqrt{(b+2^i)}}$

- For small i the finger entries are the same
 - store only different entries

- Chord
 - needs $O(\log n)$ hops for lookup
 - needs $O(\log^2 n)$ messages for inserting and erasing of peers
Routing-Techniques for CHORD: DHash++

- Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek, Robert Morris (MIT)
 „Designing a DHT for low latency and high throughput“, 2003

- Idea
 - Take CHORD

- Improve Routing using
 - Datenlayout
 - Recursion (instead of Iteration)
 - Next Neighbor-Election
 - Replication versus Coding of Data
 - Error correcting optimized lookup

- Modify transport protocol
Data Layout

- Distribute Data?
- Alternatives
 - Key location service
 - store only reference information
 - Distributed data storage
 - distribute files on peers
 - Distributed block-wise storage
 - either caching of data blacks
 - or block-wise storage of all data over the network
Recursive Versus Iterative Lookup

- **Iterative lookup**
 - Lookup peer performs search on his own

- **Recursive lookup**
 - Every peer forwards the lookup request
 - The target peer answers the lookup-initiator directly

- DHash++ chooses recursive lookup
 - Speedup by factor of 2
Recursive Versus Iterative Lookup

- DHash++ chooses recursive lookup
 - speedup by factor of 2
Next Neighbor Selection

- **RTT**: Round Trip Time
 - time to send a message and receive the acknowledgment

- **Method of Gummadi, Gummadi, Grippe, Ratnasamy, Shenker, Stoica, 2003, „The impact of DHT routing geometry on resilience and proximity“**
 - **Proximity Neighbor Selection (PNS)**
 - Optimize routing table (finger set) with respect to (RTT)
 - method of choice for DHASH++
 - **Proximity Route Selection (PRS)**
 - Do not optimize routing table choose nearest neighbor from routing table
Next Neighbor Selection

- Gummadi, Gummadi, Grippe, Ratnasamy, Shenker, Stoica, 2003, „The impact of DHT routing geometry on resilience and proximity“
 - Proximity Neighbor Selection (PNS)
 - Optimize routing table (finger set) with respect to (RTT)
 - method of choice for DHash++
 - Proximity Route Selection (PRS)
 - Do not optimize routing table, choose nearest neighbor from routing table

- Simulation of PNS, PRS, and both
 - PNS as good as PNS+PRS
 - PNS outperforms PRS
Next Neighbor Selection

- DHash++ uses (only) PNS
 - Proximity Neighbor Selection
- It does not search the whole interval for the best candidate
 - DHash++ chooses the best of 16 random samples (PNS-Sample)

Fingers minimize RTT in the set
Next Neighbor Selection

- DHash++ uses (only) PNS
 - Proximity Neighbor Selection
- $e (0.1, 0.5, 0.9)$-percentile of such a PNS-Sampling

![Graph showing average lookup latency vs. number of PNS samples](image)
Cumulative Performance Win

- Following speedup
 - Light: Lookup
 - Dark: Fetch
 - Left: real test
 - Middle: simulation
 - Right: Benchmark latency matrix
Modified Transport Protocol

![Graph showing cumulative probability against latency for different protocols]

- Cumulative probability
- Latency (ms)
- STP
- TCP
Discussion DHash++

- Combines a large quantity of techniques
 - for reducing the latency of routing
 - for improving the reliability of data access

- Topics
 - latency optimized routing tables
 - redundant data encoding
 - improved lookup
 - transport layer
 - integration of components

- All these components can be applied to other networks
 - some of them were used before in others
 - e.g. data encoding in Oceanstore

- DHash++ is an example of one of the most advanced peer-to-peer networks
Peer-to-Peer Networks
05: Chord

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg