
Peer-to-Peer Networks
05: Chord

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

Chord

 Ion Stoica, Robert
Morris, David Karger,
M. Frans Kaashoek
and Hari Balakrishnan
(2001)

 Distributed Hash
Table
- range {0,..,2m-1}
- for sufficient large m

 Network
- ring-wise connections
- shortcuts with

exponential increasing
distance

2

Chord as DHT

 n number of peers
 V set of peers
 k number of data stored
 K set of stored data
 m: hash value length

- m ≥ 2 log max{K,N}

 Two hash functions mapping
to {0,..,2m-1}
- rV(b): maps peer to {0,..,2m-1}
- rK(i): maps index according to key

i to {0,..,2m-1}

 Index i maps to peer
b = fV(i)
- fV(i) :=

arg minb∈V{(rV(b)-rK(i)) mod 2m}
3

p1

p

3

p
2

x
1

0110
1010
1110

0110
1010
1110

0110
1010
1110

x
3

x
2

1

0

4

6

8

12

10

14
2

3

5

9 7

11

13

15

Pointer Structure of Chord

 For each peer
- successor link on the ring
- predecessor link on the

ring
- for all i ∈ {0,..,m-1}

• Finger[i] := the peer
following the value
rV(b+2i)

 For small i the finger
entries are the same
- store only different entries

 Lemma
- The number of different

finger entries is O(log n)
with high probability, i.e. 1-
n-c.

4

p
1

p
3

4

0

8

12

16

24

20

28

p
5

p
6

p
2

p
4

p
7

p
8

Balance in Chord

 Theorem
- We observe in Chord for n peers and k data entries

• Balance&Load: Every peer stores at most O(k/n log n)
entries with high probability

• Dynamics: If a peer enters the Chord then at most O(k/n
log n) data entries need to be moved

 Proof
- …

5

p
ip

j

p
n+1

responsibility

of pn+1

responsibility

of pi

Properties of the DHT

 Lemma
- For all peers b the distance |rV(b.succ) - rV(b)| is

• in the expectation 2m/n,
• O((2m/n) log n) with high probability (w.h.p.)
• at least 2m/nc+1 für a constant c>0 with high probability

- In an interval of length w 2m/n we find
• Θ(w) peers, if w=Ω(log n), w.h.p.
• at most O(w log n) peers, if w=O(log n), w.h.p.

 Lemma
- The number of nodes who have a pointer to a peer b is

O(log2 n) w.h.p.

6

Lookup in Chord

 Theorem
- The Lookup in Chord needs O(log n) steps w.h.p.

 Lookup for element s
- Termination(b,s):

• if peer b,b’=b.succ is found with rK(s) ∈ [rV(b),rV(b‘)|

- Routing:
Start with any peer b
• while not Termination(b,s) do

- for i=m downto 0 do
- if rK(s) ∈ [rV(b.finger[i]),rV(finger[i+1])] then
- b ← b.finger[i]
- fi

- od

7

Lookup in Chord

 Theorem
- The Lookup in Chord

needs O(log n) steps
w.h.p.

 Proof:
- Every hops at least

halves the distance to
the target

- At the beginning the
distance is at most

- The minimum distance
between is 2m/nc w.h.p.

- Hence, the runtime is
bounded by c log n
w.h.p.

8

p
1

p
3

4

0

8

12

16

24

20

28

p
5

p
6

p
2

p
4

p
7

p
8

How Many Fingers?

 Lemma
- The out-degree in Chord is O(log n)

w.h.p.
- The in-degree in Chord is O(log2n)

w.h.p.

 Proof
- The minimum distance between

peers is 2m/nc w.h.p.
• this implies that that the out-

degree is O(log n) w.h.p.
- The maximum distance between

peers is O(log n 2m/n) w.h.p.
• the overall length of all line

segments where peers can point
to a peer following a maximum
distance is O(log2n 2m/n)

• in an area of size w=O(log2n)
there are at most O(log2n) w.h.p.

9

0

2m-1

p
kp

j

Finger[m-1]

Finger[m-2]

Finger[m-log n]

Inserting Peer

 Theorem
- For integrating a new peer into Chord only O(log2 n)

messages are necessary.

10

0

2m-1

pkpj

Finger[m-1]

Finger[m-2]

Finger[m-log n]

Adding a Peer

 First find the target area in
O(log n) steps

 The outgoing pointers are
adopted from the
predecessor and successor
- the pointers of at most O(log

n) neighbored peers must be
adapted

 The in-degree of the new
peer is O(log2n) w.h.p.
- Lookup time for each of them
- There are O(log n) groups of

neighb ored peers
- Hence, only O(log n) lookup

steps with at most costs O
(log n) must be used

- Each update of has constant
cost

11

Data Structure of Chord

 For each peer
- successor link on the ring
- predecessor link on the ring
- for all i ∈ {0,..,m-1}

• Finger[i] := the peer following
the value rV(b+2i)

 For small i the finger
entries are the same
- store only different entries

 Chord
- needs O(log n) hops for

lookup
- needs O(log2 n) messages for

inserting and erasing of peers

12

Routing-Techniques for CHORD:
DHash++

 Frank Dabek, Jinyang Li, Emil Sit, James Robertson,
M. Frans Kaashoek, Robert Morris (MIT)
„Designing a DHT for low latency and high throughput“,
2003

 Idea
- Take CHORD

 Improve Routing using
- Datenlayout
- Recursion (instead of Iteration)
- Next Neighbor-Election
- Replication versus Coding of Data
- Error correcting optimized lookup

 Modify transport protocol

13

Data Layout

 Distribute Data?
 Alternatives

- Key location service
• store only reference information

- Distributed data storage
• distribute files on peers

- Distributed block-wise storage
• either caching of data blacks
• or block-wise storage of all data over the network

14

Recursive Versus Iterative Lookup

 Iterative lookup
- Lookup peer

performs search on
his own

 Recursive lookup
- Every peer forwards

the lookup request
- The target peer

answers the lookup-
initiator directly

 DHash++ choses
recursive lookup
- speedup by factor

of 2

15

Recursive Versus Iterative Lookup

 DHash++ choses recursive lookup
- speedup by factor of 2

16

Next Neighbor Selection

17

Fingers minimize
RTT in the set

 RTT: Round Trip Time
- time to send a message and

receive the acknowledgment

 Method of Gummadi, Gummadi,
Grippe, Ratnasamy, Shenker,
Stoica, 2003, „The impact of
DHT routing geometry on
resilience and proximity“
- Proximity Neighbor Selection (PNS)

• Optimize routing table (finger set)
with respect to (RTT)

• method of choice for DHASH++
- Proximity Route Selection(PRS)

• Do not optimize routing table
choose nearest neighbor from
routing table

Next Neighbor Selection

 Gummadi, Gummadi, Grippe,
Ratnasamy, Shenker, Stoica,
2003, „The impact of DHT
routing geometry on resilience
and proximity“
- Proximity Neighbor Selection

(PNS)
• Optimize routing table (finger

set) with respect to (RTT)
• method of choice for DHASH++

- Proximity Route Selection(PRS)
• Do not optimize routing table

choose nearest neighbor from
routing table

 Simulation of PNS, PRS, and
both
- PNS as good as PNS+PRS
- PNS outperforms PRS

18

Next Neighbor Selection

 DHash++ uses (only) PNS
- Proximity Neighbor Selection

 It does not search the
whole interval for the best
candidate
- DHash++ chooses the best of

16 random samples (PNS-
Sample)

19

Fingers minimize
RTT in the set

Next Neighbor Selection

 DHash++ uses (only) PNS
- Proximity Neighbor Selection

 e (0.1,0.5,0.9)-percentile of such a PNS-Sampling

20

Cumulative Performance Win

 Following speedup

- Light: Lookup

- Dark: Fetch

- Left: real test

- Middle: simulation

- Right: Benchmark latency matrix

21

Modified Transport Protocol

22

Discussion DHash++

 Combines a large quantity of techniques
- for reducing the latecy of routing
- for improving the reliability of data access

 Topics
- latency optimized routing tables
- redundant data encoding
- improved lookup
- transport layer
- integration of components

 All these components can be applied to other networks
- some of them were used before in others
- e.g. data encoding in Oceanstore

 DHash++ is an example of one of the most advanced peer-
to-peer networks

23

Peer-to-Peer Networks
05: Chord

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

