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Theorem

- If n elements are randomly inserted into an array [0,1[ then with
constant probability there is a ,hole” of size Q(log n/n), i.e. an
interval without elements.

Proof
- Consider an interval of size log n/ (4n)

The chance not to hit such an interval is (1-log n/(4n))
The chance that n elements do not hit this interval is

log n

] logn n_ ] logn og 4 < 1 %logn_ 1
4n B 4n — \4 - n

The expected number of such intervals is more than 1.

Hence the probability for such an interval is at least constant.
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Expectation:
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Theorem

- If n elements are randomly inserted into an array [0,1
[ then with constant probability there is a dense
interval of length 1/n with at least QQ(log n/ (log log n))
elements.

Proof

- The probability to place exactly | elements in to such

an intervalis N
@) 0=3) C)
- fori=clog n/ (log log n) this probability is at least 1/
nkfor an appropriately chosen ¢ and k<1

- Then the expected number of intervals is at least 1
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A Averaging Effect
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Theorem

- If ®(n log n) elements are randomly inserted into an array
[0,1[ then with high probability in every interval of length

1/n there are O(log n) elements.
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Markov-Inequality
- For random variable X>0 with E[X] > O:

P(X > k- E[X]] g%

Chebyshev VX
’ PI|X ~ BIX]| 2 K] < 5

- for Variance V[X] = E[X?] - E[X]’
Stronger bound: Chernoff
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Theorem Chernoff Bound

- Let x1,...,Xn Independent Bernoulli experiments with

Plxi = 1] = p
P[xi = 0] = 1-p

- Let S — zn:xz
i=1

- Then for all c>0
P[S, > (1+c¢) - E|S,]]
- For 0<c=1

P|S, < (1 —c¢) - E[S,]]

<

VAN

1

e 3

1
e 2

min{c,c*}pn

c2pn
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We ShOW P[S” 2 (1 + (’)E[S”H S 6_1'ni1'1{3c,c }pn
Fuar t>0: ) )
min{c,c”}
— < o~ 3 pn
P[S,, > (1 +c¢)pn| = P[etS” > et(Hc)p”] . — € ’

L — et(1+c)p"/E[et's"]

Markov yields: P [(ﬁts’" > KE [‘JSNH =

| =

To do: Choose t appropriately
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We ShOW i < —= 11{ } tS i fzn T
E — Ele""| = E |e %=t }
-, -
t _l_ ! S‘ p— E H ()t'v'[‘.?f
Where A’ — € ( +p)pn/E[(>tk n] -
| 1=1 il

Independence of random variables x; —_— Jo.
= H E [(_e ’]

Next we show: _

G—t(l—l—(:)l)n . (1 +1)( . 1))11 _MP”
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min{c,cz}

Show: y - n
B o LY G T §) L

where: t=1In(l+¢) >0

g Mo pnfet —
e—t(l-l—(:)pn . (1 —l-p((ft o 1))11‘ e t(14c)pn ) (_)11)11.(6 1)

VAN

,—t(1+c)pn+pn(e' 1)

— €
— e (14+c¢) In(1+c¢)pn+cpn
— ()((-’—(1+(-7) In(14-c¢))pn

Next to show

(1+¢)In(1+¢)> ¢+ 1 min{c, ¢?}
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To show for c>1: (1+e)In(l+c) > c+ ic

Forc=1. 21In(2) > 4/3
Derivative:

- left side: In(1+c)

- right side: 4/3

For c>1 the left side is larger
than the right side since

In(1+c)>In (2) > 4/3
Hence the inequality is true for | c+c?/3

(1+c)In(1+c)

c>0.
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To show for c< 1: (1+c)In(l+c)> ¢+ %02

For x>0: dln(l + x 1 ; .
( + ): :1—:1;+r1;2—.7;3-|—:174—...
dx 1+
Hence 1, 1 1
In(l+z)=x— 57‘2 + §’I‘3 — ZIA-I—

By multiplication

Ly - I 1Y\ - I 1
(1-1—(1:)111(1—1—:1:):.7:-1—<1—§>a¢2—<§—§)x‘3+<§—i>aﬁ4—...

Substitute (1+c) In(1+c) which gives for c&(0,1):

1 L. 1
(1+c)ln(l+c)>c+ =c*—=c* >c+ =c?
2 6 ‘3
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Theorem Chernoff Bound
- Let x1,...,xn independent Bernoulli experiments with

Plxi=1]=p
P[xi=0]=1-p 3
- Let S = Zm’b
i=1

- Then for all ¢c>0
1

P[S, > (1+c¢)-E[S,]] < e 3min{ecton
- For O<c=1

P[S, < (1—c)-E[S,]] < e z¢Pn
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2

> We show P[S, < (1 —)E[S,]] < e 2P".

—S-pn

ol
VAN
QN

» For t<0: P[S, < (1 —c¢)pn] = P| olSn > (_)jf(l—(:)p',vl]

k = Gf(1—(::)1)'/1./E[GI“S',,]

» Markov yields: p [61‘.5'.” > LE [ Gts.,,H <

=l e

» To do: Choose t appropriately



,A\ Proof of 2nd Chernoft Bound

CoNe
Freiburg
» Weshow | 1 2 , .
- < e 2 E[¢'”"] = E (3’2":1""]
[ n 7
» where 1 — E et
L — (_)/f.(l—(_,)pn./E[Gtosn] — >
| 1=1 i
n
f.'.I,'.,j
Independence of random variables X; =——t—— — HE [(f ]
1=1
n
= H(eo(l —p) + €'p)
1=1
» Next we show: = (1-p+ ()tp)”’

e =P (14 ple! —1))" < (3_%’” = (1+ (" =1)p)"
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We show 2
G—t(l—c)bn . (1 4 p((it o 1))11, S e~z bn

where: 4 _ In(1 — ¢)

(1 — N 1 N ot
e t(l—c)pn (1 4 p((it o 1))1& < ¢ t(l—c)pn Gpn(e 1)
_ ()—f.(1—(_:)])7).—|—p71.(et—1) 1+x < eX

— e~ (1—c)In(1—c)pn—cpn

1
Next to show |—c— (1 —¢)In(l —¢) < —5(:2
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To prove:

1
—c—(1—¢)In(1 —¢) < —502

-or c=0 we have equality
Derivative of left side: In(1-c)
Derivative of right side: -c

-c-(1-c)In(1-c)

1+

Now
1, 1 4 1,
| 11?(1 —|—. r) =T — 5:1;2 + g.’}t“ — Za:* + ...
This implies
| L.
In(l—¢c)=—c—=c"—=c"—...< —c
2 3
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Lemma

If m=k n In n Balls are randomly placed in n bins:

1. Then for all c>k the probability that more than cIn n balls are in a bin is at most
O(n"®) for a constant ¢'>0.

2. Then for all c<k the probability that less than c In n balls are in a bin is at most
O(n™®) for a constant c">0.

Proof:

Consider a bin and the Bernoulli experiment B(k n In n,1/n) and
expectation: y=m/n=klnn

1. Case:c>2k  P[X >clnn| =P[X > (1+(c/k—1))k1Inn]
< e~ i(e/k=Dklnn < p—L(c—k)
P[X >clnn| =P[X > (14+(¢/k—1))kInn]
< e—%(c/k—l)lenn < n—%(c—k)%
P[X <clnn| =P|X < (1—(1—c¢/k))kInn]

< 6_%(1—(:/1";)2}»’lnn < n—%(l‘ﬁ—c)g/l‘C

2. Case: k<c<2k

3. Case: c<k

E=l=

5]
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