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Network Flow

 How can network flow
be optimized?
- two data bits

• x, y
- two sender

• S1, S2

- two receiver
• R1, R2

- link capacity 1
- deliver both bits to

both receiver
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Network Flow
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Network Flow

 Simple transmission of bits
allows maximal flow 3
- minimal cut = 3
- middle edge is bottleneck

 Can we do better?
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Network Coding

 R. Ahlswede, N. Cai, S.-Y. R. Li,
and R. W. Yeung
- Network Information Flow, (IEEE

Transactions on Information
Theory, IT-46, pp. 1204-1216,
2000)

 Solution
- Send Xor of x and y on the

middle edge
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Network Coding

 Theorem [Ahlswede et al.]
- For each graph there exists a network code such

that each sink can receive as many information
as allowed by the maximum flow to that sink.
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Linear Network Codes

 Koetter, Médard
- Beyond Routing: An Algebraic Approach to

Network Coding

 Goal
- finding those codes for network coding

 Solution
- linear combinations are sufficient for any network

coding
• even random linear combinations in Practical

Network Coding for peer-to-peer networks
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Application Areas

 Sattelite communication
- preliminary work

 WLAN
- Xor in the Air, COPE

• simple network code improves network flow

 Ad hoc networks
 Sensor networks
 Peer-to-peer networks
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Coding and Decoding

 Original message: x1, x2, ..., xn

 Code packets: b1, b2, ..., bn

 Random linear coefficient cij

 Thus

If matrix (cij) is invertible then:
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Inverse of Random Matrix

 Theorem
- If the values of an n  n matrix are randomly

chosen from a finite field with s elements, then
the matrix is invertible with probability at least

 Problem
- Numbers become larger with each calculation
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Galois Fields

 Idea: Use Galois field GF[2w]
- efficient computation
- power of two suits binary data representation

 GF[2w] = finite field with 2w elements
- elements are binary strings with length w
- 0 = 0w identity element for addition
- 1 = 0w-11 identity element for multiplication

 u + v = bit-wise Xor
- i.e. 0101 + 1100 = 1001

 a . b = polynom product modulo an irreducible polynom and
modulo 2
- i.e.
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Example: GF[22]

311x + 1x2

210xx1

1011x0

00000

decimal
representation

binary
representation

in GF[4]

polynomial in
GF[4]

generating
element of

GF[4]

q(x) = x2 + x + 1



13

x2 = x + 1?

 Why is x2 = x + 1?
- q(x) = x2 + x + 1

x2 mod x2 + x + 1 =



14

Example: GF[22]

000110113 = 11

010011102 = 10

101100011 = 01

111001000 = 00

3 = 112 = 101 = 010 = 00+

bit-wise Xor
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Example: GF[22]

x1x203 = x2

1x2x02 = x

x2x101 = 1

00000 = 0

3 = x22 = x1 = 10 = 0*
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x3 = 1?

 Why is x3 = 1?
- x2 = x + 1
- x + x = 0

x3 =
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Irreducible Polynoms

 Irreducible polynoms are non-decomposable
- w = 2: x2 + x + 1

- w = 4: x4 + x + 1

- w = 8: x8 + x4 + x3 + x2 + 1

- w = 16: x16 + x12 + x3 + x + 1

- w = 32: x32 + x22 + x2 + x + 1

- w = 64: x64 + x4 + x3 + x + 1
 Decomposable polynom: x2 + 1 = (x + 1)2 mod 2
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Fast Multiplication

 Power laws
- {20, 21, 22,...}

- = {x0, x1, x2, x3, ...}

- = exp(0), exp(1), exp(2), ...

 exp(x + y) = exp(x) . exp(y)

 Inverse function: log(exp(x)) = x
- log(x . y) = log(x) + log(y)

 x . y = exp(log(x) + log(y))
- Attention: normal addition in the exponent

 Values for exponential and logarithmic function stored in
lookup tables
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Example: GF[16]
q(x) = x4 + x + 1

x . y = exp(log(x) + log(y))
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Special Case: GF[2]

 Boolean algebra
- x + y =  x  XOR  y
- x . y =  x  AND  y
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