Peer-to-Peer Networks
16 Random Graphs for Peer-to-Peer-Networks

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg
A Short History of Peer-to-Peer-Networks

- **1st Generation**
 - Shawn “Napster” Fanning (1999)
 - Centralized client-server database
 - Peer-to-peer: download (mostly mp3-music)
 - Shut down by court order because of copyright infringement

- **2nd Generation**
 - Decentralized, uncontrolled communication network
 - Lookup by broadcasting a query
 - Gnutella (Frankel, Pepper, 2000)
 - eDonkey
 - FastTrack

- **3rd Generation**
 - Efficient data structures (DHT)
 - CAN, Chord, Pastry, Tapestry, ...
 - Anonymity features
 - Freenet, I2P, GNUnet
Peer-to-Peer Networking Facts

- Hostile environment
 - Legal situation
 - Egoistic users
 - Networking
 - ISP filter Peer-to-Peer Networking traffic
 - User arrive and leave
 - Several kinds of attacks
 - Local system administrators fight peer-to-peer networks

- Implication
 - Use stable robust network structure as a backbone
 - Napster: star
 - CAN: lattice
 - Chord, Pastry, Tapestry: ring + pointers for lookup
 - Gnutella, FastTrack: chaotic “social” network

- Idea: Use a Random d-regular Network
Why Random Networks?

- Random Graphs ...
 - Robustness
 - Simplicity
 - Connectivity
 - Diameter
 - Graph expander
 - Security

Random Graphs in Peer-to-Peer networks:
- Gnutella
- JXTApose
Peer-to-Peer networks are highly dynamic ...
- maintenance operations are needed to preserve properties of random graphs
- which operation can maintain (repair) a random digraph?

Desired properties:

<table>
<thead>
<tr>
<th>Soundness</th>
<th>Operation remains in domain (preserves connectivity and out-degree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generality</td>
<td>every graph of the domain is reachable does not converge to specific small graph set</td>
</tr>
<tr>
<td>Feasibility</td>
<td>can be implemented in a P2P-network</td>
</tr>
<tr>
<td>Convergence Rate</td>
<td>probability distribution converges quickly</td>
</tr>
</tbody>
</table>
Simple Switching

- Choose two random edges
 - \{u_1, u_2\} ∈ E, \{u_3, u_4\} ∈ E
- such that \{u_1, u_3\}, \{u_2, u_4\} ∉ E
 - add edges \{u_1, u_3\}, \{u_2, u_4\} to E
 - remove \{u_1, u_2\} and \{u_3, u_4\} from E

McKay, Wormald, 1990
- Simple Switching converges to uniform probability distribution of random network
- Convergence speed:
 - \(O(nd^3)\) for \(d \in O(n^{1/3})\)

Simple Switching cannot be used in Peer-to-Peer networks
- Simple Switching disconnects the graph with positive probability
- No network operation can re-connect disconnected graphs
Necessities of Graph Transformation

- Problem: Simple Switching does not preserve connectivity
- Soundness
 - Graph transformation remains in domain
 - Map connected d-regular graphs to connected d-regular graphs
- Generality
 - Works for the complete domain and can lead to any possible graph
- Feasibility
 - Can be implemented in P2P network
- Convergence Rate
 - The probability distribution converges quickly
Directed Random Graphs

- Peter Mahlmann, Christian Schindelhauer
 - Distributed Random Digraph Transformations for Peer-to-Peer Networks, 18th ACM Symposium on Parallelism in Algorithms and Architectures, Cambridge, MA, USA. July 30 - August 2, 2006
Directed Graphs

Push Operation:
1. Choose random node u
2. Set v to u
3. While a random event with $p = 1/h$ appears
 a) Choose random edge starting at v and ending at v'
 b) Set v to v'
3. Insert edge (v, v')
4. Remove random edge starting at v

Pull Operation:
1. Choose random node u
2. Set v to u
3. While a random event with $p = 1/h$ appears
 a) Choose random edge starting at v and ending at v'
 b) Set v to v'
3. Insert edge (v', v)
4. Remove random edge starting at v'
Simulation of Push-Operations

Start situation

Parameter:

\(n = 32 \) Knoten
out-degree \(d = 4 \)
Hop-distance \(h = 3 \)
1 Iteration Push ...
10 Iterations Push ...
20 Iterations von Push ...
30 Iterations Push ...
40 Iterations Push ...
50 Iterations Push ...
70 Iterations Push ...

Client-Server rediscovered
Simulation of Pull-Operation ...

Start situation

Parameter:

n = 32 nodes
outdegree \(d = 4 \)
hop distance \(h = 3 \)
1 Iteration Pull ...
10 Iterations Pull ...
20 Iterations Pull ...
30 Iterations Pull ...
40 Iterationen Pull ...
50 Iterations Pull ...
500 Iterations Pull ...
5000 Iterations Pull ...
Combination of Push and Pull
Simulation of Push&Pull-Operations ...

Same start situation

Parameters
n = 32 nodes
degree d = 4
hop-distance h = 3

but
1.000.000 iterations
Pointer-Push&Pull for Multi-Digraphs

Pointer-Push&Pull:
- choose random node $v_1 \in V$
- do random walk v_1, v_2, v_3
- delete edges (v_1,v_2) and (v_2,v_3)
- add edges (v_2,v_1) and (v_1,v_3)

- obviously:
 - preserves connectivity of G
 - does not change out-degrees

⇒ Pointer-Push&Pull is **sound** for the domain of out-regular connected multi-digraphs
Lemma A series of random Pointer-Push&Pull operations can transform an arbitrary connected out-regular multi-digraph, to every other graph within this domain.
What is the stationary prob. distribution generated by Pointer-Push&Pull?

- depends on random walk

example: *node oriented random walk*

- choose random neighboring node with $p=1/d$ respectively
- due to multi-edges possibly less than d neighbors
- if no node was chosen operation is canceled

$$P[G \xrightarrow{PP} G'] = P[G' \xrightarrow{PP} G]$$
Theorem: Let G' be a d-out-regular connected multi-digraph with n nodes. Applying Pointer-Push&Pull operations repeatedly will construct every d-out-regular connected multi-digraph with the same probability in the limit, i.e.

$$\lim_{t \to \infty} P[G' \xrightarrow{t} G] = \frac{1}{|\mathcal{MDG}_{n,d}|}$$
Feasibility ...

A Pointer-Push&Pull operation in the network ...

- only 2 messages between two nodes, carrying the information of one edge only
- verification of neighborhood is mandatory in dynamic networks

⇒ combine neighbor-check with Pointer-Push&Pull

(2) v_2 replaces (v_2,v_3) by (v_2,v_1) and sends ID of v_3 to v_1
Properties of Pointer-Push&Pull

- strength of Pointer-Push&Pull is its simplicity
- generates truly random digraphs
- the price you have to pay: multi-edges

Open Problems:
- convergence rate is unknown, conjecture $O(dn \log n)$
- is there a similar operation for simple digraphs?
The 1-Flipper (F1)

- The operation
 - choose random edge \(\{u_2, u_3\} \in E \)
 - hub edge
 - choose random node \(u_1 \in N(u_2) \)
 - 1st flipping edge
 - choose random node \(u_4 \in N(u_3) \)
 - 2nd flipping edge
 - if \(\{u_1, u_3\}, \{u_2, u_4\} \not\in E \)
 - flip edges, i.e.
 - add edges \(\{u_1, u_3\}, \{u_2, u_4\} \) to \(E \)
 - remove \(\{u_1, u_2\} \) and \(\{u_3, u_4\} \) from \(E \)
1-Flipper is sound

- **Soundness:**
 - 1-Flipper preserves d-regularity
 - follows from the definition
 - 1-Flipper preserves connectivity
 - because of the hub edge

- **Observation:**
 - For all $d > 2$ there is a connected d-regular graph G such that $P[G \xrightarrow{F^1} G] \neq 0$
 - For all $d \geq 2$ and for all d-regular connected graphs at least one 1-Flipper-operation changes the graph with positive probability
 - This does not imply generality
1-Flipper is symmetric

- Lemma (symmetry):
 - For all undirected regular graphs G, G':

 $$P[G \xrightarrow{F^1} G'] = P[G' \xrightarrow{F^1} G]$$

- Diagram:
 - G (square graph)
 - G' (cross graph)
 - F^1 edge flipping
 - Black edges: flipping edges
 - Blue dashed edges: possible hub edges
Lemma (reachability):
- For all pairs G, G' of connected d-regular graphs there exists a sequence of 1-Flipper operations transforming G into G'.
Theorem (uniformity):
- Let G_0 be a d-regular connected graph with n nodes and $d > 2$. Then in the limit the 1-Flipper operation constructs all connected d-regular graphs with the same probability:

$$\lim_{t \to \infty} P[G_0 \xrightarrow{t} G] = \frac{1}{|\mathcal{C}_{n,d}|}$$
1-Flipper properties: Expansion

- **Definition (edge boundary):**
 - The edge boundary δS of a set $S \subset V$ is the set of edges with exactly one endpoint in S.

- **Definition (expansion):**
 A graph $G=(V,E)$ has expansion $\beta > 0$
 - if for all node sets S with $|S| \leq |V|/2$:
 - $|\delta S| \geq \beta |S|$

Since for $d \in \omega(1)$ a random connected d-regular graph is a $\Theta(d)$ expander asymptotically almost surely (a.a.s: in the limit with probability 1), we have

- **Theorem:**
 - For $d > 2$ consider any d-regular connected Graph G_0. Then in the limit the 1-Flipper operation establishes an expander graph after a sufficiently large number of applications a.a.s.
<table>
<thead>
<tr>
<th></th>
<th>Flipper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
<td>Undirected Graphs</td>
</tr>
<tr>
<td>Soundness</td>
<td>✔</td>
</tr>
<tr>
<td>Generality</td>
<td>✔</td>
</tr>
<tr>
<td>Feasibility</td>
<td>✔</td>
</tr>
<tr>
<td>Convergence</td>
<td>?</td>
</tr>
</tbody>
</table>

- Flipper involves 4 nodes
- Generates truly random graphs
- Open Problems:
 - Convergence rate is unknown, conjecture $O(dn \log n)$
The k-Flipper (F_k)

- The operation
 - choose random node
 - random walk P' in G
 - choose hub path with nodes
 - \{u_l, u_r\}, \{u_{l+1}, u_{r+1}\} occur only once in P'
 - if \{u_l, u_r\}, \{u_{l+1}, u_{r+1}\} \notin E
 - add edges \{u_l, u_r\}, \{u_{l+1}, u_{r+1}\} to E
 - remove \{u_l, u_{l+1}\} and \{u_r, u_{r+1}\} from E

![Diagram of flipping edges and hub path]
k-Flipper: Properties ...

- k-Flipper preserves connectivity and d-regularity
 - proof analogously to the 1-Flipper
- k-Flipper provides reachable,
 - since the 1-Flipper provides reachability
 - k-Flipper can emulate 1-Flipper
- But: k-Flipper is not symmetric:
 - a new proof for expansion property is needed
Concurrency ...

- In a P2P-network there are concurrent Flipper operations
 - No central coordination
 - Concurrent Flipper operations can speed up the convergence process
 - However concurrent Flipper operations can disconnect the network
Convergence only proven for too long paths
- Operation is not feasible then.
- Does k-Flipper quickly converge for small k?

Open problem:
- Which k is optimal?
> **Open Problems**
> - Conjecture: Flipper converges in after $O(dn \log n)$ operations to a truly random graph
> - Conjecture: k-Flipper converges faster, but involves more nodes and flags
> - Conjecture: k-Flipper does not pay out

> **Empirical Simulations**
> - Estimate expansion by eigenvalue gap
> - Estimate eigenvalue gap by iterated multiplication of a start vector

<table>
<thead>
<tr>
<th>Simple-Switching</th>
<th>Flipper</th>
<th>Pointer-Push&Pull</th>
<th>k-Flipper small k</th>
<th>k-Flipper large k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs</td>
<td>Undirected Graphs</td>
<td>Undirected Graphs</td>
<td>Directed Multigraphs</td>
<td>Undirected Graphs</td>
</tr>
<tr>
<td>Soundness</td>
<td>?</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Generality</td>
<td>✤</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Feasibility</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Convergence</td>
<td>✔</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Start Graphs

- Ring with neighbor edges
- Torus
- Ring of cliques
Flipper
Influence of the Start Graph

![Graph showing the influence of the start graph on Flipper operations]
Development of Expansion

ring of cliques, n=10000, d=4

Number of 1-Flipper operations

Expansion

0 100000 200000 300000 400000 500000 600000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Development of Expansion

Initial Phase

Expansion Phase

Stable Phase

ring of cliques, n=10000, d=4

Number of 1-Flipper operations

Expansion

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0 100000 200000 300000 400000 500000 600000
k-Flipper
Start Graph: Ring of Cliques
k-Flipper
Start Graph: Ring of Cliques

Operations to reach stable expansion

ring of cliques, n=10000, d=4
Convergence of Flipper

Operations to reach stable expansion

Number of nodes (n)

- $d=4$
- $d=8$
- $d=12$
- $4n \cdot \log(n)$
- $8n \cdot \log(n)$
Convergence of Flipper
Varying Degree

Operations to reach stable expansion

Degree (d)

ring of cliques (n=10000)
All Graph Transformation

Graphs

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Simple-Switching</th>
<th>Flipper</th>
<th>Pointer-Push&Pull</th>
<th>k-Flipper small k</th>
<th>k-Flipper large k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undirected</td>
<td>Undirected Graphs</td>
<td>Undirected Graphs</td>
<td>Directed Multigraphs</td>
<td>Undirected Graphs</td>
<td>Undirected Graphs</td>
</tr>
</tbody>
</table>

Soundness

| | ✔ | ✔ | ✔ | ✔ | ✔ |

Generality

| | ✔ | ✔ | ✔ | ✔ | ✔ |

Feasibility

| | ✔ | ✔ | ✔ | ✔ | ceği |

Convergence

| | ✔ | ✔ | ? | ✔ | ✔ |
Good Peer-to-Peer-Operations

- Push
- Pull
- T-Man: Fast Gossip-based Construction of Large-Scale Overlay Topologies Mark Jelasity Ozalp Babaoglu, 1994
Distributed Topology Construction

(a) active thread

\[
\text{do at a random time once in each consecutive interval of } T \text{ time units}
\]

\[
p \leftarrow \text{selectPeer()}
\]

\[
\text{myDescriptor }\leftarrow (\text{myAddress,myProfile})
\]

\[
\text{buffer }\leftarrow \text{merge(view,\{myDescriptor\})}
\]

\[
\text{buffer }\leftarrow \text{merge(buffer,rnd.view)}
\]

\[
\text{send buffer to } p
\]

\[
\text{receive buffer}_p \text{ from } p
\]

\[
\text{buffer }\leftarrow \text{merge(buffer}_p,\text{view})
\]

\[
\text{view }\leftarrow \text{selectView(buffer)}
\]

(b) passive thread

\[
\text{do forever}
\]

\[
\text{receive buffer}_q \text{ from } q
\]

\[
\text{myDescriptor }\leftarrow (\text{myAddress,myProfile})
\]

\[
\text{buffer }\leftarrow \text{merge(view,\{myDescriptor\})}
\]

\[
\text{buffer }\leftarrow \text{merge(buffer,rnd.view)}
\]

\[
\text{send buffer to } q
\]

\[
\text{buffer }\leftarrow \text{merge(buffer}_q,\text{view})
\]

\[
\text{view }\leftarrow \text{selectView(buffer)}
\]

Fig. 1. The T-MAN protocol.
Finding a Torus

Fig. 2. Illustrative example of constructing a torus over $50 \times 50 = 2500$ nodes, starting from a uniform random topology with $c = 20$. For clarity, only the nearest 4 neighbors (out of 20) of each node are displayed.
Convergence of T-MAN

$(c) \ N = 2^{14}$

- Binary tree, $c=20$
- Binary tree, $c=40$
- Binary tree, $c=80$
- Ring, $c=20$
- Ring, $c=40$
- Ring, $c=80$
- Torus, $c=20$
- Torus, $c=40$
- Torus, $c=80$
T-Chord

Main Technique T-Man

The T-Man algorithm

// view is a collection of neighbors
Init: view = rnd.view ∪ { (myaddress, mydescriptor) }

// active thread
// executed by p
do once every
δ time units
q = selectNeighbor(view)
msg_p = extract(view, q)
send msg_p to q
receive msg_q from q
view = merge(view, msg_q)

// passive thread
// executed by p
do forever
receive msg_q from *
msg_p = extract(view, q)
send msg_p to q
view = merge(view, msg_q)

© 2005 Alberto Montresor
Adaption for Chord

T-Man for T-Chord

- **selectPeer()**:
 - randomly select a peer q from the r nodes in my view that are nearest to p in terms of ID distance

- **extract()**:
 - send to q the r nodes in local view that are nearest to q
 - q responds with the r nodes in its view that are nearest to p

- **merge()**:
 - both p and q merge the received nodes to their view
After Exchange of Links

T-Man for T-Chord

- **selectPeer()**: randomly select a peer q from the r nodes in my view that are nearest to p in terms of ID distance
- **extract()**: send to q the r nodes in local view that are nearest to q.
 - q responds with the r nodes in its view that are nearest to p.
- **merge()**: both p and q merge the received nodes to their view.

© 2005 Alberto Montresor
Peer-to-Peer Networks
16 Random Graphs for Peer-to-Peer-Networks

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg