
University of Freiburg
Computer Networks and Telematics

Summer 2009

Network Protocol Design
and Evaluation

04 - Protocol Specification, Part II

Stefan Rührup

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Overview

‣ In Part I of this chapter:

• Modeling with state machines and UML

‣ Part II:

• Formal state machine models revisited

• SDL - The specification and description language

• Describing scenarios with Message Sequence Charts

2

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Formal State Machine Models

‣ Limited expressiveness of FSMs

‣ UML state charts more powerful, but semantic variation points

‣ Formal semantics needed (esp. for validation)

‣ Extended state machine models and formal languages:

• Communicating FSMs (addition: message queues)

• Extended FSMs (addition: variables)

• SDL (based on ext. FSMs, adds structural concepts)

3

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Communicating FSMs

4

‣ Automata connected by bounded FIFO message queues
(asynchronous communication)

‣ Input and output = send and receive

states &
transitions

message
queues

in
out

states &
transitions

message
queues

out
in

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Communicating FSMs

‣ Automata connected by bounded FIFO message queues
(asynchronous communication)

‣ Changes to the Mealy finite state machine model:

• Input and output queues (finite)

• Simplification of the transition function:

- state transitions are triggered by either input or output
(here called action), but not by both

- closer to reality: send and receive operations are usually
not coupled

• finiteness is still maintained

5

[Holzmann 1991]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example for Communicating FSMs (1)

‣ A simplified variant of the alternating bit protocol
[Holzmann 1991]

• Sender sends messages with a control bit, the
alternating bit, indicated by msg0 and msg1.

• Messages are acknowledged by the receiver, also
using the alternating bit, indicated by ack0 and ack1.

• After sending msg0, the sender expects ack0.

• If it receives ack1 instead, msg0 is re-transmitted.

• Notation: ! = send, ? = receive

• We implicitly assume a single channel

6

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example for Communicating FSMs (2)

‣ CFSM specification of the protocol [Holzmann 1991]

7

q2

q0q1

q4q3

q5

?msg1

!ack0

!ack1

?msg0

!ack1

?msg1

?msg0!ack0

Sender

q2

q0 q1

q3

?ack1

!msg0

?ack0

!msg1

?ack1

?ack0

Receiver

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example for Communicating FSMs (3)

‣ State transition table of the receiver protocol [Holzmann 1991]

8

State In Out Next
state

q0 msg1 - q1

q0 msg0 - q2

q1 - ack1 q3

q2 - ack0 q0

q3 msg0 - q4

q3 msg1 - q5

q4 - ack0 q0

q5 - ack1 q3

q2

q0q1

q4q3

q5

?msg1

!ack0

!ack1

?msg0

!ack1

?msg1

?msg0!ack0

Receiver

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Definition of a CFSM

‣ A message queue is a triple (S, N, C), where

• S is a finite set called the queue/message vocabulary

• N defines the size of the queue, and C its contents

‣ A communicating finite state machine is a tuple (Q,q0,M,T), where

• Q is a finite, non-empty set of states,

• q0 ∈ Q is the initial state,

• M is a set of message queues, and

• T is a state transition relation, T: Q x A → Q,
where A is the set of actions (input, output, or ε)

9

[Holzmann 1991]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Definition of a CFSM

‣ The state transition relation maps a state and an action to a
successor state.

‣ An action can be input, output or null action.

‣ We denote input actions by ? and output actions by !
example: T(q0, !msg) = q1

‣ Input and output actions change exactly one message queue

‣ T(q,a) = ∅ unless otherwise specified

10

[Holzmann 1991]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Extended FSMs

‣ So far...

• Message exchange between CFSMs

‣ Still missing in CFSMs:

• Variables

• the ability to exchange arbitrary values

11

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Extended FSMs

‣ Extensions to the CFSM model:

• Variables (integer, finite range)

• Queues can transfer integer values

• Set of arithmetic and logical operators

12

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Definition of an Extended FSM

‣ A extended finite state machine is a tuple (Q,q0,M,V,T), where

• Q is a finite, non-empty set of states,

• q0 ∈ Q is the initial state,

• M is a set of message queues,

• V is a set of variables, and

• T is a state transition relation, T: Q x A → Q,
where A is the set of actions
(input, output, boolean conditions, assignments, or ε)

13

[Holzmann 1991]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Extended FSMs, Example

14

q0
in?x,y

x<y

y==0q1 q3

q4

q2

q5

x>y

[cf. Holzmann 1991]

x=x-y

y=y-x

out!x

asssignments and
conditions

input
channel

output
channel

(assume x≠0)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Extended FSMs

15

‣ Formal model for specification of concurrent processes

‣ FSM minimization and combination can be applied here

‣ FSM minimization: Find an equivalent state machine with
the minimum number of states

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

FSM Minimization

Define an boolean array E of dimension |Q| × |Q|, init = false

for all entries E[i,j]

if the states i and j are defined for the same actions, set
E[i,j] := true (regardless of the next state)

end for

repeat

for all true entries E[i,j]

Check, if their next states are equivalent for all actions,

otherwise set E[i,j] := false

end for

until the number of false entries is not increased

16

[Holzmann 1991]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

FSM Minimization

17

State In Out Next
state

q0 msg1 - q1

q0 msg0 - q2

q1 - ack1 q3

q2 - ack0 q0

q3 msg0 - q4

q3 msg1 - q5

q4 - ack0 q0

q5 - ack1 q3

q0 1

q1 0 1

q2 0 0 1

q3 1 0 0 1

q4 0 0 1 0 1

q5 0 1 0 0 0 1

q0 q1 q2 q3 q4 q5

Equivalence table EState transition table T

Step 1: for all entries E[i,j]

if the states i and j are defined for the same actions,
set E[i,j] := true (regardless of the next state)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

FSM Minimization

18

State In Out Next
state

q0 msg1 - q1

q0 msg0 - q2

q1 - ack1 q3

q2 - ack0 q0

q3 msg0 - q4

q3 msg1 - q5

q4 - ack0 q0

q5 - ack1 q3

q0 1

q1 0 1

q2 0 0 1

q3 1 0 0 1

q4 0 0 1 0 1

q5 0 1 0 0 0 1

q0 q1 q2 q3 q4 q5

Equivalence table EState transition table T

Step 2: for all true entries E[i,j]

Check, if their next states are equivalent for all actions,

i.e. ∀ a E[T(i,a),T(j,a)], otherwise set E[i,j] := false

Action a T(q0,a) T(q3,a)

msg1 q1 q5

E[q1,q5] = 1

msg0 q2 q4

E[q2,q4] = 1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

FSM Minimization

19

State In Out Next
state

q0 msg1 - q1

q0 msg0 - q2

q1 - ack1 q3

q2 - ack0 q0

q3 msg0 - q4

q3 msg1 - q5

q4 - ack0 q0

q5 - ack1 q3

q0 1

q1 0 1

q2 0 0 1

q3 1 0 0 1

q4 0 0 1 0 1

q5 0 1 0 0 0 1

q0 q1 q2 q3 q4 q5

Equivalence table EState transition table T

Step 2: for all true entries E[i,j]

Check, if their next states are equivalent for all actions,

i.e. ∀ a E[T(i,a),T(j,a)], otherwise set E[i,j] := false

Action a T(q2,a) T(q4,a)

ack1 q0 q0

E[q0,q0] = 1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

FSM Minimization

20

State In Out Next
state

q0 msg1 - q1

q0 msg0 - q2

q1 - ack1 q3

q2 - ack0 q0

q3 msg0 - q4

q3 msg1 - q5

q4 - ack0 q0

q5 - ack1 q3

q0 1

q1 0 1

q2 0 0 1

q3 1 0 0 1

q4 0 0 1 0 1

q5 0 1 0 0 0 1

q0 q1 q2 q3 q4 q5

Equivalence table EState transition table T

Step 2: for all true entries E[i,j]

Check, if their next states are equivalent for all actions,

i.e. ∀ a E[T(i,a),T(j,a)], otherwise set E[i,j] := false

Action a T(q1,a) T(q5,a)

ack1 q3 q3

E[q3,q3] = 1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

FSM Minimization

21

State In Out Next
state

new

q0 msg1 - q1

q0 msg0 - q2

q1 - ack1 q3 q0

q2 - ack0 q0 q0

q3 msg0 - q4 (q2)
q3 msg1 - q5 (q3)
q4 - ack0 q0

q5 - ack1 q3

q0 1

q1 0 1

q2 0 0 1

q3 1 0 0 1

q4 0 0 1 0 1

q5 0 1 0 0 0 1

q0 q1 q2 q3 q4 q5

Equivalence table EState transition table T

Result:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

FSM Minimization

22

q2

q0q1

q4q3

q5

?msg1

!ack0

!ack1

?msg0

!ack1

?msg1

?msg0!ack0

Receiver

Result:

State In Out Next
state

new

q0 msg1 - q1

q0 msg0 - q2

q1 - ack1 q3 q0

q2 - ack0 q0

q3 msg0 - q4 (q2)
q3 msg1 - q5 (q3)
q4 - ack0 q0

q5 - ack1 q3

State transition table T

!ack1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

FSM Composition

‣ Composition of Q1 and Q2

• Q = Q1 × Q2, M’ = M1 ∪ M2

• q0 = q01q02

• Foreach state q1q2 define transitions (non-deterministic):
 ∀ a: T(q1q2,a) = T1(q1,a) ∪ T2(q2,a)

• Minimize the machine

23

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Coupling of FSMs

24

q2

q0q1 ?msg1

?msg0!ack0

!ack1

Sender

q2

q0 q1

q3

?ack1

!msg0

?ack0

!msg1

?ack1

?ack0
Receiver

q2,0

q0,0 q1,2

q3,1

msg0

ack0

msg1

ack1

Synchronous coupling

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Coupling of FSMs

25

q2q0q1
?msg1

!ack1

!msg0

?ack0

?msg1,!msg1

!ack1,?ack1

Synchronous coupling,
2nd example

Terminal 1 Terminal 2

q2q0q1
?msg0

!ack0

!msg1

?ack1

q0,0 q2,2q1,1

!msg0,?msg0

?ack0,!ack0

‣ Synchronous coupling ignores the transmission delay

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Coupling of FSMs

26

‣ Incoming messages are added to the input queue

‣ The process consumes the first message in queue (FIFO)

q2q0q1
?msg1

!ack1

!msg0

?ack0

Asynchronous coupling

Terminal 1 Terminal 2

q2q0q1
?msg0

!ack0

!msg1

?ack1

msg1 msg0
input queue input queue

--,?ack1?ack0,--

--,!msg1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Coupling of FSMs

27

q2q0q1
?msg1

!ack1

!msg0

?ack0

Asynchronous coupling

Terminal 1 Terminal 2

q2q0q1
?msg0

!ack0

!msg1

?ack1

--,!msg1!msg0,--

q0,0

q1,2

--,?msg0

q1,0

q1,1

?msg1,--

q2,2

q0,2

ok ok

!msg0,--

...T2 cannot
send ack0

in q2

...T1 cannot
send ack1

in q2

Specification
incomplete!

The protocol
blocks here,
because...

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Extended FSMs

‣ Abstract model for communicating processes

‣ can be transformed into program code

‣ ... or verification languages (e.g. PROMELA)

‣ The Specification and Description Language (SDL) is

based on Extended FSMs

28

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SDL and MSC

‣ Specification and Description Language

(SDL) [ITU-T Recommendation Z.100]

• originally developed for the specification of
telecommunication systems (esp. telephone exchanges)

• formal language, based on extended FSMs

• used, e.g., for ISDN protocols, IEEE standards

• strong tool support

‣ Message Sequence Charts (MSC) [ITU-T Z.120]

• originally part of SDL; similar to UML sequence diagrams

Source: http://www.itu.int/ITU-T/studygroups/com10/languages/

29

http://www.itu.int/ITU-T/studygroups/com10/languages/
http://www.itu.int/ITU-T/studygroups/com10/languages/

process transceive

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SDL Example

30

receive

send

process
start

procedure call

state

SDL process diagram
for Lynch’s protocol

get next
char

get next
char

ERRNACK ACK

receive

-

NACKACK ACK

next state = previous state

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SDL Elements

31

‣ SDL describes concurrent processes and their interaction

‣ Basic concept: Extended (communicating) finite state machines

‣ Graphical and textual notation

• SDL/GR (graphic representation)

• SDL/PR (phrase representation)

‣ An SDL specification of a system describes

• Structure

• Communication

• Behaviour

• Data

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Basic SDL Elements

32

‣ Processes describe behavior (Extended FSM)

‣ They run in parallel and can communicate

‣ Processes are grouped into blocks

block

process

Extended
FSM

process

Extended
FSM

system

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Basic SDL Elements

33

block
process

EFSM

process

EFSM

‣ Blocks describe the structure.

‣ They can be connected to or contained in other blocks

‣ The outermost block is called the system

‣ Blocks and processes are called agents

block

system

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Basic SDL Elements

34

block
process

EFSM

process

EFSM

‣ Agents communicate

• asynchronously by a signal (via a channel) or

• synchronously by a procedure call

‣ Channels describe the communication paths

block

‣ System: the enclosing block
that interfaces the environment

‣ The overall system consists of

blocks and processes

(agents)

‣ Blocks are structural elements.
They can contain other blocks
and/or processes

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Blocks

35

[R. Reed, SDL-2000 Presentation, sdl-forum.org/sdl2000present/]

b11

‣ Processes describe behavior

‣ Processes usually contain an
extended finite state machine

‣ They are not concurrent

‣ They cannot contain blocks

‣ Processes communicate by
signals.

‣ Processes can contain and/
or call procedures

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Processes

36

[R. Reed, SDL-2000 Presentation, sdl-forum.org/sdl2000present/]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Definition of a Block

37

b11

diagram heading page number

blockchannel

signal

gates

channel
name

process
(reference to)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Definition of a Channel

• Channels are used to interconnect agents

• ...also called communication paths or signal routes
(distinction between channels and signal routes in SDL-88)

• Signals are sent via channels

38

bidirectional, without delay

bidirectional, without delay

bidirectional, with delay
uniderectional, with delay

channel types:
ch1 [msg,ack]

channel name signals

block

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Processes

39

diagram heading page number

state

start state

connector
(for splitting diagrams)

procedure
(reference to)

procedure call

input

p2appearance of p2
inside a block:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Procedures

40

diagram heading page number

state

procedure start

return symbol

create process input

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Structuring elements

41

[R. Reed, SDL-2000 Presentation, sdl-forum.org/sdl2000present/]

b11

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Describing Behavior: Processes

‣ Behavior is specified by processes, following the concept
of an extended FSM.

‣ Processes can

• receive, save, and send signals

• set and reset timers

• manipulate variables

• call procedures

• create other processes

42

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Elements of a process

43

[sdl-forum.org/sdl88tutorial/]

S1

start symbol
(only one per agent)

taskc:=0;

procstate procedure call

termination

proc
procedure
insertion
(reference)

*
(S1,S2)

all states
(except those listed)

descr. text extension

- return to
previous state

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Branches

44

BREAK labellabel

(outcome) ELSE
expr. decision

(branch)

join

parts can be separated
by BREAK and
connectors

connector

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Examples of Decisions

45

[sdl-forum.org/sdl88tutorial/]

(0) (1)
x

(true) (false)
x = y

length(header)

(>0) (<0)

x - y

(“A”)

TYPE

ELSE(“B”) (“ERR”)

(=0) (0) ELSE(16)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Processes and signals (1)

46

‣ Every process instance has its input queue (FIFO)

‣ Signals can be received at any time

‣ Signals from the so-called complete valid input signal set
are added to the queue

‣ If a process is in a certain state and the queue is not
empty and there are signals associated with transitions
from that state, then the signal is removed from the queue
and the transition is triggered.

‣ For unspecified signal/state combinations, the signal is
consumed without any action (implicit transition)

[sdl-forum.org/sdl88tutorial/]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Processes and signals (2)

47

b
a
a
b

process1

a
a

process2

input queue input queue

a

‣ Processes communicate asynchronously via FIFO queues

‣ Each process has exactly one input queue

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

I/O Elements (1)

48

B
save signal (msg.
remains in queue, no
outgoing transition)

*

abort continuous signal with
enabling condition

B priority input

save all other
signalsB

A

input signal

output signal

SIGNAL A,B; signal declaration SIGNALLIST sl1 = A,B;
SIGNALLIST sl2 = sl1,C;

A
TO Dest Dest: Process ID

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

I/O Elements (2)

49

A
TO SELF

A
TO SENDER

A
VIA ch1

Sending to a specific receiver:

sending via a channel

sending back
to the sender

sending a
self-message

PARENT

OFFSPRING

Further addresses:

the creating
instance

last created instance
by this instance

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

I/O Elements (3)

Input and Output in layered protocols
(Notation used in IEEE Standards, not official part of Z.100)

50

in_pkt out_frame in_frameout_pkt

signals from or to processes
logically above or parallel to
this process

pointer or wedge to the rightpointer or wedge to the left

signals from or to processes
logically below this process

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Handling signals, Example (1)

51

S3

b

c S2

a

S1

a

b

a

c

‣ The process is in state “S1”

‣ Message “c” is first in queue

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Handling signals, Example (2)

52

S3c S2

S1

a

b

a

c

‣ “c” is saved and remains ‘passively’ in queue

ba

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Handling signals, Example (3)

53

S3

b

S2

a

S1

c

c

a

b

a

‣ “a” is consumed and removed from the queue

‣ It triggers the transition to S2

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Handling signals, Example (4)

54

S3S2

S1

c

c

b

a

‣ “c” is now consumed and triggers the transition to S3

S2

c

S3

ba

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Handling signals, Example (5)

55

b

a
S3

cb

S4S3

‣ If a transition leads back to the same state, a signal
triggering this transition is effectively discarded.

S2

c

S3

A
TO Dest Dest: Process ID

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

I/O Notation

56

A
TO SELF

A
TO SENDER

A
VIA ch1

Sending to a specific receiver:

sending via a channel

sending back
to the sender

sending a
self-message

PARENT

OFFSPRING

Further addresses:

the creating
instance

last created instance
by this instance

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Sending signals, Example

57

‣ Signal “A” is sent via channel ch2

‣ “A” is put into the input queue of process p2

block example

p2p1

ch1

ch2

process p1
S1

S2

A
VIA ch2

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Variables

58

‣ Variables are declared in a text symbol

‣ They are manipulated in an task

[sdl-forum.org/sdl88tutorial/]

DCL counter Integer := 0,
 increment Integer :=1;

Declare
keyword

Variable
name

Type Initial
value

counter := counter +
increment;

Task symbol

Text symbol

comma-separated list

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Timers

59

[sdl-forum.org/sdl88tutorial/]

TIMER T;

SET(now+50, T)

RESET(T)

T

Timer definition

Timer setting
(predefined function)

Timer activation
(self-message)

Timer reset
(predefined function) b

a
a
b

process1

Timer signals are added
to the input queue

T

‣ Timers are self-messages which are added to the input queue

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Timers, Example

60

[sdl-forum.org/sdl88tutorial/]

DCL expirytime Time := 0.0;
DCL period Duration := 13;
TIMER T;

expirytime :=
expirytime + period;

SET
(expirytime, T)

T

Wait

Wait4Timer

PeriodAction

Declaration

in-connector

out-connector

Alternative:
expirytime :=
NOW + period;

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Passing data variables

61

‣ Signals can contain data values

‣ Input and output must be compatible

Block b1

[sdl-forum.org/sdl88tutorial/]

SIGNAL
A(Integer,Boolean);

[A]

ch
p1 p2

Process P2

DCL
V1 Integer,
V2 Boolean;

Process P1

A(v1,v2)

A_recvd

A(4,True)

S S

A_sent

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Import and Export of Variables

‣ Instead of passing a signal, a variable can be exported by
a process and imported by another process

62

[sdl-forum.org/sdl88tutorial/]

DCL EXPORTED sum Integer;

EXPORT(sum) IMPORT(sum,
exporterID)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Process creation and termination

63

[sdl-forum.org/sdl88tutorial/]

Block Example

[A]
p1

p1

Process P1

S2

A

S1

P2(4,True)

Process P2
FPAR V1 Integer,
V2 Boolean

create
symbol

create
line

A

S1

process
terminates

B

Dynamic process
creation

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Composite States

64

process type Agent 2 (2)

Yes

via retry

opened
No

retry
busy

failure

Clear

opened release idle

open

open

state open 1 (4)
retry *

busy

waitch

init

req(ch)
tidy

cong

announ

cong

busy

waitch

ok

composite
state

[R. Reed, SDL-2000 Presentation, sdl-forum.org/sdl2000present/]

substate
definition

return
symbol

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Exceptions

65

EXCEPTION
someError;

someError

ehS

someError

eh

Exception definition

Raising the exception

Exception handler

State with associated
exception handler

Handle

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Data Types

‣ SDL follows the concept of Abstract Data Types (ADT)

‣ ADT = sorts + operators

‣ Predefined types (with operations):

• Boolean, Character, Charstring, Integer, Natural, Real,

Duration, Time, Bitstring, Octet, Octetstring, Pid

• Parameterized: Strings (i.e. lists) of any type, Arrays,
Structures, Choice, Powerset, Bag

• Different sets of predef. types in SDL-88 and SDL-2000

‣ User-defined types:
Value types, Object types, Syntypes (with range check)

66

[R. Reed, SDL-2000 Presentation, sdl-forum.org/sdl2000present/]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Data Types, Example

67

object type Linkedlist
 <type Elementsort>
 struct
 prev, next this Linkedlist;
 data Elementsort;
 operators
 "in" (Elementsort, Linkedlist)
 ->Boolean;
 methods
 delete (Elementsort);
 operator "in" referenced;
 method delete referenced;
endobject type Linkedlist;
object type Natlist
 inherits Linkedlist <Natural>
endobject type Natlist;
dcl primes Natlist
 := (. Null, Null, 1 .);

[R. Reed, SDL-2000 Presentation, sdl-forum.org/sdl2000present/]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Object orientation

‣ Classes and objects in SDL: types and instances

‣ All instance definitions (agents, states...) define an agent
type implicitly

‣ Explicit definition:

68

block type B

block type B2
inherits B adding

block type C

B2
c

b:B2

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SDL/GR vs. SDL/PR

69

system convert;
 signal s,t;
 channel c_out nodelay from B to env with t;
 endchannel c_in;
 channel c_in nodelay from env to B with s;
 endchannelc_out;
 block B referenced;
endsystem convert;
block B;
 channel rin nodelay from env to P with s;
 endchannel rin;
 channel rout nodelay from P to env with t;
 endchannel rout;
 process P referenced;
 connect c_out and rout;
 connect c_in and rin;
endblock B;
process P;
 start;
 nextstate idle;
 state idle;
 input s;
 output t;
 nextstate idle;
 endstate idle;
endprocess P;

signal s,t;

ts
B

1(1)system convert

c_in c_out

[R. Reed, SDL-2000 Presentation, sdl-forum.org/sdl2000present/]

SDL/PR
phrase

representation

SDL/GR
graphical
representation

Supplement 1 to Recommendation Z.100 (05/97) 9

– Draft Design, which is the transformation of classified information into draft designs that cover part of the system

or are partially formal;

– Formalization, which is the expression of the specification in terms of formal SDL, supplemented by MSC and

ASN.1.

The methodology touches briefly on four other activities. One is requirements capture, which covers Requirements

Collection at the beginning of a project. The second activity is Validation and is performed on formalized specifications

as they are produced. The third activity is Documentation, which deals with the selection of system specifications for

archiving and potential reuse. The fourth is Implementation, which deals with the generation of executable code for the

target system. Figure 4-3 illustrates the methodology. The activity of requirements capture is only partially covered by

this Supplement: the description in this Supplement only covers Requirements Collection. Not all the information flows

are shown in Figure 4-3.

T1010500-97/d04

Activity

information flow

set of documents Analysis

classified information

Draft Design

SDL+
Methodology

Requirements
capture

Documentation

draft designs

product
descriptions

Test
Specification

Validation

Test
Execution

test results

Implementation

product validation result

formal SDL+ descriptiontests

c
o
l
l
e
c
t
e
d

r
e
q
u
i
r
e
m
e
n
t
s

Figure 4-3/Suppl. 1 to Rec. Z.100 – The SDL+ methodology

Formalization

Figure 0-2/Z.100 Supplement 1 [D04]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SDL in the
development

process

70

[ITU-T Z.100 Supplement 1]

Scope of SDL+
(SDL and MSC with ASN.1)
and recommended
methodology

!"""
#$%&'(()'*!%"+",,'+$-'.$/'$-0'#12',#"/!3!/$&!4-, ,56'789:((;988<

/=>?@ABC5'D'988<'!""":'$EE'@ABC5F'@GFG@HG6: !"#

$%&'()*%+,-%'.
$%&'()*(/0'.

12%-&('1-)-/+3 1-)-/+34506"7

83*9$:&%',&;$&%-
<)9/:)-/+3')3:
)::=,&(+<&
>?@'A&):&,%B

>?@4C)-)4
41&,</*&
=D'E+,'1F?'G'?H'D=

>HCI4J&3&,)-/+34
41F?
=D'%-)-/+3'<&,%/+3'D=

83*9$:&%'&3*,2K-/+3L
E,)M(&3-)-/+3L')3:
K+N&,'%)<&';$&$/3MB

H,+-+*+94@+3-,+94
41F?
=D%-)-/+3'<&,%/+3D=

83*9$:&%'C@OL
P-%=@-%L'?*Q'G
@OR?*QL',&-,/&%L
@ORK+99',&%K+3%&L
?-/('A)3:9/3ML
)3:'H1RH+99B

'''F,)3%(/%%/+3
=DE+,'1F?'G'?HD=

83*9$:&%'0)*Q+EE
O@1'M&3&,)-&L')3:
-/(&%-)(K'/3%&,-B

'>?@4>)3)M&(&3-4
41&,</*&
'=D'E+,'1F?'G'?H'D=

83*9$:&%'>?@'>8SL
>8S')**&%%L')3:
E/9-&,/3M'+E'>9(&
,&;$&%-')3:'*+3E/,(B

>T>U41F?
=D%-)-/+3'<&,%/+3D=

83*9$:&%'%*)3L'V+/3L
0&)*+3=:N&99')3:
)N)Q&=:+W&'-/(/3ML
6,&=:/%7)%%+*/)-&L
6:&7)$-A&3-/*)-&L
%-),-'8S11L')3:
(+3/-+,'+E'%-)-/+3
G'K+N&,'%)<&'%-)-&B

''''P&*&K-/+3
=DE+,'1F?'G'?HD=

83*9$:&%'<)9/:)-&L':&*,2K-L
)::,&%%'G':$K9/*)-&'E/9-&,L
:&E,)M(&3-L'*A)33&9'%-)-&
6KA2%/*)9')3:'</,-$)9'*),,/&,
%&3%&7L')3:'8O1'G'%9+-'-/(/3MB

>?@41?H

>)I3/-:)-)B/3:/*)-/+3L
>)I3/-:)-)1-)-$%B/3:/*)-/+3

>)I3/-:)-)B,&;$&%-

F1CI

>%:$P&;$&%-

>%:$@+3E/,(

FHCI

H:$P&;$&%-

?-/(XL
H:$@+3E/,(L'
@EH+99&:

P1CI

>%:$83:/*)-&

FY
S)*Q+EEL
@)3*&9L
FZP&;$&%-

SQC+3&L
FZ@+3E/,(

H[\41?H4FY

6HA2FZP&;$&%-1/M3)9%7

6HA2FZ@+3E/,(1/M3)9%7

>T>U4HT>U41?H

6H9(&P&;$&%-1/M3)9%7

6H9(&@+3E/,(1/M3)9%7

1>4>T>U41?H

6>9(&@+3E/,(1/M3)9%7L
6>9(&83:/*)-/+31/M3)9%7

6>9(&P&;$&%-1/M3)9%7

>>JF

6>(M-P&;$&%-1/M3)9%7

6>(M-@+3E/,(1/M3)9%7L
6>(M-83:/*)-/+31/M3)9%7

>>FY

>(P&;$&%-L
H%@A)3M&L
H%P&%K+3%&

>(@+3E/,(L
H%83;$/,2

>@FT

C+W&L
>(@)3*&9L
1%P&%K+3%&L
1N@A39L
F0--L'X)Q&

>(83:/*)-&L
H%(C+3&L
1%83;$/,2L
1NC+3&

PYPZ83:/*)-&L
]&&:?*QL
PZ@E?*QL
PZ@EH+99 @A)3M&])<

H1

H%83:/*)-&

@A)3M&])<

@1

S$%2L
8:9&L
19+-

H[\41?H4PY

HA2@*),&%&-B,&;$&%-

6HA2PZ1/M3)9%7

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SDL in practice: 802.11 Specification

71

[IEEE Std. 802.11-2007]System specification (part)

SDL in practice: 802.11 Specification
!"""

#$%&'(()'*!%"+",,'+$-'.$/'$-0'#12',#"/!3!/$&!4-, ,56'789:((;988<

/=>?@ABC5'D'988<'!""":'$EE'@ABC5F'@GFG@HG6: !"#

$%&'()*+,-./0..0&- 1+,-./0123,435

67)*80.)9%&'():&;.)&'1;1<
)))%;=;%)1+,-.>;+.)&>)?@AB.
)))>+&/)18;)?CD)1&)18;)@EF
)))1+,-./011;+G)H;-;+,10-H
)))IDJ)>0;%:.),-:)0-.;+10-H
)))10/;.1,/K)=,%L;.)M8;+;
)))-;';..,+NO))@+&';..)A,1,2
)))@L/K)9;H0-.)1+,-./0110-H
)))M8;-)*PQ;RL;.1),++0=;.O
)))*8;).;-:;+)&>)*PQ;RL;.1
)))0.),..L/;:)1&)8,=;):&-;
)))18;),KK+&K+0,1;),'10&-.
)))K+0&+)1&)1+,-.0/110-H)&-1&
)))18;)S?O))T>)18;.;),'10&-.
)))0-'%L:;)K;+>&+/0-H)+,-:&/
)))9,'(&>>)&+)0-=&(0-H)18;
)))U9,'(&>>)K+&';:L+;U)4.;;
)))VOWOXOW5G),)$,'(&>>).0H-,%
)))0.).;-1)1&)K+&';..)$,'(&>>O
)))C1)18;)'&/K%;10&-)&>);,'8
)))9,'(&>>G),)$(A&-;).0H-,%
)))0.)+;1L+-;:)1&)18;).;-:;+
)))&>)18;)$,'(&>>).0H-,%),1
)))18;)'&++;'1)10/;)1&).;-:
))),)*PQ;RL;.1O))*8;)/;:0L/
))).1,1;)LK:,1;.)49L.NG)0:%;G
))).%&15)>+&/)D8,--;%2J1,1;
))),+;)>&+M,+:;:)1&)$,'(&>>2
)))@+&';:L+;)=0,)A,1,2@L/K
)))1&)K+;=;-1):;'+;/;-10-H
)))18;)9,'(&>>)'&L-1)M80%;
)))1+,-./0110-H)D1.)&+)C'(
)))>+,/;.O))*80.)9%&'()0.)L.;:
)))0-)9&18).1,10&-),-:)C@O)76

A,1,2@L/K
43G35

$,'(&>>2@+&';:L+;
43G35

*Y

*P+R

*PQ;RL;.1

*PD&->0+/

IM:D.

$L.NG
T:%;G
J%&1

$(&>

$(A&-;

$,'(&>>G
D,-';%

*&@EF

@8N*PJ1,+1O+;RL;.1G
@8N*PZ-:O+;RL;.1G
@8NA,1,O+;RL;.1

@8N*PJ1,+1O'&->0+/G
@8N*PZ-:O'&->0+/G
@8NA,1,O'&->0+/

@EF2JC@2*Y

)DJ
I+&/D.

$L.NG)T:%;G)J%&1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg72

[IEEE Std. 802.11-2007]Transmission block specification (part)

!"""
#$%&'(()'*!%"+",,'+$-'.$/'$-0'#12',#"/!3!/$&!4-, ,56'789:((;988<

/=>?@ABC5'D'988<'!""":'$EE'@ABC5F'@GFG@HG6: !"#

$%&'()*+,-./0..0&- 1+,-./0123,435

67)*80.)9%&'():&;.)&'1;1<
)))%;=;%)1+,-.>;+.)&>)?@AB.
)))>+&/)18;)?CD)1&)18;)@EF
)))1+,-./011;+G)H;-;+,10-H
)))IDJ)>0;%:.),-:)0-.;+10-H
)))10/;.1,/K)=,%L;.)M8;+;
)))-;';..,+NO))@+&';..)A,1,2
)))@L/K)9;H0-.)1+,-./0110-H
)))M8;-)*PQ;RL;.1),++0=;.O
)))*8;).;-:;+)&>)*PQ;RL;.1
)))0.),..L/;:)1&)8,=;):&-;
)))18;),KK+&K+0,1;),'10&-.
)))K+0&+)1&)1+,-.0/110-H)&-1&
)))18;)S?O))T>)18;.;),'10&-.
)))0-'%L:;)K;+>&+/0-H)+,-:&/
)))9,'(&>>)&+)0-=&(0-H)18;
)))U9,'(&>>)K+&';:L+;U)4.;;
)))VOWOXOW5G),)$,'(&>>).0H-,%
)))0.).;-1)1&)K+&';..)$,'(&>>O
)))C1)18;)'&/K%;10&-)&>);,'8
)))9,'(&>>G),)$(A&-;).0H-,%
)))0.)+;1L+-;:)1&)18;).;-:;+
)))&>)18;)$,'(&>>).0H-,%),1
)))18;)'&++;'1)10/;)1&).;-:
))),)*PQ;RL;.1O))*8;)/;:0L/
))).1,1;)LK:,1;.)49L.NG)0:%;G
))).%&15)>+&/)D8,--;%2J1,1;
))),+;)>&+M,+:;:)1&)$,'(&>>2
)))@+&';:L+;)=0,)A,1,2@L/K
)))1&)K+;=;-1):;'+;/;-10-H
)))18;)9,'(&>>)'&L-1)M80%;
)))1+,-./0110-H)D1.)&+)C'(
)))>+,/;.O))*80.)9%&'()0.)L.;:
)))0-)9&18).1,10&-),-:)C@O)76

A,1,2@L/K
43G35

$,'(&>>2@+&';:L+;
43G35

*Y

*P+R

*PQ;RL;.1

*PD&->0+/

IM:D.

$L.NG
T:%;G
J%&1

$(&>

$(A&-;

$,'(&>>G
D,-';%

*&@EF

@8N*PJ1,+1O+;RL;.1G
@8N*PZ-:O+;RL;.1G
@8NA,1,O+;RL;.1

@8N*PJ1,+1O'&->0+/G
@8N*PZ-:O'&->0+/G
@8NA,1,O'&->0+/

@EF2JC@2*Y

)DJ
I+&/D.

$L.NG)T:%;G)J%&1

!"""
#$%&'(()'*!%"+",,'+$-'.$/'$-0'#12',#"/!3!/$&!4-, ,56'789:((;988<

/=>?@ABC5'D'988<'!""":'$EE'@ABC5F'@GFG@HG6: !"#

$%&'())*+,'-&../$%&'(01%(2,'-&../32456

78*9:;)*<%&'())*<(%.&%=)*>:(
+,'-&..*$%&'(01%(*4)((*#?5?@?56A
%(>1%B;BC*D&B(4E36*F:(B*9G*=,H
2(C;BA*&%*D&B(4BIJK6*;.*',B'(LL(0?
+,'-&..4'FAE36*)>,%>)*B(F*%,B0&=
2,'-&..?**+,'-&..4GABIJK6*%()1=()
',B'(LL(0*2,'-&..?**+,'-&..4KAK6
)(B0)*D&B(4E36*F:(B*MN*;0L(?**87

78*****OB<1>*P;CB,L*P1==,%H
+QPR*;)*)(B>*2H*S:,BB(L/P>,>(
***F:(B*>:(*MN*':,BC()*.%&=*;0L(
***>&*21)H*01(*>&*SST*,B07&%*UTVA
***,B0*2H*D,>,/$1=<*,>*9GP>,%>?
STUSWX*;)*)(B>*2H*9GS&&%0;B,>;&B
***>&*>(%=;B,>(*,*2,'-&..*,B0*%(>1%B
***>:(*%();01,L*2,'-&..*'&1B>*Y,L1(?
ODXW*;)*)(B>*2H*S:,BB(L/P>,>(*,>*>:(
***(B0*&.*>:(*N5*;B>(%Y,L*4)((*#?5?3K6
***>:,>*21)H*MN*:,)*2((B*;0L(*4SST*Z
***UTV6*.&%*DO[P*4WO[P*,.>(%*\G*(%%&%6?
PX]9*;)*)(B>*2H*S:,BB(L/P>,>(*,>*>:(
***(B0*&.*(,':*N5*;B>(%Y,L*4)((*#?5?3K6
***F:;L(*>:(*MN*;)*;0L(?
+1)HA*O0L(*,B0*PL&>*,%(*.&%F,%0(0
.%&=*S:,BB(L/P>,>(*Y;,*D,>,/$1=<
F:(B*>%,B)=;>*;)*B&>*;B*<%&C%())?**87

0'L*)L&>SB>A
'FA'B>
***OB>(C(%*^
0'L*)&1%'(*$O0^
0'L*(G<&%>(0
*=+-O$
*+&&L(,B_J
***.,L)(*^

78*\TUD]N*UQN+W*[QUS9O]U*87
;=<&%>(0*<%&'(01%(*\,B0&=*^
.<,%*L;=;>OB>(C(%*^***%(>1%B)*OB>(C(%*^
78*9:;)*.1B'>;&B*%(>1%B)*,B*;B>(C(%
***.%&=*,*1B;.&%=*0;)>%;21>;&B*&Y(%
>:(*%,BC(*4K*`J*Y,L1(*`J*L;=;>6?
***O=<L(=(B>(%)*B((0*>&*2(*,F,%(
***>:,>*<%&<(%*&<(%,>;&B*&.*>:(*NTS
***<%&>&'&L*%(a1;%()*)>,>;)>;',LLH
***;B0(<(B0(B>*4<)(10&E6%,B0&=
***)(a1(B'()*>&*2(*C(B(%,>(0*2H
***(,':*)>,>;&B*;B*,*)(%Y;'(*,%(,?**87

U&/+,'-&..

+,'-&..
4'FA*'B>6

'F*;)*'&B>(B>;&B
F;B0&FA*'B>*;)
)L&>*'&1B>*.%&=
<%(Y;&1)*+-D&B(?
O.*'B>`KA*,*B(F
%,B0&=*'&1B>
;)*C(B(%,>(0?)&1%'(_J

)(B0(%A
=+-O$_J>%1(

P,Y(*$O0*.%&=
%(a1()>*>&*1)(
,)*,00%*&.*D&B(?

(G<&%>
4=+-O$6

'B>

)L&>SB>_J*',LL
\,B0&=4'F6

S:&&)(*%,B0&=
2,'-&..*'&1B>
;.*'B>*J*E3?

S:,BB(L/+1)H
T>*)>,%>*,))1=(*>:,>*>:(*MN
;)*21)H*1B>;L*%('(;Y;BC*,*);CB,L
F:;':*;B0;',>()*>:(*MN*;)*;0L(?

O0L(

9%,B);>;&B)*>&
S:,BB(L/O0L(
,L)&*,L;CB*>:(
+,'-&..*);CB,L
,%%;Y,L*>;=(*>&
)L&>*2&1B0,%H
4N56*>;=;BC?

S:,BB(L/O0L(

PL&>

PL&>*&BLH*)(B>
F:(B*MN*;0L(?
9:;)*;)*.&%*>:(
',)(*F:(%(*MN
;0L(*,>*,%%;Y,L*&.
+,'-&..*);CB,L?

+1)H

'B>_J3

E

S,B'(L

)B0/
+-DB

)L&>SB>_J*'B>
\()1=(*F;>:*'&1B>
.%&=*',B'(LL(0
2,'-&..*;.*'B>IJK?

=+-O$_J
.,L)(

(G<&%>
4=+-O$6

U&/+,'-&..

D&B(

8

\()(>NTS

**4`K6 **4IJK6

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SDL in practice: 802.11 Specification

73

[IEEE Std. 802.11-2007]Backoff process specification (part)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

History of SDL

‣ 1968 ITU-T study on the impact of stored program control

(SPC) systems (telephone exchanges)

‣ 1972 follow-up study on languages for human-machine

interaction, specification and description, and
programming

‣ 1976 first SDL standard (CCITT Orange book) with basic
graphical language

‣ 1980 description of semantics (CCITT Yellow book)

‣ 1984 SDL becomes a formal language (CCITT Red book),
data elements, graphical and textual notation

74

[R. Reed, “Notes on SDL-2000 for the new millennium, Computer Networks (35), 2001]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

History of SDL

‣ 1988 formalization completed, syntax, language grammar

and semantics consolidated. SDL-88 is the foundation of
all subsequent versions. [sdl-forum.org/sdl88tutorial/]

‣ 1992 object features introduced in SDL-92

‣ 1995 SDL with ASN.1 (ITU-T Recommendation Z.105)

‣ 1996 SDL-96 = SDL-92 + corrections and extentions

‣ 1999 object modeling and a new data model in SDL-2000

75

[R. Reed, “Notes on SDL-2000 for the new millennium, Computer Networks (35), 2001]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SDL and UML History

76

SDL-88

SDL-92

SDL-2000

SDL-76

UML 2.0
(2005)

MSC-92

Harel’s state
charts (’87)

MSC-2000

UML 1.1
(1997)

UML draft
(1995)

SysML 1.0
(2007)UML 2.2

(2009)

state
machines

Booch, OMT

SDL UML
Profile

2000

1990

1980

2010

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SDL and UML

77

B. Møller-Pedersen: “SDL combined with UML”, Telektronikk 4.2000]

UML SDL

collection of notations for describing
different views of a system, including
structure, state machine, interaction,
collaboration etc.

weak semantics with many variation
points

formal language focusing on structural
and state machine views

interactions are modeled by MSC

complete semantics

mapping of subsets UMLSDL ↔ SDLUML defined in [ITU Z.109]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

SDL and UML

78

[B. Møller-Pedersen: “SDL combined with UML”, Telektronikk 4.2000]

Mapping subsets of UML and SDL

Use Cases

Collaborations

Interactions

Activity

Deployment

Action
Language

Object/Class Instance/Type

State Machine State Machine

UMLSDL

UML

SDLUML

SDL

UML-SDL Profile

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Lessons learned

‣ Basic finite state machine models are not sufficient to
model concurrent and communicating processes such as

network protocols.

‣ Therefore extended FSMs with channels and variables
were introduced

‣ Processes in SDL are based on this concept

‣ There are similarities to UML state machines. However,
SDL has the stronger semantics

79

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Message Sequence Charts

‣ Similar to UML Sequence Diagrams

‣ formal graphical language

‣ defined in [ITU-T Recommendation Z.120]
Source: http://www.itu.int/ITU-T/studygroups/com10/languages/

‣ describes behavior of communicating instances for

specific executions (scenarios, traces)

80

http://www.itu.int/ITU-T/studygroups/com10/languages/
http://www.itu.int/ITU-T/studygroups/com10/languages/

msc cs_operation

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

MSC Basics: Instances

81

client server

time

instance name

instance head

instance axis

instance end

instance

request(sid)

response(data,status)

message
name

message
parameters

output

input

msc cs_operation

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

MSC Basics: Messages

82

client server

self-message

req

data1

transmission delay

data2 m

lost message with
intended target

req

server
client found message with

supposed source

init
message from the

environment

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

MSC Basic assumptions

83

‣ Communication is performed by means of messages

‣ Sending and receiving is asynchronous

‣ No event ordering

‣ There is a global clock

‣ Events of different instances are ordered via messages

(send before receive, partial ordering)

msc cs_operation

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Instance creation and termination

84

client

server

parameters

(p1,p2)

stop symbol

confirm

stop

confirm

createline
symbol

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Timers

85

inst1

timer name (required),
timer instance name (optional)

t1
t2,ti1

t2 [10,15]

t2 [2]

t3

timer start

duration (optional) with
duration [min,max]

restart

timeout

timer stop

t3

t1timeout

duration = [0,infinity] unless
otherwise specified

msc cs_operation

client server

req

guarding
condition

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Conditions

86

when connected

response

setting
condition

disconnected

process
request action

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Conditions

‣ Conditions contain labels (condition names)

‣ Setting conditions

• a state-like condition requires setting of the respective
labels associated with the covered instances

‣ Guard conditions

• true, if the labels have a non-empty intersection with
the labels associated with the covered instances

• may contain boolean expressions

• dynamic variables of the guard are only from the active
instance (only one instance can be active)

87

msc cs_operation

client server

req

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

MSC Reference

88

response

MSC reference

dispatcher

ds_operationMSC reference name

g1

g2

gate

msc ds_operation

serverdispatcher

req

response

conn

reply(state)

ack

data

msc cs_operation

client server

req

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

MSC Reference

89

ack

MSC reference

dispatcher

conn_establishment MSC reference name

g1

g2

gate

loop<2,4>
ds_operation

executed 2 - 4 times

disconnect
fin

further execution
options:

exc
opt

exception
optional

par parallel
seq sequential

msc setupChannel

msc exchangeData

msc disconnect

msc connection

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

MSC
Reference
Example

90

[Grabowski, Reed: “ ASN.1,
MSC, SDL and TTCN Today”,
Tutorial, WITUL 2004]

Infrastr.

connected

idle

disconnect

setupChannel

exchangeData

Base Mobile

ConnReq

Ready
SyncAck

Sync

Close

Ack

Confirm

RserveCh

ChDown

Unlock

DataReq

Base Mobile

Base Mobile

Base Mobile

Locked

Lock

DataAck

Confirm
CfAck

Lookup

Data
Response

Ack

when idle

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Inline expressions

91

msc example

alt

Two alternatives

Inline expression

separator

Inst1 Inst2

t1

t1 conn_reset

data_ack

conn_req

conn_ack

datat1

msc inline_example_2

loop<0,inf>

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Nested and guarded inline
expressions

92

alt

when conn_established

Inst1 Inst2

t1

t1 conn_reset

data_ack

conn_req

conn_ack

datat1

Nested inline
expression

Guard

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Time observation

93

[Ø. Haugen: “MSC-2000 Interaction for the new Millenium”, sdl-forum.org/MSC2000present]

Absolute
Time

Relative Time ?r2

@a1

call openConnection(port)

call requestAccess(uid,pwd)

response

reply

msc time_example

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Time constraints

94

[Ø. Haugen: “MSC-2000 Interaction for the new Millenium”, sdl-forum.org/MSC2000present]

Relative time
constraint for
execution

Relative time
constraint for
msg duration

Relative
measurement of
msg duration

Inst1 Inst2

call proc1(x)

proc1(x)

Inst3

msg1 time &t

msg2 time (0,2*t]

disconnect

[1,2*t)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Method calls and control flow

95

msc call_example

Inst1 Inst2

call p3

p3

Inst3

call p2(x,y)

p2(x,y)
Reply

Reply gate

Method call gate

Suspension area

Method area

call p1

p1

Method call

msc systemOverview

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

High level MSCs

96

[Ø. Haugen: “MSC-2000 Interaction for the new Millenium”, sdl-forum.org/MSC2000present]

MSC Reference

Loop

Connection
point

HMSC start

Restrictive
condition
Alternative

User rejected
User accepted

Idle

Unlocked timeoutUnlocked reset

Unlocked unclosed

unlocked

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

High-level MSCs

‣ HMSCs describe the combination of basic MSCs

‣ Elements are references to MSCs and their connections

‣ HMSCs give an overview of alternative message
sequences

‣ Higher level of abstraction: instances and interactions
(message transmissions) are hidden

97

!"""
#$%&'()*++,)((- ./01.&123&4"56/7/.!512&16"1&2"58/69#:#7"0!;!0&6"<=!6"4"25#

!"# 0>?@ABCD$&E&)((-&!"""*&1FF&ABCD$G&AHGHAIH%*

4HJGKAHLHM$&
6H?>A$&NAJLH&

4.4",&
46"7/65*BM%&

4.4",&
46"7/65*AHO&

4.4",
46"7/65*PNL&

4.4",&
4"1#=6"*PNL&

4HJGKAHLHM$&
6HOKHG$&NAJLH&

4.4",
46"<="#5*BM%&

4.4",&
4"1#=6"*AHO&

4.4",
46"<="#5*AHO&

4.4",
46"<="#5*PNL&

!"# "$"#

%###&'()*++&!,-&

"$"# !"#

%###&'()*++&!,-

3HPBGB>M&$>&AHOKHG$&
LHJGKAHLHM$&NA>L&?HHA&

#51&

3HPBGB>M&$>&JPPH?$&
LHJGKAHLHM$&AHOKHG$&

NA>L&?HHA3&

4HJGKAHLHM$&
?A>PHGG&

0>L?BFH&
LHJGKAHLHM$&

AH?>A$&

4HJGKAHLHM$&
AHOKHG$&
P>L?FH$H%&

./0123&+(456"37812393:;&23<138;67==3>;3?

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

MSC in practice: 802.11 Specification

98

[IEEE Std. 802.11-2007]Msg. sequence of a channel measurement

station
management
entity

MAC sublayer
management entity

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

MSC Review

‣ Graphical formal language for describing inter-object behaviour

‣ Application: specifying requirements in the form of scenarios,
documenting test cases etc.

‣ Partial order semantics, no causality

‣ Extensions: High level MSCs

‣ Are MSCs sufficient to generate code?

99

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Shortcomings of MSC Semantics

‣ Existential or universal?

• Description of a sample run or mandatory protocol?

‣ Safety and Liveness

• MSCs only express safety (no more bad things happen),
but not liveness (something will eventually happen)

• Progress cannot be enforced

‣ No simultaneous events

‣ Rudimentary timing and conditions without semantics before
MSC-2000

100

[M. Brill, W. Damm, J. Klose, B. Westphal, H. Wittke: Live Sequence Charts: An Introduction to Lines,
Arrows, and Strange Boxes in the Context of Formal Verification. SoftSpez Final Report 2004]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Code generation from scenario-
based specifications

‣ Can a state machine be derived from an MSC?

‣ MSC and semantic variation:

• Does a system contain at most, at least, or all
components specified in the MSC?

• Is the described message exchange complete?

... or are there other message sequences allowed?

101

[I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts”, DIPES’98]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

A Semantic Model for MSCs

‣ A system consists of components and channels

‣ Components operate by reading input, calculating the
output and writing output

‣ There is a global discrete clock

‣ Asynchronous communication

‣ Exact description: The message sequences occur only
once and there are no other possible interactions

102

[I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts”, DIPES’98]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

From an MSC to a Statechart

‣ 5-stage process:

1. Projection of MSCs onto the component

2. Normalization

3. Transformation into an MSC automaton

4. Transformation into an automaton

5. Optimization (minimization etc.)

103

[I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts”, DIPES’98]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example

‣ Car locking system

‣ Informal description:

• Components: KeyControl, left door motor and right
door motor

• The driver can lock or unlock the door with his remote
control (signals: “lock” and “unlock”)

• The locked/unlocked status is set after the motors
finished their action and sent a “ready” message

104

[I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts”, DIPES’98]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example MSCs

105

msc locking

KeyControl LeftMotor RightMotor

unlocked
lock

off off

offofflocked

lm_down

down

down

rm_down

rm_ready
lm_ready

msc unlocking

KeyControl LeftMotor RightMotor

locked
unlock

off off

offoffunlocked

lm_up

up

up

rm_up

rm_ready
lm_ready

[I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts”, DIPES’98]

msc locking

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Projection

106

‣ Focus on the component C of
which the state machine

should be derived

‣ Remove all other instance axes

and all messages that are
neither sent nor received by C

[I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts”, DIPES’98]

KeyControl LeftMotor RightMotor

unlocked
lock

off off

offofflocked

lm_down

down

down

rm_down

rm_ready
lm_ready

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Projection

107

msc lockSeq

KeyControl

unlocked
lock

locked

lm_down

rm_down

rm_ready
lm_ready

msc locking

KeyControl LeftMotor RightMotor

unlocked
lock

off off

offofflocked

lm_down

down

down

rm_down

rm_ready
lm_ready

[I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts”, DIPES’98]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Normalization

108

‣ A normalized MSC begins and ends
with a condition symbol.

‣ It has exactly these two conditions and
a (empty or non-empty) sequence of

messages in between

‣ MSCs with more condition symbols

are split

(the example MSC is alread normalized)

msc lockSeq

KeyControl

unlocked
lock

locked

lm_down

rm_down

rm_ready
lm_ready

[I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts”, DIPES’98]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Transformation into MSC Automaton

109

msc lockSeq

KeyControl

unlocked
lock

locked

lm_down

rm_down

rm_ready
lm_ready

msc unlockSeq

KeyControl

locked
unlock

unlocked

lm_up

rm_up

rm_ready
lm_ready

locked

unlocked

lockSequnlockSeq

[I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts”, DIPES’98]

States = conditions
Transitions = MSCs beginning
and ending with the respective
conditions

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Transformation into CFSM

110

locked

unlocked

lockSequnlockSeq

?lock

!lm_down

!rm_down

?rm_ready

?lm_ready ?unlock

!lm_up

!rm_up

?rm_ready

?lm_ready

locked

unlocked

u1

u2

u3

u4

l4

l3

l2

l1

[I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts”, DIPES’98]

expand
transitions

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Optimization

111

?lock

!lm_down

!rm_down

?rm_ready

?lm_ready ?unlock

!lm_up

!rm_up

?rm_ready

?lm_ready

locked

unlocked

u1

u2

u3

u4

l4

l3

l2

l1

locked

unlocked

u l

?lock/
!lm_down,
!rm_down

?unlock/
!lm_up,
!rm_up

?lm_ready,
?rm_ready

?lm_ready,
?rm_ready

[I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs to Statecharts”, DIPES’98]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Life Sequence Charts

‣ Extending MSCs by liveness annotations
(Extension of MSC-96)

‣ Mandatory (hot) and provisional (cold) elements

‣ Existential and universal charts

‣ Asynchronous and instantaneous messages

‣ Conditions and invariants

112

[W. Damm, D. Harel: “LSCs: Breathing Life into Message Sequence Charts”,
Formal Methods in System Design, 19, 45–80, 2001]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

LSC Basics (1)

113

mandatory
condition

asynchronous
message

instantaneous
message

LSC: Example1a
AC: Act
AM: Invariant

activation mode
∈ {initial, invariant,
iterative}

activation
condition

sync1
Inst1 Inst2Env Inst3

sync1r

condition1

sync2r

sync2

sync3r

sync3

async1

async2

[M. Brill, W. Damm, J. Klose, B. Westphal, H. Wittke: Live Sequence Charts: An Introduction to Lines,
Arrows, and Strange Boxes in the Context of Formal Verification. SoftSpez Final Report 2004]

universal
chart

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

LSC Basics (2)

114

LSC: Example1b
AC: Act
AM: Invariant

sync1
Inst1 Inst2Env Inst3

sync1r

 invariant1
sync2r

sync2

sync3r

sync3

mandatory
invariant

async1

async2

[M. Brill, W. Damm, J. Klose, B. Westphal, H. Wittke: Live Sequence Charts: An Introduction to Lines,
Arrows, and Strange Boxes in the Context of Formal Verification. SoftSpez Final Report 2004]

hot location
(progress enforced,
solid line)

cold location
(dashed line)

existential
chart

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Safety and Liveness in LSCs

115

Mandatory
(notation: solid line)

Provisional
(notation: dashed line)

Chart universal
must be fulfilled by all runs

existential
describes a possible run

Locations hot
progress is enforced

cold
staying without progress is
allowed

Messages hot
has to be delivered

cold
may be lost

Conditions hot
must hold, otherwise abort

cold
exit current chart if not met

[W. Damm, D. Harel: “LSCs: Breathing Life into Message Sequence Charts”,
Formal Methods in System Design, 19, 45–80, 2001]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Timing Constraints

116

min,max delay

LSC: Example2
AC: Act
AM: Invariant

Inst2 Inst3

msg1

msg3

msg4
timer reset

[M. Brill, W. Damm, J. Klose, B. Westphal, H. Wittke: Live Sequence Charts: An Introduction to Lines,
Arrows, and Strange Boxes in the Context of Formal Verification. SoftSpez Final Report 2004]

Inst1

T1(10)

[1,5)

T2(2)

msg2[2,3]

T2

timer set

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

From LSCs to Symbolic
Automata

‣ Transformation of a LSC into a symbolic timed automaton
that describes valid message sequences (unwinding)

‣ Basis for formal verification and validation

‣ Automaton model: Symbolic timed automaton

• accepts infinite words (based on Büchi automata)

• timed words: time is associated to symbols of a word,
required that time is non-decreasing and progressing

117

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Unwinding (1)

‣ Process the elements of the LSC from top to bottom while
obeying the partial order

‣ Elements are atoms (instance heads, instance ends,
sending and receiving messages, conditions) and the

borderline between processed and unprocessed elements
is called a cut.

‣ An atom can be enabled and processed

• if its predecessors on the same axis have been processed

• in case of a receive element: if the sending operation has
been processed

• in case of a shared condition: if all other condition atoms
are enabled

118

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Unwinding (2)

119

LSC: Example2
AC: Act
AM: Invariant

c

a b

d

e

Inst1 Inst2 Inst3 Inst4

Cut

Cold cut

c0

c1
c2

c3
c4

c5

Moving a cut from top to bottom through the LSC:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Unwinding (3)

120

‣ Cuts become states in the automaton

‣ Transitions represent the successor relation among the

cuts (successor relation reflects the partial order)

‣ Cold cuts become the acceptance states

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example (1)

121

q1

q2

¬a ∧ ¬b

a ∧ b

q3

q4

q5

q0

¬c ∧ ¬d

c ∧ d

c

d c

d

¬d ¬c

e

true

LSC: Example2
AC: Act
AM: Invariant

c

a b

d

e

Inst1 Inst2 Inst3 Inst4

Cut

Cold
cut

c0

c1
c2

c3
c4

c5

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example (2)

122

‣ Language of the automaton
describes valid message

sequences: {(a,b,d,c,e),
(a,b,c,d,e),...}

‣ Note, that this is not a state

machine as an implementation
model

q1

q2

¬a ∧ ¬b

a ∧ b

q3

q4

q5

q0

¬c ∧ ¬d

c ∧ d

c

d c

d

¬d ¬c

e

true

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Code generation and Verification

123

LSC,
MSC

State
machine(s)

transformation

Require-
ments

code
generation

descriptive
view

constructive
view

Implemen-
tation

code
generation

Implemen-
tation

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Code generation and Verification

124

LSC State
machine(s)

manual
design

Require-
ments

Symbolic
Automaton

verification/
consistency

check

descriptive
view

constructive
view

transformation

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

MSCs, LSCs, and UML

125

UML 2.0
(2005)

MSC-92

MSC-2000

UML 1.1
(1997)

2000

1990

2010

MSC-96

LSC

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Lessons learned

‣ MSCs are widely accepted as an intuitive way for
describing scenarios

‣ The transformation into a state machine requires an
additonal semantic model

‣ LSCs extend MSCs by new elements and a stronger
semantic.

‣ No additonal assumptions needed to transform LSCs into
state machines

‣ State machines generated from MSCs/LSCs can specify a
single process or define valid message sequenes

126

