
University of Freiburg
Computer Networks and Telematics

Summer 2009

Network Protocol Design 
and Evaluation 

06 - Design Techniques

Stefan Rührup



Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Overview

‣ In the last lectures:

• Specification and Verification

‣ In this part:

• Design and implementation techniques
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Design Decisions

‣ Communication protocols are subject to resource 
constraints. 

‣ A communication protocol can be part of a larger system 
(protocol stack, application), which adds additional 

constraints

‣ Resource constraints might be dependent or conflicting, 

and meeting all constraints is not always possible.

‣ Design techniques help to find trade-offs.

3
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Resource constraints

‣ System design is constrained by resource limitations.

‣ Basic resource constraints:

• Time (response time, throughput)

• Space (memory, buffer capacity, bandwidth)

• Computation

• Labor

• Money

‣ Social constraints

• Standards

• Market requirements

4

[Keshav 1997]
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Bottlenecks

‣ Identify the most constrained resource, the binding 

constraint or bottleneck

‣ Removing this bottleneck can open other bottlenecks 

‣ Goal: Balancing the whole system

‣ This is often infeasible. However, there are some design 
techniques to find trade-offs

‣ Methodology: Start with identifying constraints, then 
trade-off one resource for another to maximize utility. 

5

[Keshav 1997]



Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Multiplexing

‣ Resource sharing

‣ Trade-off: Time and space vs. money

‣ Examples: 

• One server processes client requests simultaneously 

instead of setting up more servers. 

• If the communication medium is the bottleneck, it can 
be divided by frequency, or time slots to allow 

simultaneous communication between different 
communication partners.

6

[Keshav 1997]
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Parallelism (1)

‣ Splitting tasks into independent subtasks

‣ Trade-off: computation vs. time

‣ Examples: 

• Web browsers download linked images from 

webpages in parallel. 

• Layers of a protocol stack can process their packets in 
parallel.

7

[Keshav 1997]
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Parallelism (2)

‣ Degree of Parallelism

 throughput * response time = degree of parallelism

‣ Response time = mean time to complete a task [sec/task]

‣ Throughput = mean number of tasks that can be 

completed within a unit of time [tasks/sec].

8

[Keshav 1997]
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Batching (1)

‣ Group tasks together to level the overhead

‣ Trade-off: Response time vs. throughput

‣ Example: A remote login application accumulates typed 
characters and sends them in a batch instead of 
transmitting each character in a separate packet.

‣ Batching is only efficient, if the overhead for N tasks is 
smaller than N times the overhead for a single task

9

[Keshav 1997]
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Batching (2)

‣ Worst-case response time for a task: T + O

‣ Worst-case throughput: 1/(T+O)

‣ Assume the overhead O’ for a batch of N tasks is smaller 
than N * O.

‣ Worst-case response time for the batch: A + N * T + O’
where A is the time for accumulating the tasks

‣ Worst-case throughput: N/(N * T + O’) = 1/(T + O’/N)
(if we assume that the system can process other tasks 
during accumulation)

10

[Keshav 1997]
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Locality

‣ Exploiting locality means that data that was accessed 
often will be kept in fast memory (caching).

‣ Trade-off: Space vs. time

‣ Example: During file transfer the sender splits a file into 
several packets. If it keeps the unacknowledged packets 
in fast memory, it can retransmit them without generating 

them again.

11

[Keshav 1997]
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Hierarchy

‣ Decomposition of a system into smaller subsystems

‣ Increases scalability

‣ Example:

• Hierarchical Addressing (IP Addresses)

• Internet Domain Name System

12

[Keshav 1997]
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Binding and Indirection

‣ Binding: Referring from an abstraction to an instance

‣ Indirection: Using the abstraction and dereferencing it 
automatically

‣ Examples: 

• eMail aliases

• In a cellular telephone system, a user may move from 
one cell to another, but remains reachable by the same 

number. The system binds the user to a particular cell 
while the switches use indirection.

13

[Keshav 1997]
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Virtualization

‣ Combination of multiplexing and indirection

‣ Allows sharing a resource as if it could be used exclusively

‣ Examples:

• Virtual Private Network

• Virtual Modem

14

[Keshav 1997]
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Randomization

‣ Powerful tool to increase robustness

‣ Examples:

• Ethernet channel access: After a packet collision, a 
jam signal is sent to make sure that all participants are 
aware of the collision. Then the packet is retransmitted 
after R time slots, where R is chosen randomly out of  
{0,1,...,2j-1} and j = min{i,10}. 

Choosing the retransmission time deterministically 
would lead to repeated collisions.

• A similar backoff strategy is used in WLAN.

15

[Keshav 1997]
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Soft State

‣ State: information that determines future behaviour

‣ State can be stored in the network (call state in a circuit 
switched telephone network), it has to be created and 
removed.

‣ Incomplete removal leads to problems (e.g. if resources 
remain reserved). Reacting to all kinds of errors and 

abnormal terminations can lead to a complicated design.

‣ Soft state can be a solution: State is not persistent, it has 

to be refreshed (requires bandwidth) and will be removed 
after timeout; i.e. there is an automatic cleanup after 
failure.

16

[Keshav 1997]
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Exchaning State Explicitly

‣ Communicating entities often need to exchange state.

‣ It is advisable to do this explicitly if possible.

‣ Example: A file transfer protocol splits packets into 
segments and transmits it to the receiver. How can the 
receiver detect packet loss?

• Implicitly by looking into the payload (requires 
application layer knowledge)

• Explicitly by assigning sequence numbers to the 
packets by the sender.

17

[Keshav 1997]
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Hysteresis

‣ If a system state depends on a variable value, small 
fluctuations of this value around the threshold result in 

frequent state changes. This may lead to undesired 
behaviour.

‣ Hysteresis means to apply a state-dependent threshold to 
prevent oscillations.

‣ Example: Cellular phones are connected to the base 
station with the best signal quality. As a handover from 
one cell to another is an expensive operation, it is only 
performed if the increase in signal strength is above a 
certain threshold. 

18

[Keshav 1997]
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Separating data and control

‣ Separating per-path or per-connection actions and per-
packet actions.

‣ Can increase throughput, but requires state information in 
the network (less robust, cf. ‘distributed state vs. fate 

sharing’, Chapter 2) 

‣ Example: In Virtual Circuits control packets are to set up a 

connection. Data packets carry only a virtual circuit 
identifier.

19

[Keshav 1997]
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Optimizing the common case

‣ Many systems obey Pareto’s law or the 80/20 rule:

• Only 20% of the code is used in 80% of the time.

‣ Optimizing these 20% improves the overall performance

‣ Example: In a certain protocol, most packets to be 
processed are of the same type. Thus, we should check 
for this common case first and optimize the code for 
processing it.

20

[Keshav 1997]
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Extensibility

‣ Design should allow for future extensions

‣ Example: 

• The IP packet header contains a version number that 
indicates the format of the rest of the header.

• Extension fields in ASN.1 (see Chapter 4.III)

21

[Keshav 1997]
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Overview

22

What you want What you can buy What you have to pay 
(other than labour)

Throughput Parallelism
Batching

Computation
Larger response time

Response time Caching (exploiting locality)
Optimizing the common case

Space

Reduce bandwidth 
consumption

Separating data and control Lack of robustness

Access to a shared 
resource

Multiplexing
Virtualization

Shared bandwidth
Control overhead

Robustness Randomization
Soft state
Hysteresis

Control overhead
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Architectural Considerations

‣ Architecture: Decomposition into functional modules.

‣ Common approach: Protocol Layering 

• Each protocol layer defines a level of abstraction

• Design objective: Integration of related functions with 

well-defined interfaces

• cf. Chapter 2, “Modularity”

‣ Alternative Approach: Integrated Layer Processing (ILP)

• Processing of data in an integrated application layer

• Goal: Minimizing data access and copy operations 

(especially in the upper layers)

23
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Integrated Layer Processing (1)

‣ Motivation: Applications that exchange large amounts of 
data loose performance when copying data between 

layers.

‣ Data is processed sequentially in layered architectures.

‣ Data manipulation vs. Transfer control: Memory access 
and data manipulation can require more computation than 
controlling the communication.

‣ Thus, data manipulation operations should be integrated 
in the application layer. 

24

[D. Clark, D. Tennenhouse: “Architectural considerations for a new 
generation of protocols”, Computer Communication Review, 20(4), 1990]
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Manipulation vs. Control

25

[D. Clark, D. Tennenhouse: “Architectural considerations for a new 
generation of protocols”, Computer Communication Review, 20(4), 1990]

Network

Physical

Session

Data Link

Transport

Presentation

Application

congestion control, ACKs
detection of transmission problems

flow control, framing, ACKs

network access

Layer

error detection and correction,
buffering

Data manipulation Transfer control

encryption, formatting

copying to appl. address space

Multiplexing

buffering for retransmission

bottleneck



Integrated Application Layer

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Integrated Layer Processing (2)

26

Network

Physical

Session

Data Link

Transport

Presentation

Application

ILP Data manipulation

simple datagram protocol, e.g. UDP

Example: ILP and Internet Protocols
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Integrated Layer Processing (3)

27

‣ ILP Principles:

• The application deals with out-of-order transmission or 
loss of data. It triggers retransmissions.

• The application splits data into data units (rather than 
letting the transport layer do the segmentation)

• Repeated data processing is avoided by using one 
main processing loop

‣ ILP targets mainly the avoidance of presentation layer 
processing

[D. Clark, D. Tennenhouse: “Architectural considerations for a new 
generation of protocols”, Computer Communication Review, 20(4), 1990]
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Application Level Framing

28

‣ The application splits the data into Application Data Units 
(ADUs).

‣ Requirements:

• The sender can label each ADU such that the receiver 
can determine its place in the sequence of ADUs.

• The application must be able to process ADUs out of 
order. Their size has to be defined accordingly.

[D. Clark, D. Tennenhouse: “Architectural considerations for a new 
generation of protocols”, Computer Communication Review, 20(4), 1990]
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Benefits and Limitations of ILP

‣ Advantages

• No additional presentation conversion

• Permits efficient implementation of data manipulation

‣ Disadvantages

• The principles of layering are abandoned 

• ILP implementations can lead to various protocol stack 

variants (with customized implementations)

- Losing flexibility and maintainability

29

[D. Clark, D. Tennenhouse: “Architectural considerations for a new 
generation of protocols”, Computer Communication Review, 20(4), 1990]
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Protocol Building Blocks

‣ Basic methods that most protocols implement or rely on:

• Error control: Detection and correction of 
transmission errors

• Flow Control: Adaption of the transmission rate to the 
service rate of the receiver 
(Related: congestion control)

‣ Both exist as point-to-point or end-to-end mechanisms (in 
multihop networks)

‣ They are usually implemented in the link layer and in the 
transport layer

30
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Error control

‣ Error control

• Error detection (e.g. CRC)

• Error correction

- Forward Error Correction

- Backward Error Correction (ARQ schemes)

‣ see Lecture “Systeme II” for more details. 

31
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Types of Errors

‣ Bit Errors

• Corruption of single bits 

• due to noise, loss of synchronization, etc.

• Error control typically on the link layer

‣ Packet Errors

• Loss, duplication and re-ordering

• Error control typically on the transport layer

32
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Error Control

‣ Bit error detection and correction

• Basic idea: adding redundant information,
e.g. parity codes, hamming codes, CRC

‣ Packet error detection and correction

• Detection by sequence numbers or handshakes

• Retransmission

• Forward Error Correction

33
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Cyclic Redundancy Check (CRC)

‣ View data bits D as a binary number

‣ Choose r+1 bit pattern G (generator) 

‣ Idea: choose r CRC bits, R, such that

•  <D,R> exactly divisible by G (modulo 2) 

• receiver knows G, divides <D,R> by G.  If non-zero 
remainder: error detected!

‣ widely used in practice (Ethernet, 802.11 WiFi, ATM)

34

[Kurose, Ross, 2007]

D: data bits R: CRC bits
length rlength d

D * 2r  XOR  R
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CRC Example

35

Coding: Decoding:

11010110110000
10011
-----  
 10011    
 10011
 -----
  000010110
      10011 
      -----
       010100
        10011
        -----
          1110 (R) 

11010110111110
10011
-----
 10011
 10011
 -----
  000010111
      10011
      -----
       010011
        10011
        -----
         00000 

11110110111110
10011
-----
 11011
 10011
 -----
  10001
  10011
  -----
   0010011
     10011
     -----
      00001110

Decoding with error:

Data: 1101011011

Generator: 10011
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CRC

‣ Detects

• all single bit errors

• almost all 2-bit errors

• any odd number of errors

• all bursts up to M, where generator length is M

• longer bursts with probability 2-M

‣ Advantage:

• Can be checked on-the-fly with a shift register

36

[Keshav 1997]
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Types of packet errors (1)

‣ Loss

• due to uncorrectable bit errors

• due to buffer overflow

- especially with bursty traffic

- loss rate depends on burstiness, load, and buffer 
size

• fragmented packets can lead to error multiplication

- the longer the packet, the more the loss 

37

[Keshav 1997]
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Types of packet errors (2)

‣ Duplication

• The same packet is received twice 
(usually due to retransmission)

‣ Insertion

• Packet from some other conversation received

- header corruption

‣ Reordering

• Packets received in wrong order

- usually due to retransmission

- some routers also re-order

38

[Keshav 1997]
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Packet error detection and 
correction

‣ Automatic Repeat reQuest (ARQ)

• Detection

- Sequence numbers

- Timeouts

• Correction

- Retransmission

‣ Basic ARQ schemes:

• Stop-and-Wait, Go-back-N, Selective Repeat

39

[Keshav 1997]
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Sequence numbers

‣ Sequence numbers are added to each packet header

‣ Incremented for new (non-retransmitted) packets

‣ Sequence space

• set of all possible sequence numbers

• for a 3-bit seq #, space is {0,1,2,3,4,5,6,7}

‣ Sequence numbers should be long enough so that the 
sender does not confuse sequence numbers on acks

40

[Keshav 1997]
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Using sequence numbers

‣ Loss

• Gap in sequence space allows receiver to detect loss

- e.g. received 0,1,2,5,6,7 => lost 3,4

• ACKs carry cumulative sequence number

• Redundant information 

• If no ACK for a while, sender suspects loss

‣ Reordering

‣ Duplication

‣ Insertion

• If the received seq. number  is “very different” from 
what is expected

41

[Keshav 1997]
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Loss detection

‣ By the receiver, from a gap in sequence space

• send an NACK to the sender?

• Disadvantages of NACKs:

- Extra load in case of loss

- Moves retransmission problem to the receiver

‣ By the sender, by looking at cumulative ACKs, and after 
timeout

• requires to choose timeout interval

42

[Keshav 1997]
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Timeouts

‣ Retransmission after timeout:

• Set timer on sending a packet

• If timer goes off, and no ACK received, then retransmit 

‣ How to choose timeout value?

• Intuitively, we expect a reply in about one round trip 
time (RTT)

• Static scheme: RTT known a priori

• Dynamic scheme: RTT measurement

43

[Keshav 1997]
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Retransmissions

‣ Sender detects loss on timeout

‣ Which packets to retransmit?

• Depends on the chosen scheme

• Typically based on the concept of the

  error control window

44

[Keshav 1997]
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Stop-and-Wait ARQ

‣ After each data packet wait for an ACK.

‣ Retransmit after timeout.

‣ Simple scheme, easy implementation

‣ Can be used for flow control as well.

45

[Keshav 1997]
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Error control window

‣ Set of packets sent, but not acked

1 2 3 4 5 6 7 8 9  (original window)

1 2 3 4 5 6 7 8 9  (recv ack for 3)

1 2 3 4 5 6 7 8 9  (send 8)

‣ May want to restrict max size = window size

‣ Sender blocked until ack comes back

46

[Keshav 1997]
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Go-back-N

‣ On a timeout, retransmit the entire error control window

‣ Receiver only accepts in-order packets

‣ Advantages:

•  simple, no buffer at receiver

‣ Disadvantages:

• can add to congestion, wastes bandwidth

‣ used in TCP

47

[Keshav 1997]
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Selective Repeat

‣ Find out which packets were lost, then only retransmit them

‣ How to find lost packets?

• Each ACK has a bitmap of received packets

- e.g. cum_ack = 5, bitmap = 101 

=> received 5 and 7, but not 6

- wastes header space

• Sender periodically asks receiver for bitmap

• Fast retransmit 

- If sender gets the same cumulative ACK repeatedly

- then retransmit packet with number = cum_ack + 1

48

[Keshav 1997]
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Flow control

‣ Open-loop flow control

• Description of the traffic by the source upon 
connection establishment

• Resource reservation

‣ Closed-loop flow control

• Dynamic adaption upon feedback

‣ There are also combined (hybrid) schemes

‣ see Lecture “Systeme II” for more details. 

49
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Closed-loop Flow Control

‣ Example 1: Stop-and-Wait Protocol

50

Source Destination

DATA

ACK

Router

DATA

ACK

Wait

[Keshav 1997]
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Closed-loop Flow Control

‣ Example 2: Static-window

51

Source Destination

D1

ACK1

Router

D2

D3
D1

D2

D3

ACK2

ACK3

ACK1

ACK2

ACK3

D4

Wait

[Keshav 1997]
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Closed-loop Flow Control

‣ Transport layer congestion control in the Internet:

• Adaptive window size: In the absence of loss, the 
window is increased, on loss the size is reduced using 
the AIMD policy. (TCP-Tahoe and TCP-Reno)

52

[Keshav 1997]

Source DestinationRouter

Increased
Window
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Implementation Techniques

‣ Prococol behaviour is modeled by extended finite state 
machines. 

‣ Standard techniques to transform state machine diagrams 
or state transition tables into code (cf. Chapter 4.I):

• Nested switch/case

• Table-driven

• State design pattern

‣ Code generators available for UML/SDL state machines

‣ Various libraries available that support state transition 
tables or state machine generation

53
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Nested switch/case

54

enum State {q0, q1, q2, ...}; 
enum Event {e1, e2, ...}; 

static State s = q0;

void handle(Event e) 
{  
  switch(s) 
  { 
  case q0: 
    switch(e) 
    { 
    case e1: 
      s = q1; 
    break; 
    case e2: 
      s = q2; 
    break;
    [...] 
    }
  break; 
  
  case q1: 
    switch(e) 
    { 

    case e1: 
      s = q2; 
    break; 
    case e2:
      s = q0; 
    break;
   [...] 
    } 
  break;

  case q2: 
    switch(e) 
    { 
    case e1: 
      s = q0; 
    break; 
    case e2:
      s = q1; 
    break;
   [...] 
    } 
  break;
  [...] 
  } 
} 

e1

q2q0

q1

e2

e1

e2

e2
e1
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Table-driven Implementation (1)

55

‣ Implementation of a state transition table as a two-dimensional 
array (mapping states and events to next states).

‣ The next state can be derived as follows: 

enum State {s0, s1, s2};
enum Event {e1, e2};

transition[s2+1][e2+1]  =
{ 
    {s1, s2},
    {s2, s0},
    {s0, s1},
};

State changeState(State s, Event e) {
  return transition[s][e];
}

[Wagner et al: “Modeling 
Software with Finite State 
Machines: A Practical 
Approach”, Auerbach 
Publications, 2006]
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Table-driven Implementation (2)

56

‣ Switch/case solution for a Mealy machine (transitions have 
events and actions)

switch (state) {
  case state_0: 
    eventHandler_0(event);
    break;
  ...
  case state_N: 
    eventHandler_N(event);
    break;
  default:
    error(“unexpected state”);
}
state =
  nextState(state,event);

void eventHandler_0(Event e) {
  switch(e) {
    case event_0:
      executeAction_0_0;
      break;
    ...
    case event_M:
      executeAction_0_M;
      break;
    default:
      error(“unexpected event”);
  }
}

[Wagner et al: “Modeling Software with Finite State Machines:
 A Practical Approach”, Auerbach Publications, 2006]

this should 
actually be 
obsolete!
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Table-driven Implementation (3)

57

‣ Switch/case solution for a Moore machine (transitions have 
only events, states have entry actions)

next_state =
nextState(state,event);

if (state != next_state) {
  state = next_state;
  executeEntryAction(state);
}

void executeEntryAction() {
  case state_0:
    executeAction_0;
    break;

  ...

  case state_N:
    executeAction_N;
    break;
  default:
    error(“unexpected state”);
}

[Wagner et al: “Modeling Software with Finite State Machines:
 A Practical Approach”, Auerbach Publications, 2006]
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Variant with Function Pointers
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‣ Table-driven solution with function pointers:

enum State {s0, s1, s2};
enum Event {e1, e2};

typedef void (*fptr)();

typedef struct StateEntry {
  State nextState;
  fptr action;
}

transition[s2+1][e2+1]  =
{ 
    { {s1,a11}, {s2,a22},
    { {s2,a12}, {s0,a20} ,
    { {s0,a10}, {s1,a21} },
};

void changeState(State s, Event e) {
  stateEntry se = transition[s][e];
  state = se.nextState;
  (*se.action)();
}

void a10() {
  ...
}

void a11() {
  ...
}

...
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State Design Pattern

‣ Object-oriented technique

‣ The State Design Pattern

• define an abstract superclass with an event handler 
and derive a concrete class for each state

• associate the state with the class holding the context 
(the state machine)

• change of behaviour by object change

59
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State pattern

‣ Each state is represented by a separate class

‣ State change is performed by instantiating a new object

60

Context
request()

State
handle()

ConreteState3
handle()ConreteState2

handle()ConreteState1
handle()

state.handle()

[Gamma et al., Design Patterns, Addison Wesley, 1994]

state
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State pattern
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Context
request()

State
handle()

ConreteState3
handle()ConreteState2

handle()ConreteState1
handle()

state.handle()

class Context {
  private State state;
  public void setState(State s) {
    state = s;
  }
  handleEvent(Event e) {
    state.handle(e, this);
  }
}

interface State {
  public void handle(Event e, Context c)
}

class ConcreteState1 implements State {
  public void handle(Event e, Context c) {
    switch (e)
    case e1: context.setState(new State1); 
break;
    case e2: context.setState(new State2); 
break;
  }
}

class ConcreteState2 implements State {
  [...]
}
[...]
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Table-driven vs. State pattern

‣ State pattern models state-specific behaviour

• Transition logic can be implemented in the context 
class or in the state subclasses

• Implementing transitions in state subclasses is more 
flexible, but introduces dependencies!

‣ Table-driven implementation focuses on state transitions

• Table lookups are less efficient than function calls

62

[Gamma et al., Design Patterns, Addison Wesley, 1994]
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From FSM to Code

‣ All states and events should be well-defined

‣ The state machine or state transition table has to cover 

all combinations of states and events and define the 

corresponding action

‣ This includes also conditions on state transitions 

‣ Don’t forget to optimize the common case!
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