
University of Freiburg
Computer Networks and Telematics

Summer 2009

Network Protocol Design
and Evaluation

06 - Design Techniques

Stefan Rührup

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Overview

‣ In the last lectures:

• Specification and Verification

‣ In this part:

• Design and implementation techniques

2

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Design Decisions

‣ Communication protocols are subject to resource
constraints.

‣ A communication protocol can be part of a larger system
(protocol stack, application), which adds additional

constraints

‣ Resource constraints might be dependent or conflicting,

and meeting all constraints is not always possible.

‣ Design techniques help to find trade-offs.

3

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Resource constraints

‣ System design is constrained by resource limitations.

‣ Basic resource constraints:

• Time (response time, throughput)

• Space (memory, buffer capacity, bandwidth)

• Computation

• Labor

• Money

‣ Social constraints

• Standards

• Market requirements

4

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Bottlenecks

‣ Identify the most constrained resource, the binding

constraint or bottleneck

‣ Removing this bottleneck can open other bottlenecks

‣ Goal: Balancing the whole system

‣ This is often infeasible. However, there are some design
techniques to find trade-offs

‣ Methodology: Start with identifying constraints, then
trade-off one resource for another to maximize utility.

5

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Multiplexing

‣ Resource sharing

‣ Trade-off: Time and space vs. money

‣ Examples:

• One server processes client requests simultaneously

instead of setting up more servers.

• If the communication medium is the bottleneck, it can
be divided by frequency, or time slots to allow

simultaneous communication between different
communication partners.

6

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Parallelism (1)

‣ Splitting tasks into independent subtasks

‣ Trade-off: computation vs. time

‣ Examples:

• Web browsers download linked images from

webpages in parallel.

• Layers of a protocol stack can process their packets in
parallel.

7

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Parallelism (2)

‣ Degree of Parallelism

 throughput * response time = degree of parallelism

‣ Response time = mean time to complete a task [sec/task]

‣ Throughput = mean number of tasks that can be

completed within a unit of time [tasks/sec].

8

[Keshav 1997]

Network

Data Link

Application

Example: Packet processing

packet

slowest stage
takes time T

response
time R Throughput = 1/T

Degree of Parallelism = R/T

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Batching (1)

‣ Group tasks together to level the overhead

‣ Trade-off: Response time vs. throughput

‣ Example: A remote login application accumulates typed
characters and sends them in a batch instead of
transmitting each character in a separate packet.

‣ Batching is only efficient, if the overhead for N tasks is
smaller than N times the overhead for a single task

9

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Batching (2)

‣ Worst-case response time for a task: T + O

‣ Worst-case throughput: 1/(T+O)

‣ Assume the overhead O’ for a batch of N tasks is smaller
than N * O.

‣ Worst-case response time for the batch: A + N * T + O’
where A is the time for accumulating the tasks

‣ Worst-case throughput: N/(N * T + O’) = 1/(T + O’/N)
(if we assume that the system can process other tasks
during accumulation)

10

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Locality

‣ Exploiting locality means that data that was accessed
often will be kept in fast memory (caching).

‣ Trade-off: Space vs. time

‣ Example: During file transfer the sender splits a file into
several packets. If it keeps the unacknowledged packets
in fast memory, it can retransmit them without generating

them again.

11

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Hierarchy

‣ Decomposition of a system into smaller subsystems

‣ Increases scalability

‣ Example:

• Hierarchical Addressing (IP Addresses)

• Internet Domain Name System

12

[Keshav 1997]

root

com org de

uni-freiburg

informatik

DNS: The name space is
partitioned into domains.
Each domain has an
associated DNS server.

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Binding and Indirection

‣ Binding: Referring from an abstraction to an instance

‣ Indirection: Using the abstraction and dereferencing it
automatically

‣ Examples:

• eMail aliases

• In a cellular telephone system, a user may move from
one cell to another, but remains reachable by the same

number. The system binds the user to a particular cell
while the switches use indirection.

13

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Virtualization

‣ Combination of multiplexing and indirection

‣ Allows sharing a resource as if it could be used exclusively

‣ Examples:

• Virtual Private Network

• Virtual Modem

14

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Randomization

‣ Powerful tool to increase robustness

‣ Examples:

• Ethernet channel access: After a packet collision, a
jam signal is sent to make sure that all participants are
aware of the collision. Then the packet is retransmitted
after R time slots, where R is chosen randomly out of
{0,1,...,2j-1} and j = min{i,10}.

Choosing the retransmission time deterministically
would lead to repeated collisions.

• A similar backoff strategy is used in WLAN.

15

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Soft State

‣ State: information that determines future behaviour

‣ State can be stored in the network (call state in a circuit
switched telephone network), it has to be created and
removed.

‣ Incomplete removal leads to problems (e.g. if resources
remain reserved). Reacting to all kinds of errors and

abnormal terminations can lead to a complicated design.

‣ Soft state can be a solution: State is not persistent, it has

to be refreshed (requires bandwidth) and will be removed
after timeout; i.e. there is an automatic cleanup after
failure.

16

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Exchaning State Explicitly

‣ Communicating entities often need to exchange state.

‣ It is advisable to do this explicitly if possible.

‣ Example: A file transfer protocol splits packets into
segments and transmits it to the receiver. How can the
receiver detect packet loss?

• Implicitly by looking into the payload (requires
application layer knowledge)

• Explicitly by assigning sequence numbers to the
packets by the sender.

17

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Hysteresis

‣ If a system state depends on a variable value, small
fluctuations of this value around the threshold result in

frequent state changes. This may lead to undesired
behaviour.

‣ Hysteresis means to apply a state-dependent threshold to
prevent oscillations.

‣ Example: Cellular phones are connected to the base
station with the best signal quality. As a handover from
one cell to another is an expensive operation, it is only
performed if the increase in signal strength is above a
certain threshold.

18

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Separating data and control

‣ Separating per-path or per-connection actions and per-
packet actions.

‣ Can increase throughput, but requires state information in
the network (less robust, cf. ‘distributed state vs. fate

sharing’, Chapter 2)

‣ Example: In Virtual Circuits control packets are to set up a

connection. Data packets carry only a virtual circuit
identifier.

19

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Optimizing the common case

‣ Many systems obey Pareto’s law or the 80/20 rule:

• Only 20% of the code is used in 80% of the time.

‣ Optimizing these 20% improves the overall performance

‣ Example: In a certain protocol, most packets to be
processed are of the same type. Thus, we should check
for this common case first and optimize the code for
processing it.

20

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Extensibility

‣ Design should allow for future extensions

‣ Example:

• The IP packet header contains a version number that
indicates the format of the rest of the header.

• Extension fields in ASN.1 (see Chapter 4.III)

21

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Overview

22

What you want What you can buy What you have to pay
(other than labour)

Throughput Parallelism
Batching

Computation
Larger response time

Response time Caching (exploiting locality)
Optimizing the common case

Space

Reduce bandwidth
consumption

Separating data and control Lack of robustness

Access to a shared
resource

Multiplexing
Virtualization

Shared bandwidth
Control overhead

Robustness Randomization
Soft state
Hysteresis

Control overhead

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Architectural Considerations

‣ Architecture: Decomposition into functional modules.

‣ Common approach: Protocol Layering

• Each protocol layer defines a level of abstraction

• Design objective: Integration of related functions with

well-defined interfaces

• cf. Chapter 2, “Modularity”

‣ Alternative Approach: Integrated Layer Processing (ILP)

• Processing of data in an integrated application layer

• Goal: Minimizing data access and copy operations

(especially in the upper layers)

23

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Integrated Layer Processing (1)

‣ Motivation: Applications that exchange large amounts of
data loose performance when copying data between

layers.

‣ Data is processed sequentially in layered architectures.

‣ Data manipulation vs. Transfer control: Memory access
and data manipulation can require more computation than
controlling the communication.

‣ Thus, data manipulation operations should be integrated
in the application layer.

24

[D. Clark, D. Tennenhouse: “Architectural considerations for a new
generation of protocols”, Computer Communication Review, 20(4), 1990]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Manipulation vs. Control

25

[D. Clark, D. Tennenhouse: “Architectural considerations for a new
generation of protocols”, Computer Communication Review, 20(4), 1990]

Network

Physical

Session

Data Link

Transport

Presentation

Application

congestion control, ACKs
detection of transmission problems

flow control, framing, ACKs

network access

Layer

error detection and correction,
buffering

Data manipulation Transfer control

encryption, formatting

copying to appl. address space

Multiplexing

buffering for retransmission

bottleneck

Integrated Application Layer

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Integrated Layer Processing (2)

26

Network

Physical

Session

Data Link

Transport

Presentation

Application

ILP Data manipulation

simple datagram protocol, e.g. UDP

Example: ILP and Internet Protocols

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Integrated Layer Processing (3)

27

‣ ILP Principles:

• The application deals with out-of-order transmission or
loss of data. It triggers retransmissions.

• The application splits data into data units (rather than
letting the transport layer do the segmentation)

• Repeated data processing is avoided by using one
main processing loop

‣ ILP targets mainly the avoidance of presentation layer
processing

[D. Clark, D. Tennenhouse: “Architectural considerations for a new
generation of protocols”, Computer Communication Review, 20(4), 1990]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Application Level Framing

28

‣ The application splits the data into Application Data Units
(ADUs).

‣ Requirements:

• The sender can label each ADU such that the receiver
can determine its place in the sequence of ADUs.

• The application must be able to process ADUs out of
order. Their size has to be defined accordingly.

[D. Clark, D. Tennenhouse: “Architectural considerations for a new
generation of protocols”, Computer Communication Review, 20(4), 1990]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Benefits and Limitations of ILP

‣ Advantages

• No additional presentation conversion

• Permits efficient implementation of data manipulation

‣ Disadvantages

• The principles of layering are abandoned

• ILP implementations can lead to various protocol stack

variants (with customized implementations)

- Losing flexibility and maintainability

29

[D. Clark, D. Tennenhouse: “Architectural considerations for a new
generation of protocols”, Computer Communication Review, 20(4), 1990]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Protocol Building Blocks

‣ Basic methods that most protocols implement or rely on:

• Error control: Detection and correction of
transmission errors

• Flow Control: Adaption of the transmission rate to the
service rate of the receiver
(Related: congestion control)

‣ Both exist as point-to-point or end-to-end mechanisms (in
multihop networks)

‣ They are usually implemented in the link layer and in the
transport layer

30

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Error control

‣ Error control

• Error detection (e.g. CRC)

• Error correction

- Forward Error Correction

- Backward Error Correction (ARQ schemes)

‣ see Lecture “Systeme II” for more details.

31

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Types of Errors

‣ Bit Errors

• Corruption of single bits

• due to noise, loss of synchronization, etc.

• Error control typically on the link layer

‣ Packet Errors

• Loss, duplication and re-ordering

• Error control typically on the transport layer

32

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Error Control

‣ Bit error detection and correction

• Basic idea: adding redundant information,
e.g. parity codes, hamming codes, CRC

‣ Packet error detection and correction

• Detection by sequence numbers or handshakes

• Retransmission

• Forward Error Correction

33

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Cyclic Redundancy Check (CRC)

‣ View data bits D as a binary number

‣ Choose r+1 bit pattern G (generator)

‣ Idea: choose r CRC bits, R, such that

• <D,R> exactly divisible by G (modulo 2)

• receiver knows G, divides <D,R> by G. If non-zero
remainder: error detected!

‣ widely used in practice (Ethernet, 802.11 WiFi, ATM)

34

[Kurose, Ross, 2007]

D: data bits R: CRC bits
length rlength d

D * 2r XOR R

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

CRC Example

35

Coding: Decoding:

11010110110000
10011

 10011
 10011

 000010110
 10011

 010100
 10011

 1110 (R)

11010110111110
10011

 10011
 10011

 000010111
 10011

 010011
 10011

 00000

11110110111110
10011

 11011
 10011

 10001
 10011

 0010011
 10011

 00001110

Decoding with error:

Data: 1101011011

Generator: 10011

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

CRC

‣ Detects

• all single bit errors

• almost all 2-bit errors

• any odd number of errors

• all bursts up to M, where generator length is M

• longer bursts with probability 2-M

‣ Advantage:

• Can be checked on-the-fly with a shift register

36

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Types of packet errors (1)

‣ Loss

• due to uncorrectable bit errors

• due to buffer overflow

- especially with bursty traffic

- loss rate depends on burstiness, load, and buffer
size

• fragmented packets can lead to error multiplication

- the longer the packet, the more the loss

37

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Types of packet errors (2)

‣ Duplication

• The same packet is received twice
(usually due to retransmission)

‣ Insertion

• Packet from some other conversation received

- header corruption

‣ Reordering

• Packets received in wrong order

- usually due to retransmission

- some routers also re-order

38

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Packet error detection and
correction

‣ Automatic Repeat reQuest (ARQ)

• Detection

- Sequence numbers

- Timeouts

• Correction

- Retransmission

‣ Basic ARQ schemes:

• Stop-and-Wait, Go-back-N, Selective Repeat

39

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Sequence numbers

‣ Sequence numbers are added to each packet header

‣ Incremented for new (non-retransmitted) packets

‣ Sequence space

• set of all possible sequence numbers

• for a 3-bit seq #, space is {0,1,2,3,4,5,6,7}

‣ Sequence numbers should be long enough so that the
sender does not confuse sequence numbers on acks

40

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Using sequence numbers

‣ Loss

• Gap in sequence space allows receiver to detect loss

- e.g. received 0,1,2,5,6,7 => lost 3,4

• ACKs carry cumulative sequence number

• Redundant information

• If no ACK for a while, sender suspects loss

‣ Reordering

‣ Duplication

‣ Insertion

• If the received seq. number is “very different” from
what is expected

41

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Loss detection

‣ By the receiver, from a gap in sequence space

• send an NACK to the sender?

• Disadvantages of NACKs:

- Extra load in case of loss

- Moves retransmission problem to the receiver

‣ By the sender, by looking at cumulative ACKs, and after
timeout

• requires to choose timeout interval

42

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Timeouts

‣ Retransmission after timeout:

• Set timer on sending a packet

• If timer goes off, and no ACK received, then retransmit

‣ How to choose timeout value?

• Intuitively, we expect a reply in about one round trip
time (RTT)

• Static scheme: RTT known a priori

• Dynamic scheme: RTT measurement

43

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Retransmissions

‣ Sender detects loss on timeout

‣ Which packets to retransmit?

• Depends on the chosen scheme

• Typically based on the concept of the

 error control window

44

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Stop-and-Wait ARQ

‣ After each data packet wait for an ACK.

‣ Retransmit after timeout.

‣ Simple scheme, easy implementation

‣ Can be used for flow control as well.

45

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Error control window

‣ Set of packets sent, but not acked

1 2 3 4 5 6 7 8 9 (original window)

1 2 3 4 5 6 7 8 9 (recv ack for 3)

1 2 3 4 5 6 7 8 9 (send 8)

‣ May want to restrict max size = window size

‣ Sender blocked until ack comes back

46

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Go-back-N

‣ On a timeout, retransmit the entire error control window

‣ Receiver only accepts in-order packets

‣ Advantages:

• simple, no buffer at receiver

‣ Disadvantages:

• can add to congestion, wastes bandwidth

‣ used in TCP

47

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Selective Repeat

‣ Find out which packets were lost, then only retransmit them

‣ How to find lost packets?

• Each ACK has a bitmap of received packets

- e.g. cum_ack = 5, bitmap = 101

=> received 5 and 7, but not 6

- wastes header space

• Sender periodically asks receiver for bitmap

• Fast retransmit

- If sender gets the same cumulative ACK repeatedly

- then retransmit packet with number = cum_ack + 1

48

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Flow control

‣ Open-loop flow control

• Description of the traffic by the source upon
connection establishment

• Resource reservation

‣ Closed-loop flow control

• Dynamic adaption upon feedback

‣ There are also combined (hybrid) schemes

‣ see Lecture “Systeme II” for more details.

49

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Closed-loop Flow Control

‣ Example 1: Stop-and-Wait Protocol

50

Source Destination

DATA

ACK

Router

DATA

ACK

Wait

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Closed-loop Flow Control

‣ Example 2: Static-window

51

Source Destination

D1

ACK1

Router

D2

D3
D1

D2

D3

ACK2

ACK3

ACK1

ACK2

ACK3

D4

Wait

[Keshav 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Closed-loop Flow Control

‣ Transport layer congestion control in the Internet:

• Adaptive window size: In the absence of loss, the
window is increased, on loss the size is reduced using
the AIMD policy. (TCP-Tahoe and TCP-Reno)

52

[Keshav 1997]

Source DestinationRouter

Increased
Window

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Implementation Techniques

‣ Prococol behaviour is modeled by extended finite state
machines.

‣ Standard techniques to transform state machine diagrams
or state transition tables into code (cf. Chapter 4.I):

• Nested switch/case

• Table-driven

• State design pattern

‣ Code generators available for UML/SDL state machines

‣ Various libraries available that support state transition
tables or state machine generation

53

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Nested switch/case

54

enum State {q0, q1, q2, ...};
enum Event {e1, e2, ...};

static State s = q0;

void handle(Event e)
{
 switch(s)
 {
 case q0:
 switch(e)
 {
 case e1:
 s = q1;
 break;
 case e2:
 s = q2;
 break;
 [...]
 }
 break;

 case q1:
 switch(e)
 {

 case e1:
 s = q2;
 break;
 case e2:
 s = q0;
 break;
 [...]
 }
 break;

 case q2:
 switch(e)
 {
 case e1:
 s = q0;
 break;
 case e2:
 s = q1;
 break;
 [...]
 }
 break;
 [...]
 }
}

e1

q2q0

q1

e2

e1

e2

e2
e1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Table-driven Implementation (1)

55

‣ Implementation of a state transition table as a two-dimensional
array (mapping states and events to next states).

‣ The next state can be derived as follows:

enum State {s0, s1, s2};
enum Event {e1, e2};

transition[s2+1][e2+1] =
{
 {s1, s2},
 {s2, s0},
 {s0, s1},
};

State changeState(State s, Event e) {
 return transition[s][e];
}

[Wagner et al: “Modeling
Software with Finite State
Machines: A Practical
Approach”, Auerbach
Publications, 2006]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Table-driven Implementation (2)

56

‣ Switch/case solution for a Mealy machine (transitions have
events and actions)

switch (state) {
 case state_0:
 eventHandler_0(event);
 break;
 ...
 case state_N:
 eventHandler_N(event);
 break;
 default:
 error(“unexpected state”);
}
state =
 nextState(state,event);

void eventHandler_0(Event e) {
 switch(e) {
 case event_0:
 executeAction_0_0;
 break;
 ...
 case event_M:
 executeAction_0_M;
 break;
 default:
 error(“unexpected event”);
 }
}

[Wagner et al: “Modeling Software with Finite State Machines:
 A Practical Approach”, Auerbach Publications, 2006]

this should
actually be
obsolete!

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Table-driven Implementation (3)

57

‣ Switch/case solution for a Moore machine (transitions have
only events, states have entry actions)

next_state =
nextState(state,event);

if (state != next_state) {
 state = next_state;
 executeEntryAction(state);
}

void executeEntryAction() {
 case state_0:
 executeAction_0;
 break;

 ...

 case state_N:
 executeAction_N;
 break;
 default:
 error(“unexpected state”);
}

[Wagner et al: “Modeling Software with Finite State Machines:
 A Practical Approach”, Auerbach Publications, 2006]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Variant with Function Pointers

58

‣ Table-driven solution with function pointers:

enum State {s0, s1, s2};
enum Event {e1, e2};

typedef void (*fptr)();

typedef struct StateEntry {
 State nextState;
 fptr action;
}

transition[s2+1][e2+1] =
{
 { {s1,a11}, {s2,a22},
 { {s2,a12}, {s0,a20} ,
 { {s0,a10}, {s1,a21} },
};

void changeState(State s, Event e) {
 stateEntry se = transition[s][e];
 state = se.nextState;
 (*se.action)();
}

void a10() {
 ...
}

void a11() {
 ...
}

...

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

State Design Pattern

‣ Object-oriented technique

‣ The State Design Pattern

• define an abstract superclass with an event handler
and derive a concrete class for each state

• associate the state with the class holding the context
(the state machine)

• change of behaviour by object change

59

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

State pattern

‣ Each state is represented by a separate class

‣ State change is performed by instantiating a new object

60

Context
request()

State
handle()

ConreteState3
handle()ConreteState2

handle()ConreteState1
handle()

state.handle()

[Gamma et al., Design Patterns, Addison Wesley, 1994]

state

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

State pattern

61

Context
request()

State
handle()

ConreteState3
handle()ConreteState2

handle()ConreteState1
handle()

state.handle()

class Context {
 private State state;
 public void setState(State s) {
 state = s;
 }
 handleEvent(Event e) {
 state.handle(e, this);
 }
}

interface State {
 public void handle(Event e, Context c)
}

class ConcreteState1 implements State {
 public void handle(Event e, Context c) {
 switch (e)
 case e1: context.setState(new State1);
break;
 case e2: context.setState(new State2);
break;
 }
}

class ConcreteState2 implements State {
 [...]
}
[...]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Table-driven vs. State pattern

‣ State pattern models state-specific behaviour

• Transition logic can be implemented in the context
class or in the state subclasses

• Implementing transitions in state subclasses is more
flexible, but introduces dependencies!

‣ Table-driven implementation focuses on state transitions

• Table lookups are less efficient than function calls

62

[Gamma et al., Design Patterns, Addison Wesley, 1994]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

From FSM to Code

‣ All states and events should be well-defined

‣ The state machine or state transition table has to cover

all combinations of states and events and define the

corresponding action

‣ This includes also conditions on state transitions

‣ Don’t forget to optimize the common case!

63

