

Network Protocol Design and Evaluation

07 - Simulation, Part I

Stefan Rührup

University of Freiburg Computer Networks and Telematics

Summer 2009

Overview

• In the last chapters:

- Formal Specification, Validation, Design Techniques
- Implementation \rightarrow Software Engineering, Lab Courses

• In this chapter:

- Performance evaluation by simulation
- Simulation models

After the design phase...

Implementation and Test?

- A good idea, but testing in a real environment requires a lot of effort.
- You might want to start with a prototype to get some more insights.
- Alternative evaluation methods?

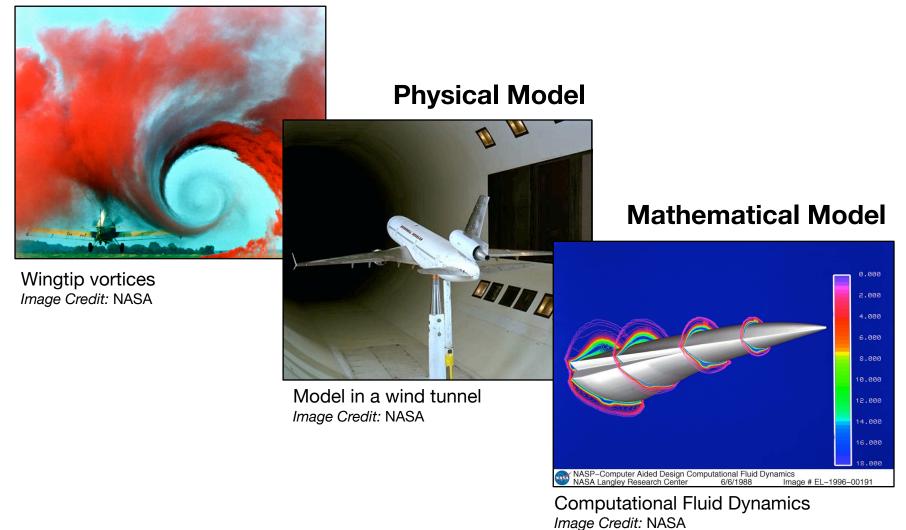
Evaluation

• Methods of performance evaluation:

- Experiments: Measuring performance in a concrete example in a real environment.
- Simulation: Numerical evaluation of a system model in an artificial environment.
- Analysis: Describing properties of a mathematical abstraction of the system.

Evaluation Methods

Real World Experiment



Mathematical System Models

• Static vs. dynamic

- Static models cover a certain fixed state of a system.
 State changes are not considered
- Dynamic models reflect the system's state changes over time
- The time model can be continuous or discrete

Continuous vs. Discrete Models

Time-continuous models

 State variables are continuous functions over time, e.g. description of variable changes by differential equations.

Time-discrete models

- State changes happen only at discrete time points (state variables do not change in between).
- We call these time points **events**.

System and Models

- The choice of the type of model depends on objectives and feasibility!
- Continuous systems may be described by discrete models and vice versa. Examples:
 - Voice communication (continous system) may be described by a discrete model if digital samples are transmitted.
 - Internet traffic (discrete system with packet transmissions as events) can be described by a continuous model, if the large-scale behaviour is of interest.

Deterministic vs. Stochastic Models

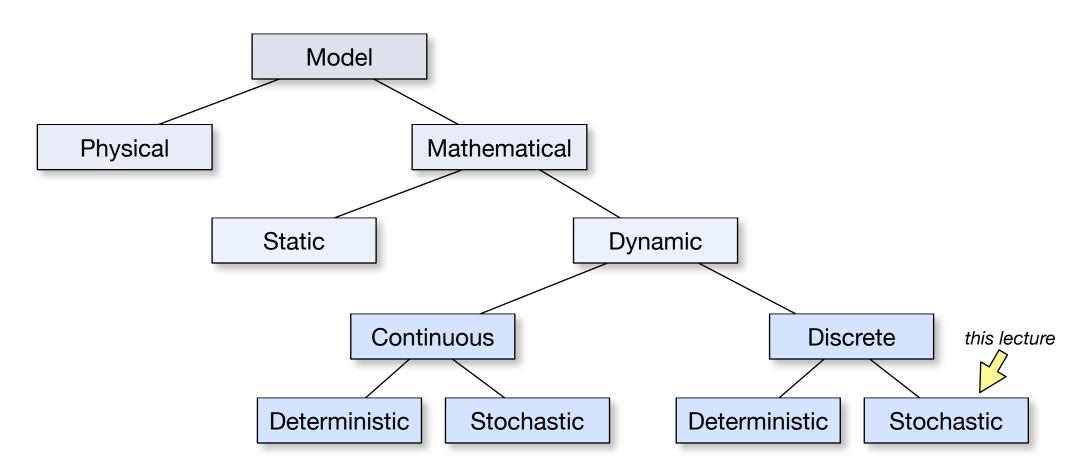
• Deterministic models

• The sequence of state changes depend on the initial state can be completely described

Stochastic models

• The sequence of state changes depend on random events

System Models



Evaluation Goals

- The goal of experimental or simulative studies is the evaluation of some system properties
 - Gain insight in system behaviour
 - Get performance estimations
 - Use results to improve the design
 - Reduce cost

Parameters and Metrics

- Most systems have a set of **parameters** that determine their behaviour
- An evaluation tries to characterize a system by a set of **metrics**.

Simulation of Discrete Models

- We consider the simulation of communication protocols
- Models are usually dynamic, time-discrete and stochastic

• Generic procedure:

- 1. Implement the model for system behaviour
- 2. Define parameters
- 3. Run the simulation
- 4. Observe metrics
- 5. Evaluate results (this will raise more questions...)

A generic simulation model

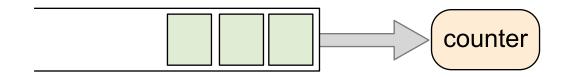
- ... for discrete event simulation.
- Elements:
 - Simulation clock
 - Event list (sorted w.r.t. time)
- Next-event time advance algorithm:
 - Initialize simulation clock to 0; Initialize future event list.
 - Repeat
 - Advance simulation clock to next event in list
 - Update system state and insert new events in list
 - Until event list empty or simulation time exceeded

Simulation example: Are you being served?

- Simulating a queue:
 - Customers wait in a queue to be served.
 - It requires some time to serve each customer.
 - How long do you have to wait?

Modeling a Queue (1)

- Simulation model:
 - There is one counter



- Customers appear at certain time points
- The service itself requires some time

Modeling a Queue (2)

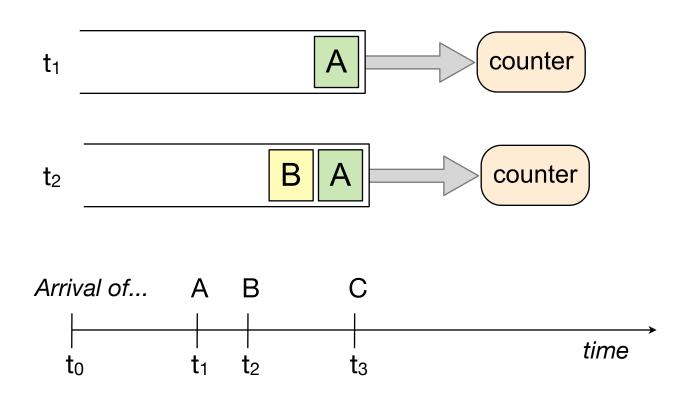
• Parameters:

- Patterns of customer arrival and service times:
 - When do customers arrive?
 - How long does it take to serve each customer?
- Stochastic model: Inter-arrival time as random variable (usually assumed to be exponentially distributed)

• Metrics:

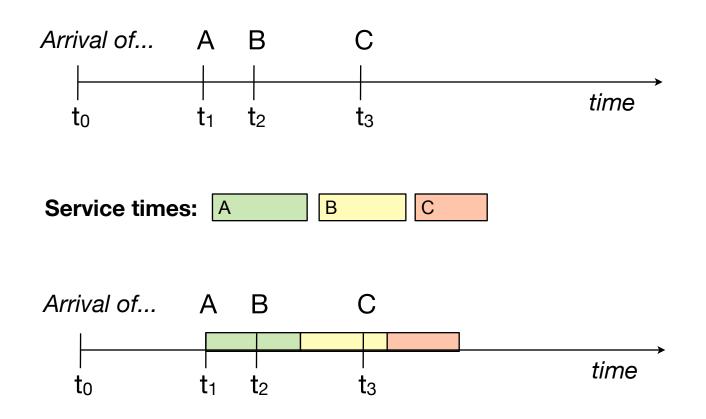
- Waiting time (average, maximum)
- Queue length (average, maximum)
- Server utilization

Simulating a Queue (2)

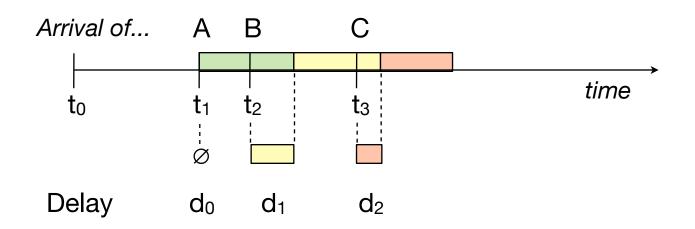


What about service times?

Simulating a Queue (3)



Measuring Waiting Time

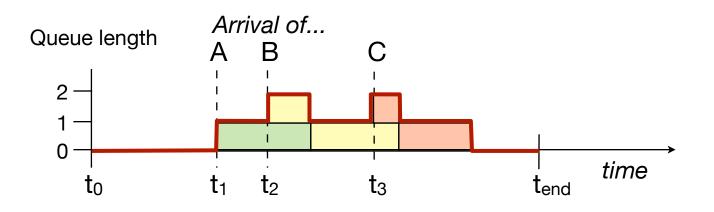


Average waiting time: 1/n Σd_i

(n = number of customers)

Discrete-time metric: Average taken over a discrete set of numbers

Measuring Queue Length

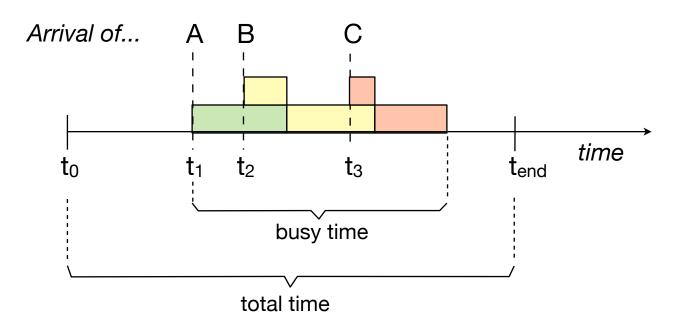


Average queue length: Area under the red curve / total time

How to compute: Maintain total area in a variable. Add area since last event when processing a new event.

Continuous-time metric: Average taken continuously over time

Measuring Server Utilization



Server utilization: Busy time / total time

On the Meaning of Measurements (1)

- How to interpret these measurements?
- In the previous example:
 - Per-customer delays are measured in one particular simulation run
 - Different runs, different delays \rightarrow different results

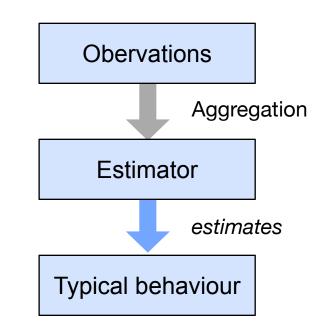
On the Meaning of Measurements (2)

Why use aggregated information?

- Aggregated information (here: average) gives a concise description of system characteristics
- Why not consider distributions instead of measured averages?
- In the previous example:
 - The first customer does *never* have to wait (d₀=0), which is not true for the following ones
 - This real behaviour is not covered by a distribution

On the Meaning of Measurements (3)

- Goal: Extract the "truly typical" behaviour of the model
- Simulation runs give only an **estimator** for this behaviour



Lessons learned

- Simulation means to model a system and run it in an artificial environment
- **Parameters** select system behaviour
- **Metrics** characterize a system
- Discrete event models do not only describe discrete time systems.
- Stochastic models are often used when mathematical models are intractable.

Implementing a Simulation Model

• Overview:

- Next-event time advance algorithm
- Maintaining the future event set
- Adding statistics
- Randomness
- Object-oriented implementation
- Race conditions

Next-event time advance algorithm

• Basic algorithm

initialize;

while (stopping condition is false) {
 get next event from future event set
 advance time to this event
 process event
 generate new event(s) and add them
 to the future event set
}

Simulating the Queue (1)

• State of the model:

- Simulation time
- Queue for storing the tasks (FIFO)
- Server state: idle or busy
- Events: arrival and departure.
 Variables:
 - Time of next arrival
 - Time of next departure
- Arrivals and departures are modeled as a Poisson process.
 Inter-arrival times follow an exponential distribution

Simulating the Queue (2)

Processing events:

- on arrival: add task to queue, schedule departure
- on departure: remove task from queue

Initialization:

• generate first arrival time

• Setting the server state

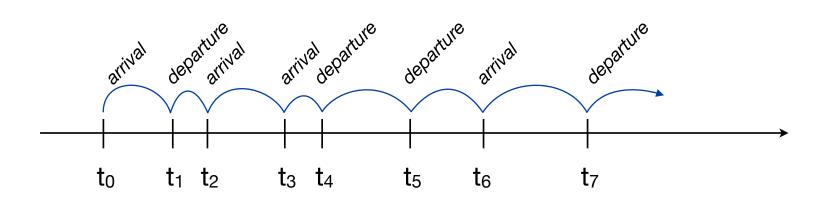
- If a task arrives, the server is busy (further tasks have to wait)
- If the queue is empty after processing, the server is idle

Simulating the Queue (3)

```
server_state = IDLE;
double sim_time = 0.0;
while (sim_time < T_MAX) {</pre>
   if (server_state == IDLE) {
         server_state = BUSY;
         next_departure = sim_time + random.exp(mean_processing);
      } else {
         queue.push( new task(sim_time) );
      }
      next_arrival = sim_time + random.exp(mean_arrival);
   } else { ← next event: departure
      sim_time = next_departure;
      if ( queue.empty() ) {
         server_state = IDLE;
         next_departure = HUGE_VAL;
      } else {
         task t = queue.pop();
         next_departure = sim_time + random.exp(mean_processing);
      }
   }
                 cf. [H. Karl, Leistungsbewertung und Simulation, Uni Paderborn, 2007]
```

Simulating the Queue (4)

Next-event time advance:



Simulating the Queue (5)

• Key techniques used here:

- When an arrival event is processed, the next event of the same type is generated (event occurrence is modeled by a Poisson process)
- Departure events are "poisoned" if there is no waiting task (by setting its time to infinity)

Randomness

- Random numbers are essential to stochastic models
- There are sources of true randomness
 - difficult to produce, difficult to *re*-produce
 - Reproducible simulation results are desired!
- Therefore, pseudo-random numbers are used, which can be generated deterministically

Types of RNGs

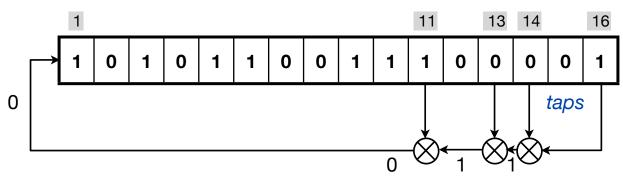
- Pseudo random number generators (PRNGs) generate sequences of numbers
- PRNGs can only produce a *finite* quantity of different numbers and sequences of *finite* length (until numbers are repeated)
- There are various PRNGs. Which are good, which are bad?
 - Good RNGs produce every possible number (or a large fraction) of the value range
 - Good RNGs have a long period
 - Bad RNGs are sensitive to seed selection

Types of PRNGs: LCG

- Linear congruential generator (LCG):
 - $x_{n+1} = (ax_n + c) \mod m$
 - Parameters:m: modulus, m>0a: multiplier, 0 < a < mc: increment, $0 \le c < m$ x_0: start value or "seed", $0 \le x_0 < m$
- **Example:** $x_{n+1} = (3x_n + 5) \mod 8, x_0 = 5$ Sequence: 5,4,1,0,5,4,1,0,5,4,1,0,...
- Easy implementation, but short period and sensitive to parameters
- ▶ Used in glibc, ANSI C, MS C++

Types of PRNGs: LFSR

• Linear feedback shift register (LFSR):



feedback polynomial $x^{16}+x^{14}+x^{13}+x^{11}+1$

- Period depends on the feedback function
- There are tables with maximum cycle-length polynomials

Types of PRNGs: LFG

Lagged Fibonacci generator:

- Fibonacci sequence: $F_n = F_{n-1} + F_{n-2}$, $F_0 = 0$, $F_1 = 1$
- Generalized form: $F_n = (F_{n-j} op F_{n-k}) \mod m, 0 < j < k$ op = binary operator
- Good choices for (j,k) are e.g. (7,10), (5,17), (6,31). (see D. Knuth, The Art of Computer Programming, Vol. 2)
- Longer period than LCGs, but sensitive to initialization
- Used in Boost

Types of PRNGs: Mersenne Twister

- Mersenne Twister (Matsumoto, Nishimura 1997)
 - Twisted generalized feedback shift register
 - Very long period
 - high order of dimensional equidistribution (low correlation between successive numbers)
 - More complicated to implement (look for standard implementation of MT19937)
- Implemented as part of GSL (GNU scientific library)
- Alternative: Complementary Multiply-with-carry generator

PRNGs Overview

PRNG	Period
LCG (mod m)	max. m
LFG (mod m, operator = addition)	max. (2 ^k -1)*(m/2)
LFSR (n bits)	max. 2 ⁿ -1
Mersenne Twister MT19937 (32 bit)	$2^{19937} - 1 = 4.3 * 10^{6001}$
Complementary Multiply-with-carry	10 ⁴¹⁰⁹²⁸

RNGs and Distributions (1)

- PRNGs produce a sequence of (hopefully) uniform distributed numbers.
- Such sequence can be used to obtain other distributions
- Example for generating Poisson-distributed numbers:

```
int rand_poisson(double lambda) {
   double L = e^(-lambda);
   int k = 0;
   double p = 1;
   repeat
        k = k + 1;
        r = uniform random number in [0,1];
        p = p * r;
   until (p <= L)
   return k - 1;
} [Knuth, The Art of Computer Programming, Vol 2., 1969]</pre>
```

RNGs and Distributions (2)

- Generating random numbers an arbitrary distribution with density function *f* and cumulative distribution function *F*
 - Inverse transform sampling

1. Generate a uniformly distributed random number u 2. Compute x such that F(x) = u3. return x

Rejection sampling

Choose a function g such that $f(x) \le c \cdot g(x)$ for all $x \in \mathbf{R}$ and a constant c

1. Generate a uniformly distributed random number u

2. Sample x randomly from $c \cdot g(x)$

3. If $u < f(x) / c \cdot g(x)$ return x; otherwise goto step 1

RNGs and Distributions (2)

- Generating random numbers for arbitrary distributions
 - Inverse transform sampling
 - 1. Generate a uniform
 - Rejection sampling

Seed selection

- PRNGs produce sequences deterministically: Same seed - same PRN sequence
- Use seeds as simulation parameters
- Don't use 0 (e.g. LCG with c=0 gets stuck)
- Avoid even numbers (e.g. LCG with c=0 and even m produces fewer different numbers)

Multiple RNGs (1)

 In the example, the same RNG is used for inter-arrival and processing times

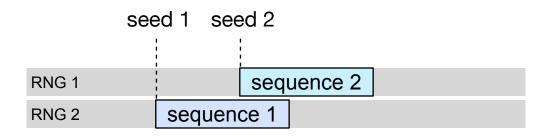
```
[...]
while (sim_time < T_MAX) {</pre>
    if (next_arrival < next_departure) {</pre>
         sim_time = next_arrival;
        if (server_state == IDLE) {
            server_state = BUSY;
            next_departure = sim_time + random.exp(mean_processing);
        } else {
            queue.push( new task(sim_time) );
        }
        next_arrival = sim_time + random.exp(mean_arrival);
    } else {
         sim_time = next_departure;
         if ( queue.empty() ) {
             server_state = IDLE:
             next_departure = HUGE_VAL;
         } else {
             task t = queue.pop();
             next_departure = sim_time + random.exp(mean_processing);
         }
    }
}
```

Multiple RNGs (2)

- Using the same PRNG can lead to correlations between inter-arrival and processing times.
- Here, arrival and processing times are independent random variables.
- Initialization with different parameters should be possible
- General recommendations:
 - Use different PRNGs for different random variables
 - Use different seeds!

Multiple RNGs (3)

• Overlapping sequences should be avoided:



- More recommendations:
 - Ensure that seeds separate the sequences
 - Limit simulation length

Adding Statistics (1)

```
[...]
double last_event_time = 0.0;
waiting_time_total = 0.0;
while (sim_time < T_MAX) {</pre>
    if (next_arrival < next_departure) sim_time = next_arrival;</pre>
    else sim_time = next_departure;
    update_statistics();
    if (next_arrival < next_departure) {</pre>
         if (server_state == IDLE) {
            server state = BUSY:
            next_departure = sim_time + rng2.exp(mean_processing);
        } else {
            queue.push( new task(sim_time) );
        }
        next_arrival = sim_time + rng1.exp(mean_arrival);
    } else {
        if ( queue.empty() ) {
             server_state = IDLE:
             next_departure = HUGE_VAL;
         } else {
             task t = queue.pop();
             next_departure = sim_time + rng2.exp(mean_processing);
             waiting_time_total = sim_time - t.arrival_time;
         }
    last_event_time = sim_time;
}
```

Adding Statistics (2)

 Order of execution: Advance clock, record statistics, process events (state changes)

```
void update_statistics() {
   double time_since_last_event = sim_time - last_event_time;
   cumulated_queue_length += queue.length() * time_since_last_event;
   if (server_state == BUSY)
       busy_time_total += time_since_last event;
}
[...]
// at the end of the simulation:
avg_queue_length = cumulated_queue_length / sim_time;
avg_utilization = busy_time_total / sim_time;
```

Recording statistics

- Simulation parameters for the queueing example:
 - RNG parameters: seeds and mean values (mean inter-arrival time A and mean service/processing time S)
 - Simulation duration (time limit or max number of tasks)

Seed A	Seed S	Avg. Utilization	Avg. Queue Length	Avg. Waiting Time
23	17	0,534	0,572	0,563
25	89	0,496	0,478	0,479
167	11	0,505	0,458	0,453
235	21	0,506	0,451	0,435

Results for 1000 tasks, A = 1, S=0.5

Simulations performed with example program in: [H. Karl, Leistungsbewertung und Simulation, Uni Paderborn, 2007]

Processing statistics

• Average over different simulation runs:

Seed A	Seed S	Avg. Utilization	Avg. Queue Length	Avg. Waiting Time
23	17	0,534	0,572	0,563
25	89	0,496	0,478	0,479
167	11	0,505	0,458	0,453
235	21	0,506	0,451	0,435
Average:		0,510	0,490	0,483
Standard	error:	0,008	0,028	0,028

Simulations performed with example program in: [H. Karl, Leistungsbewertung und Simulation, Uni Paderborn, 2007]

The Impact of Simulation Time (1)

- Example: Simulating a busy server
 Mean inter-arrival time A = 1, mean service time S = 0.9
 Seeds A,S = 23,17
- Analytical results available (M/M/1 queue)

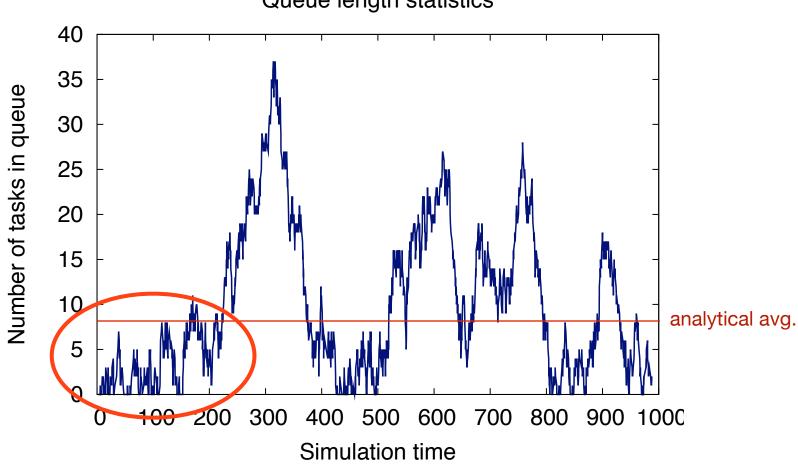
Number of tasks	Avg. Utilization	Avg. Queue Length	Avg. Waiting Time
10	0,563	0,490	0,585
100	0,849	1,885	2,093
1000	0,957	9,965	9,839
10000	0,913	8,459	8,496
Analytical:	0,9	8,1	8,1

Simulations performed with example program in: [H. Karl, Leistungsbewertung und Simulation, Uni Paderborn, 2007]

The Impact of Simulation Time (2)

- For short simulations (small number of tasks) the results highly deviate from analytical values.
- Long simulation runs seem to produce better results.
- What is the reason for this behaviour?
- We observe the queue length over time...

The Impact of Simulation Time (3)



Queue length statistics

[H. Karl, Leistungsbewertung und Simulation, Uni Paderborn, 2007]

The Impact of Simulation Time (4)

- At the beginning the queue is empty
- It needs some time to fill the queue, a high number of waiting tasks is unlikely
- This initial phase (*initial transient*) should be removed, if the typical steady-state behaviour is to be observed

Object-oriented design (1)

- Separate *Modules*
 - Objects which are simulated
 - Event dispatcher to handle events
 - Load generator
- Modules are extended (communicating) FSMs.
 They communicate *only* by message exchange.
- Strict separation of simulation engine from problemspecific modules and events

Object-oriented design (2)

- Data structure for the future event set
 - Priority queue
 - Events are sorted according to their activation time, next event = minimum key element
 - Which data structures are efficient? Heap structures, e.g. Fibonacci heaps, provide quick access to the minimum element and efficient insertion
- Implementation: exercise!

Avoiding Race Conditions

- Handling simultaneous event arrival:
 - Priorities for different event classes
 - Maintaining the order (according to creation)
 - Testing conditions and subsequent state changes as atomic sequence
- Determinism should always be ensured!

Network Simulation

- A typical simulation setup:
- Protocols are Communicating FSMs
- They are fed by a load generator
- The simulation engine passes messages between the modules and triggers timer events
 - Core modules: Event dispatcher and event queue (future event set)

Simulation Model (1)

• System Model:

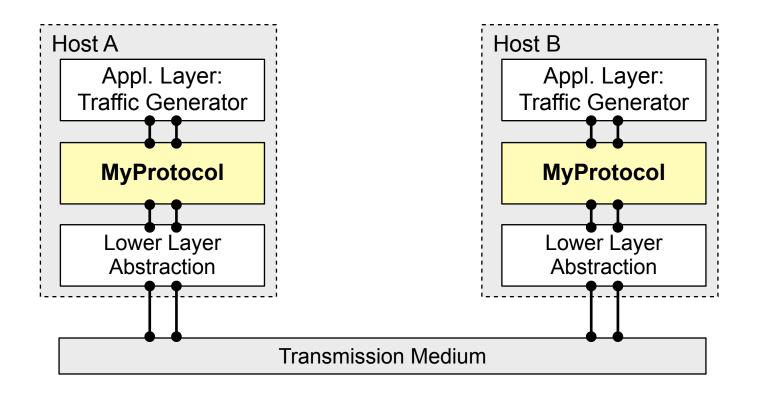
- describes the composition of the whole system into modules (and submodules)
 - Module parameters: queue size, processing delay
- Modules communicate by message exchange over links
 - Link parameters: delay, bandwidth limitation

Simulation Model (2)

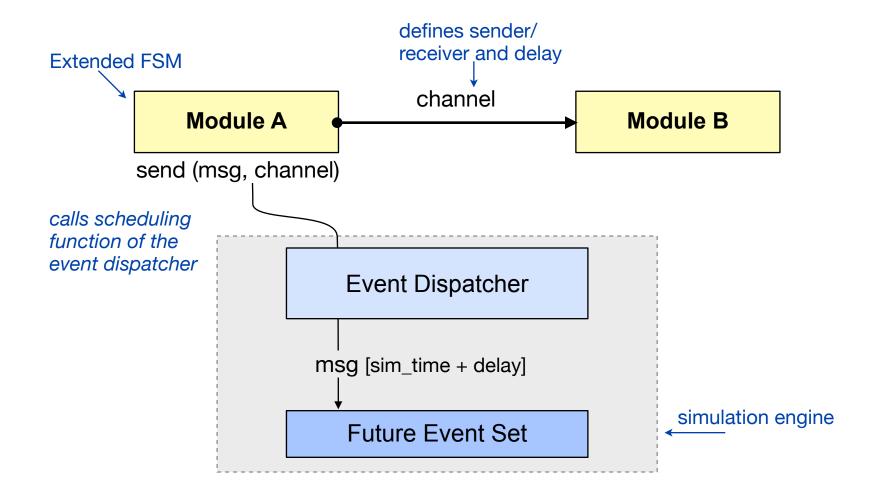
Load Model:

- describes the pattern of requests made to the system,
 e.g. how often are messages injected by an application?
- Fault Model:
 - describes the deviation from normal behaviour,
 e.g. module failures, lossy links

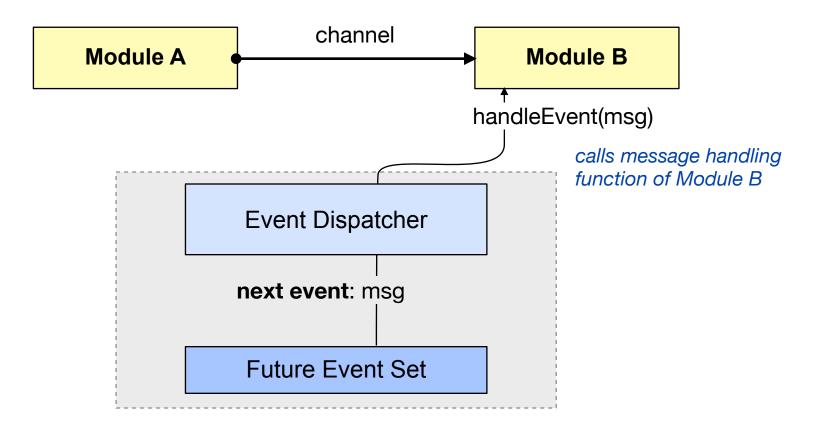
A Typical System Model



Message Passing in Simulation



Message Passing in Simulation



Generating Load

Sources of load patterns

- Traces (recorded data)
- Empirical distributions
- Models for arrival processes

Traces

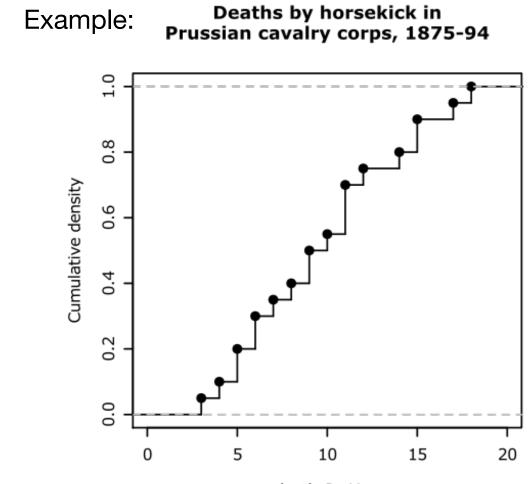
- Using recorded data of real systems in simulations
 - recorded arrival and service times of a queueing system, recorded packet loss, mobilitiy traces, etc.
- Can be used to extract "typical" behaviour
- Advantage: true behaviour, high level of detail, can be used to validate simulation model
- Disadvantage: small amount of data, generalization difficult

Empirical Distributions

- Generalization of recorded data
 - Assumption: samples follow the same distribution function
 - Let x₁...x_n be a set of characteristic values with their frequencies h_i taken from a sample
 - Empirical distribution function (ECDF) for the sample:

$$F(t) := \begin{cases} 0, & \text{if } t < x_1 \\ \sum_{j=1}^i h_j, & \text{if } x_i \le t < x_{i+1}, \ i \in \{1, \dots, k-1\} \\ 1, & \text{if } x_k \le t \end{cases}$$

Empirical Distributions



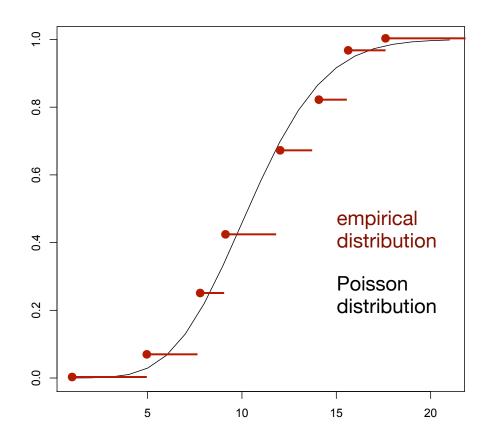
deathsPerYear

Empirical Distributions

- Sometimes not all characteristic values can be observed ... but it is known how many observations fall into a certain interval
- Data can be grouped into intervals
- Distribution function can be defined as follows:
 - interval borders define points of the function
 - interpolate between the points

Analytical distributions (1)

 Empirical distributions can be approximated by analytical distributions



Network Protocol Design and Evaluation Stefan Rührup, Summer 2009

Computer Networks and Telematics University of Freiburg

Analytical distributions (2)

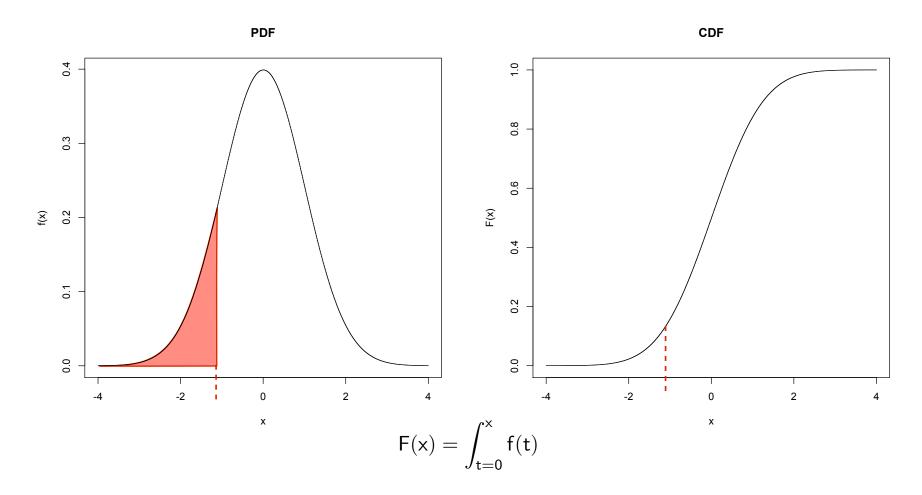
- How to choose a distribution function that matches the empirical distribution?
 - Similarity of the diagrams (ECDF plot and analytical distribution function)
 - Knowledge about the process or the type of events (e.g. independent arrivals are modeled best by a Poisson process)
 - Quality criterion: Goodness of fit test

Probability Distributions Revisited (1)

- Let X be a random variable
- Cumulative distribution function (CDF):
 - $F(x) = Prob[X \le x]$
 - Range of values: [0,1]
 - Monotonically increasing
- Probability density function (PDF):
 - f(x) = Prob[X = x]

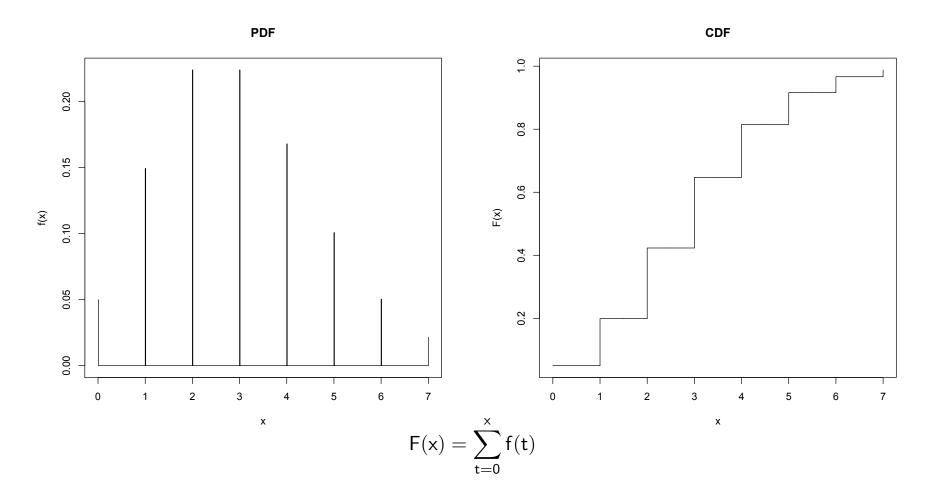
Probability Distributions Revisited (2)

Example: Normal distribution



Probability Distributions Revisited (3)

• Example: Poisson distribution with λ =3



A Few Discrete Distributions

Name	Parameters	Interpretation
Uniform	[a,b]	All outcomes in the interval [a,b] have the same probability
Bernoulli	р	"coin flip" with success probability p
Binomial	n, p	Number of successes of <i>n</i> independent Bernoulli trials with success probability p
Geometric	p	Number of successive failures of independent Bernoulli trials until the first success
Poisson	λ	Number of events within a unit time interval, if the time between event arrivals is exponentially distributed with rate λ .

A Few Continuous Distributions

Name	Parameters	Interpretation
Uniform	[a,b]	All outcomes in the interval [a,b] have the same probability (usually the interval is [0,1])
Exponential	λ	Time until the next arrival of an event, if events arrive independently at a rate of λ events per unit time (cf. Poisson)
Normal	μ, σ	The mean of independent repetitions of <i>any</i> random experiment converges towards the normal distribution (mean μ , standard deviation σ).
Pareto	α	Can be used to describe the time between event occurrences (cf. Exponential)

Goodness of Fit

- How well do two distributions match?
 - Compare distributions graphically
 - Goodness-of-fit tests
 - χ^2 test (chi square test)
 - Kolmogorov-Smirnov test
 - ...
 - cf. Exercise 8

Chi Square Test (1)

- Comparison of the empirical histogram with a conjectured distribution
- Null Hypothesis: Sample data follows a certain distribution
- Method:
 - Divide the observations into k cells
 - Calculate the frequency f_i of observations in each cell
 - Calculate the expected frequency n · p_i according to the conjectured distribution
 - Calculate chi square: $\chi^2 = \sum_{i=1}^{k} \frac{(f_i np_i)^2}{np_i}$
 - Reject the hypothesis, if χ^2 is too large

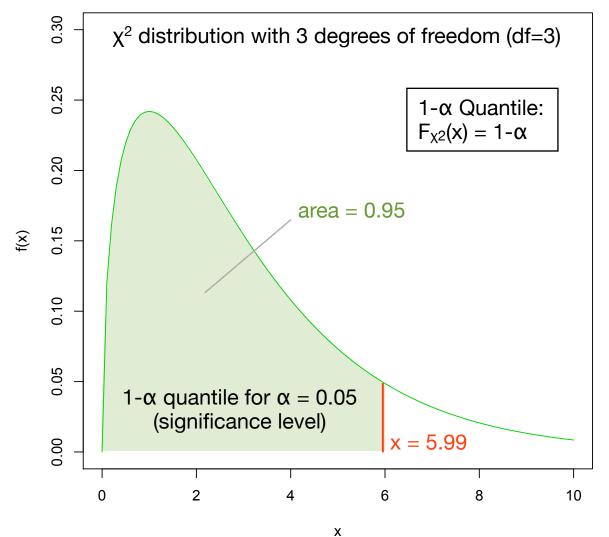
Chi Square Test (2)

- The test statistics is assumed to be chi-square distributed with k-1 degrees of freedom.
- For a significance level α, the hypothesis should be rejected if χ² > (1-α)-quantile of the χ² distribution with k-1 degrees of freedom.
- $\chi^{2}_{k-1,1-\alpha}$ can be looked up from a table
- Statistics programs calculate the significance (p-values)
- Rule of thumb for choosing intervals: at least 3 intervals; n · p_i ≥ 5 for most of the intervals

Quantile of the χ^2 Distribution

Example:

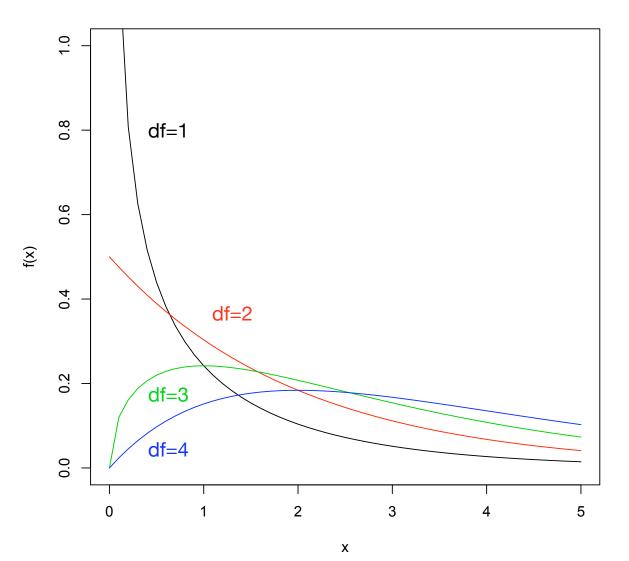
PDF



Network Protocol Design and Evaluation Stefan Rührup, Summer 2009

The χ^2 Distribution

PDF



Network Protocol Design and Evaluation Stefan Rührup, Summer 2009 Computer Networks and Telematics University of Freiburg

P-values

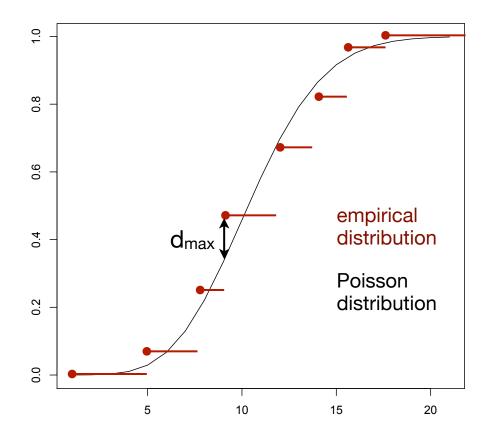
- P-value describes the significance of a test result
 - Probability of getting a result that is at least that extreme (all under the assumption of a null hypothesis)
 - The lower the P-value the less likely the result
- **Example**: Chi square test for a coin flip.
 - Null hypothesis: the coin is fair
 - 20 heads, 20 tails: $\chi^2 = 0$, p-value = 1
 - 25 heads, 15 tails: $\chi^2 = 2.5$, p-value = 0.1138
 - 30 heads, 10 tails: $\chi^2 = 10$, p-value = 0.001565

Kolmogorov-Smirnov Test (1)

- Comparison of two distributions
 - sample distribution and analytical distribution (one-sample K-S test)
 - two sample distributions (two-sample K-S test)
- Calculates the maximum distance between empirical and conjectured distribution
- Reject hypothesis, if d_{max} > d_α
 (d_α can be looked up from a table)
- Mainly used for continuous distributions

Kolmogorov-Smirnov Test (2)

Result of the K-S test: Maximum difference in value



Models for Arrival Processes

- At what time does a request arrive in the system?
 - customers, packets, ...
- Arrival Process = stochastic description of arrivals
- Some types of arrival processes
 - Constant bit rate (CBR)
 - Renewal process
 - Markov process

Constant Bit Rate

- **CBR:** Simple model for regular events
- Characteristics:
 - Generate load at fixed time intervals
 - Workload per task can be varied

Renewal Processes

- When interarrival times are independent and identically distributed random variables
- Special cases:
 - Poisson process: inter-arrival times are exponentially distributed (continuous time)
 - Bernouilli process: inter-arrival times are geometrically distributed (discrete time)

Poisson Process (1)

- Discrete number of events, continuous time
- Event occurrences are independent
- Number of events in a time interval of length t follows a Poisson distribution:

$$\mathsf{Pr}_{\lambda,\mathsf{t}}[\mathsf{X}=\mathsf{k}] = \frac{\lambda^{\mathsf{k}}}{\mathsf{k}!} \,\mathrm{e}^{-\lambda\mathsf{t}}$$

• $\lambda t = expected number of occurences in time interval [0,t]$

Poisson Process (2)

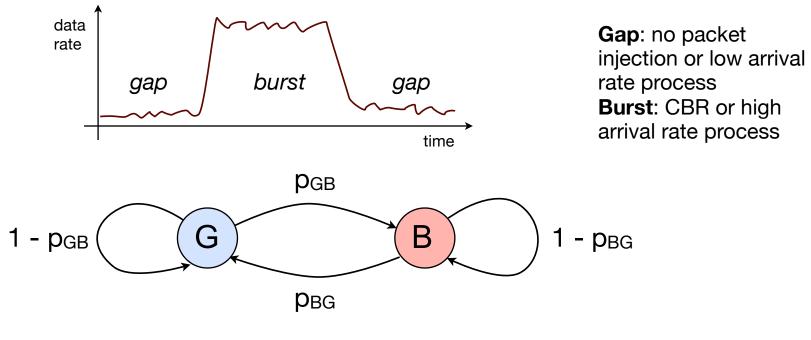
- Time between event occurences (inter-arrival time) is exponentially distributed:
- Let X be a Poisson random variable with parameters λ and t, and A a random variable that describes the time until the next arrival. An inter-arrival time A > t is equivalent to X = 0 for the interval [0,t].
 - $Pr[A>t] = Pr[X=0] = e^{-\lambda t}$
 - $Pr[A \le t] = 1 e^{-\lambda t} =: F(t)$ (cumulative dist. function of A)
 - $f(t) = F'(t) = \lambda e^{-\lambda t}$ (probability density function)
- A follows an exponential distribution

Markov Processes (1)

- Similar to renewal processes, but with history, i.e. there are interdependencies between inter-arrival times
 - State-based
 - Probability of state transitions (defined in a prob. matrix)
 - Transitions depend *only* on the current state.
 - Continuous time: A Markov process remains in a state i and holds this state for a random exponentially distributed time. Then it switches to state j with probability p_{ij}.
 - Discrete time: State transition after each time step (*Markov chain*)

Markov Processes, Example (1)

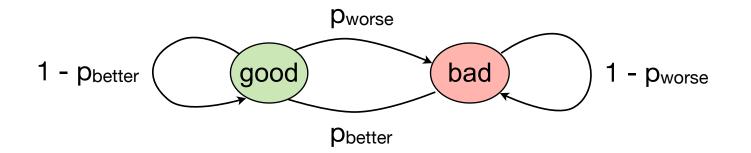
 Example: Modeling gaps and bursts of a video stream (load model)



 p_{GB} = probability to switch to the burst state p_{BG} = probability to switch to the gap state

Markov Processes, Example (2)

- Gilbert-Elliott Model for bit errors (fault model):
 - good and bad state of the channel
 - Bit errors occur in the bad state



Gilbert-Elliott, Implementation

- Not efficient: simulating bit errors by applying the Gilbert-Elliott model bit by bit.
- Better: Determine the number of bits until the next state changes. This number is geometrically distributed.
- Even better: If the position of bit errors is not important, only the number, then it is more efficient to determine the number of bit errors in a certain time interval.

Lessons learned

- Simulation results are only an *estimation* of the true behaviour
- Pitfalls: bad random number generators, bad seed selection, insufficient simulation time
- Be careful when using aggregated information and interpreting results