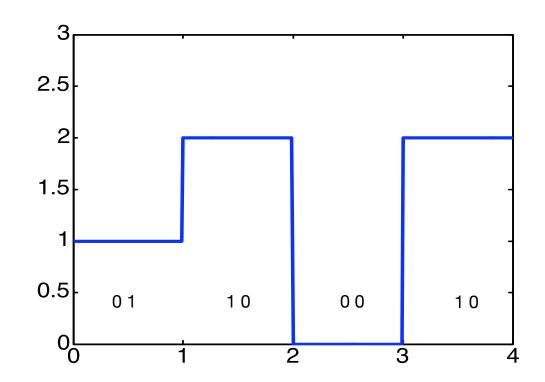


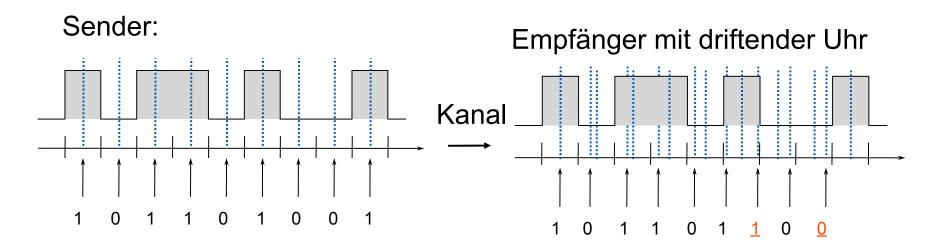
Systeme II


2./3. Woche Bitübertragungsschicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Symbole und Bits

- Für die Datenübertragung können statt Bits auch Symbole verwendet werden
- Z.B. 4 Symbole: A,B,C,D mit
 - A=00, B=01, C=10, D=11
- Symbole
 - Gemessen in Baud
 - Anzahl der Symbole pro Sekunde
- Datenrate
 - Gemessen in Bits pro Sekunde (bit/s)
 - Anzahl der Bits pro Sekunde
- Beispiel
 - 2400 bit/s Modem hat 600 Baud (verwendet 16 Symbole)

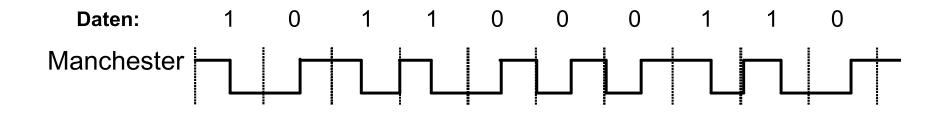

Selbsttaktende Kodierungen

- Wann muss man die Signale messen
 - Typischerweise in der Mitte eines Symbols
 - Wann startet das Symbol?
 - Die Länge des Symbols ist üblicherweise vorher festgelegt.
- Der Empfänger muss auf der Bit-ebene mit dem Sender synchronisiert sein
 - z.B. durch Frame Synchronization

Synchronisation

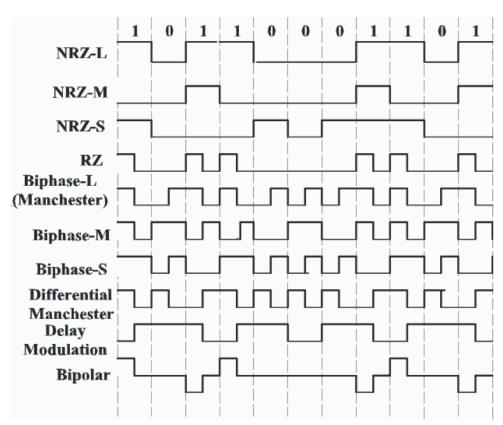
- Was passiert wenn man einfach Uhren benutzt
- Problem
 - Die Uhren driften auseinander
 - Keine zwei (bezahlbare Uhren) bleiben perfekt synchron
- Fehler by Synchronisationsverlust (NRZ):

Lösung der Synchronisation


- Ohne Kontrolle keine Synchronisation
- Lösung: explizites Uhrensignal
 - Benötigt parallele Übertragung über Extra-Kanal
 - Muss mit den Daten synchronisiert sein
 - Nur für kurze Übertragungen sinnvoll
- Synchronisation an kritischen Zeitpunkten
 - z.B. Start eines Symbols oder eines Blocks
 - Sonst läuft die Uhr völlig frei
 - Vertraut der kurzzeitig funktionierenden Synchronität der Uhren
- Uhrensignal aus der Zeichenkodierung

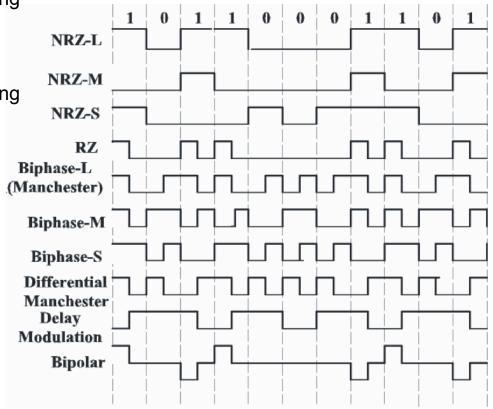
Selbsttaktende Codes

- z.B. Manchester Code (Biphase Level)
 - 1 = Wechsel von hoch zu niedrig in der Intervallmitte
 - 0 = Umgekehrter Wechsel



 Das Signal beinhaltet die notwendige Information zur Synchronisation

Digitale Kodierungen (I)

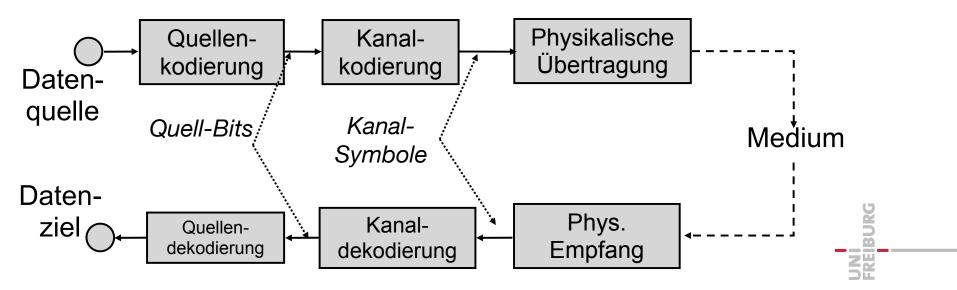

- Non-Return to Zero-Level (NRZ-L)
 - 1 = hohe Spannung, 0 = niedrig
- Non-Return to Zero-Mark (NRZ-M)
 - 1 = Wechsel am Anfang des Intervals
 - 0 = Kein Wechsel
- Non-Return to Zero-Space (NRZ-S)
 - 0 = Wechsel am Intervallanfang
 - 1 = Kein Wechsel
- Return to Zero (RZ)
 - 1 = Rechteckpuls am Intervallanfang
 - 0 = Kein Impuls
- Manchester Code (Biphase Level)
 - 1 = Wechsel von hoch zu niedrig in der Intervallmitte
 - 0 = Umgekehrter Wechsel

Digitale Kodierungen (II)

- Biphase-Mark
 - Immer: Übergang am Intervallanfang
 - 1 = zweiter Übergang in der Mitte
 - 0 = kein zweiter Übergang
- Biphase-Space
 - Immer: Übergang am Intervallanfang
 - 1/0 umgekehrt wie Biphase-Mark
- Differential Manchester-Code
 - Immer: Übergang in Intervallmitte
 - 1 = Kein Übergang am Intervallanfang
 - 0 = Zusätzlicher Übergang am Intervallanfang
- Delay Modulation (Miller)
 - Übergang am Ende, falls 0 folgt
 - 1 = Übergang in der Mitte des Intervalls
 - 0 = Kein Übergang falls 1 folgt
- Bipolar
 - 1 = Rechteckpuls in der erstenHälfte, Richtung alterniert (wechselt)
 - 0 = Kein Rechteckpuls

Struktur einer digitalen Basisband-Übertragung

Quellkodierung

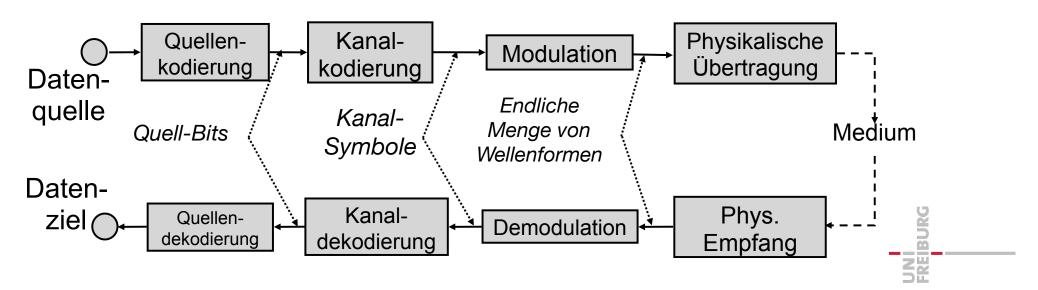

- Entfernen redundanter oder irrelevanter Information
- Z.B. mit verlustbehafteter Komprimierung (MP3, MPEG 4)
- oder mit verlustloser Komprimierung (Huffman-Code)

Kanalkodierung

- Abbildung der Quellbits auf Kanal-Symbole
- Möglicherweise Hinzufügen von Redundanz angepasst auf die Kanaleigenschaften

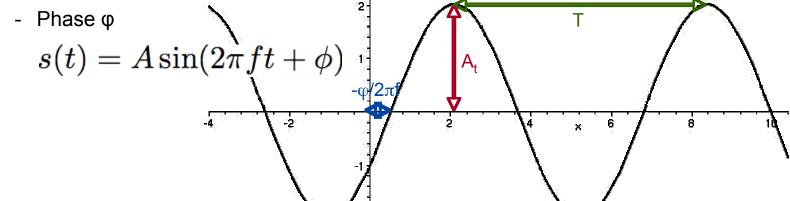
Physikalische Übertragung

- Umwandlung in physikalische Ereignisse



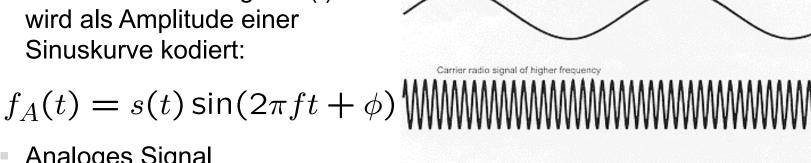
Struktur einer digitalen Breitband-Übertragung

MOdulation/DEModulation


- Übersetzung der Kanalsymbole durch
 - Amplitudenmodulation
 - Phasenmodulation
 - Frequenzmodulation
 - oder einer Kombination davon

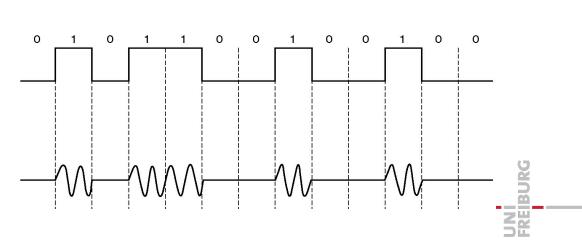
Breithand

- Idee:
 - Konzentration auf die idealen Frequenzen des Mediums
 - Benutzung einer Sinuskurve als Trägerwelle der Signale
- Eine Sinuskurve hat keine Information
- Zur Datenübertragung muss die Sinuskurve fortdauernd verändert werden (moduliert)
 - Dadurch Spektralweitung (mehr Frequenzen in der Fourier-Analyse)
- Folgende Parameter können verändert werden:
 - Amplitude A
 - Frequenz f=1/T



Amplitudenmodulation

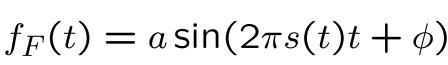
Das zeitvariable Signal s(t) wird als Amplitude einer Sinuskurve kodiert:



Signal to be modulated, eg speech or music

- **Analoges Signal**
 - Amplitude Modulation
 - Kontinuierliche Funktion in der Zeit
 - z.B. zweites längeres Wellensignal (Schallwellen)

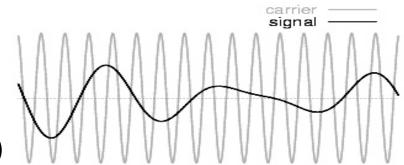
- Amplitude Keying
- Z.B. durch Symbole gegeben als Symbolstärken
- Spezialfall: Symbole 0 oder 1
 - on/off keying

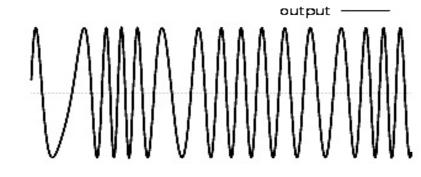


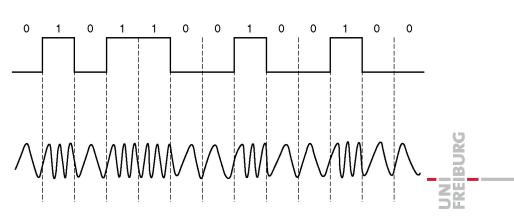
Frequenzmodulation

Das zeitvariable Signal s (t) wird in der Frequenz der Sinuskurve kodiert:

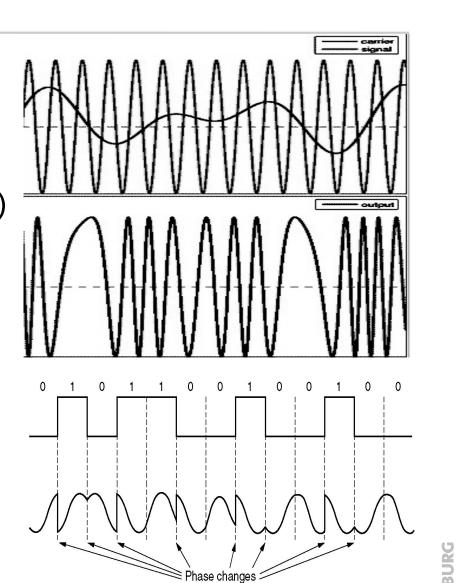
$$f_F(t) = a \sin(2\pi s(t)t + \phi)$$






- Frequency Modulation (FM)
- Kontinuierliche Funktion in der Zeit

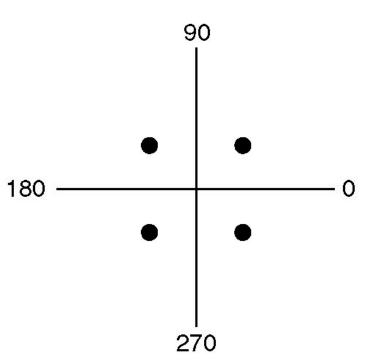
- Frequency Shift Keying (FSK)
- Z.B. durch Symbole gegeben als Frequenzen



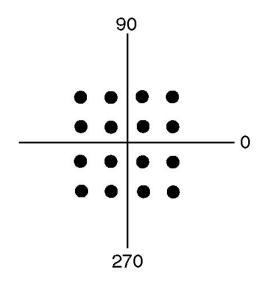
Phasenmodulation

 Das zeitvariable Signal s(t) wird in der Phase der Sinuskurve kodiert:

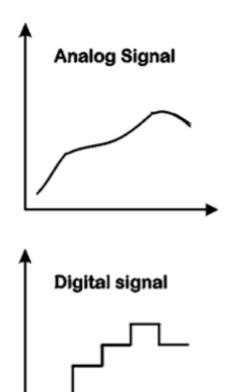
$$f_P(t) = a\sin(2\pi ft + s(t))$$


- Analoges Signal
 - Phase Modulation (PM)
 - Sehr ungünstige Eigenschaften
 - Wird nicht eingesetzt
- Digitales Signal
 - Phase-Shift Keying (PSK)
 - Z.B. durch Symbole gegeben als Phasen

PSK mit verschiedenen Symbolen

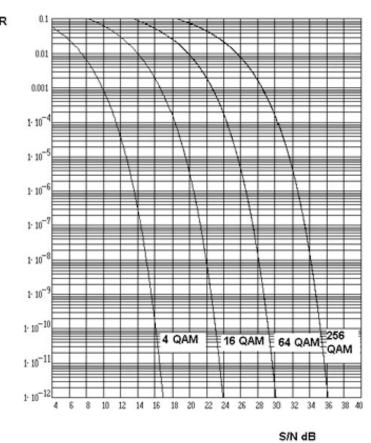

- Phasenverschiebungen können vom Empfänger sehr gut erkannt werden
- Kodierung verschiedener Symoble sehr einfach
 - Man verwendet Phasenverschiebung z.B. $\pi/4$, $3/4\pi$, $5/4\pi$, $7/4\pi$
 - selten: Phasenverschiebung 0 (wegen Synchronisation)
 - Bei vier Symbolen ist die Datenrate doppelt so groß wie die Symbolrate
- Diese Methode heißt Quadrature Phase Shift Keying (QPSK)

Amplituden- und Phasenmodulation


- Amplituden- und
 Phasenmodulation können
 erfolgreich kombiniert werden
- Beispiel: 16-QAM (Quadrature Amplitude Modulation)
 - Man verwendet 16 verschiedene Kombinationen von Phasen und Amplituden für jedes Symbol
 - Jedes Symbol kodiert vier Bits (2⁴ = 16)
 - Die Datenrate ist also viermal so groß wie die Symbolrate

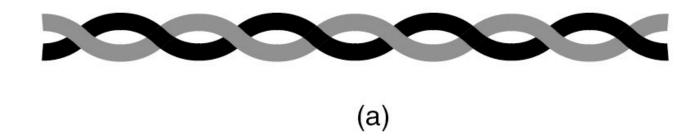
Digitale und analoge Signale im Vergleich

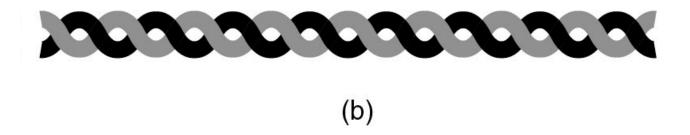
- Für einen Sender gibt es zwei Optionen
 - Digitale Übertragung
 - Endliche Menge von diskreten Signalen
 - Z.B. endliche Menge von Spannungsgrößen/Stromstärken
 - Analoge Übertragung
 - Unendliche (kontinuierliche) Menge von Signalen
 - Z.B. Signal entspricht Strom oder Spannung im Draht
- Vorteil der digitalen Signale:
 - Es gibt die Möglichkeit
 Empfangsungenauigkeiten zu reparieren und das ursprüngliche Signal zu rekonstruieren
 - Auftretende Fehler in der analogen Übertragung können sich weiter verstärken



Die Bitfehlerhäufigkeit und das Signalrauschverhältnis

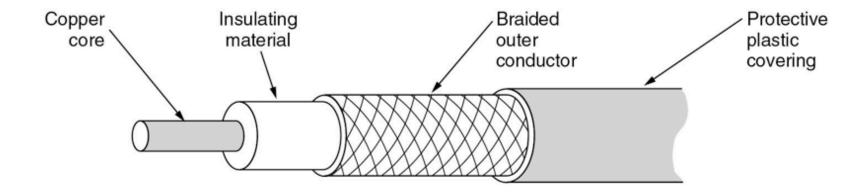
- Je höher das Signal-Rausch-Verhältnis, desto geringer ist der auftretende Fehler
- Bitfehlerhäufigkeit (bit error rate BER)
 - Bezeichnet den Anteil fehlerhaft empfangener Bits
- Abhängig von
 - Signalstärke,
 - Rauschen,
 - Übertragungsgeschwindigkeit
 - Verwendetem Verfahren
- Abhängigkeit der Bitfehlerhäufigkeit (BER) vom Signal-Rausch-Verhältnis
 - Beispiel: 4 QAM, 16 QAM, 64 QAM, 256 QAM



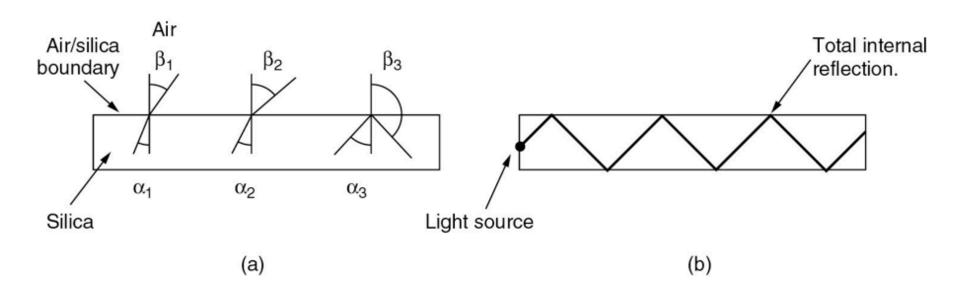

Physikalische Medien

- Leitungsgebundene Übertragungsmedien
 - Kupferdraht Twisted Pair
 - Kupferdraht Koaxialkabel
 - Glasfaser
- Drahtlose Übertragung
 - Funkübertragung
 - Mikrowellenübertragung
 - Infrarot
 - Lichtwellen

Twisted Pair



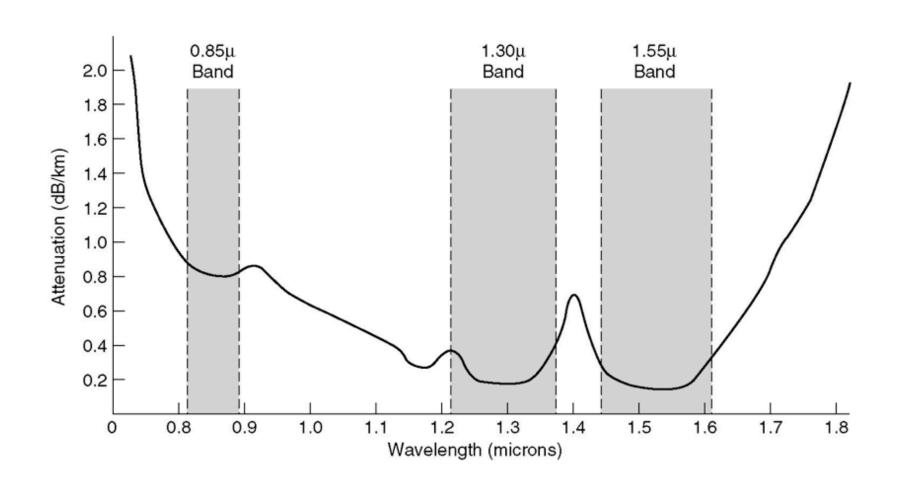
- (a) Category 3 UTP.
- (b) Category 5 UTP.



Koaxialkabel

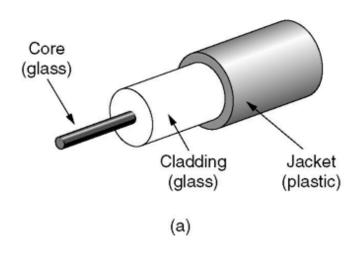
Glasfaser

$$\frac{\sin \alpha}{\cos \beta} = \frac{c_{\text{Glas}}}{c_{\text{Luft}}}$$


- (a) Beugung und Reflektion an der Luft/Silizium-Grenze bei unterschiedlichen Winkeln
- (b) Licht gefangen durch die Reflektion

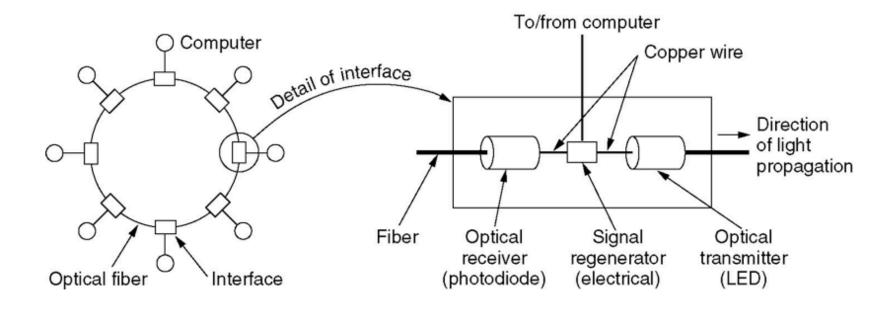
Übertragung von Licht durch Glasfaser

Dämpfung von Infrarotlicht in Glasfaser

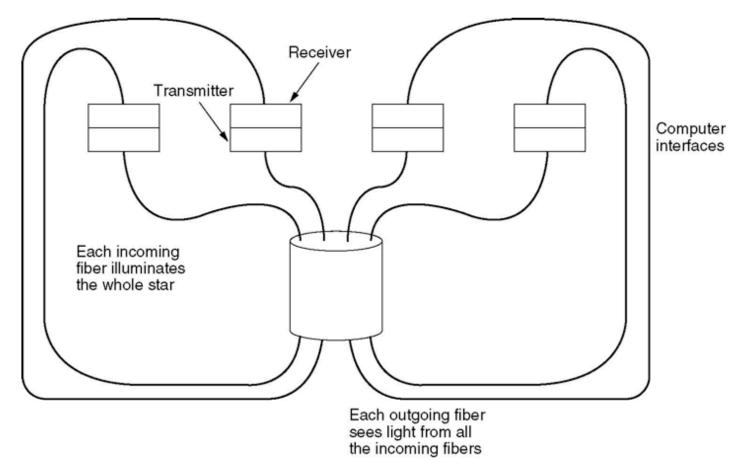


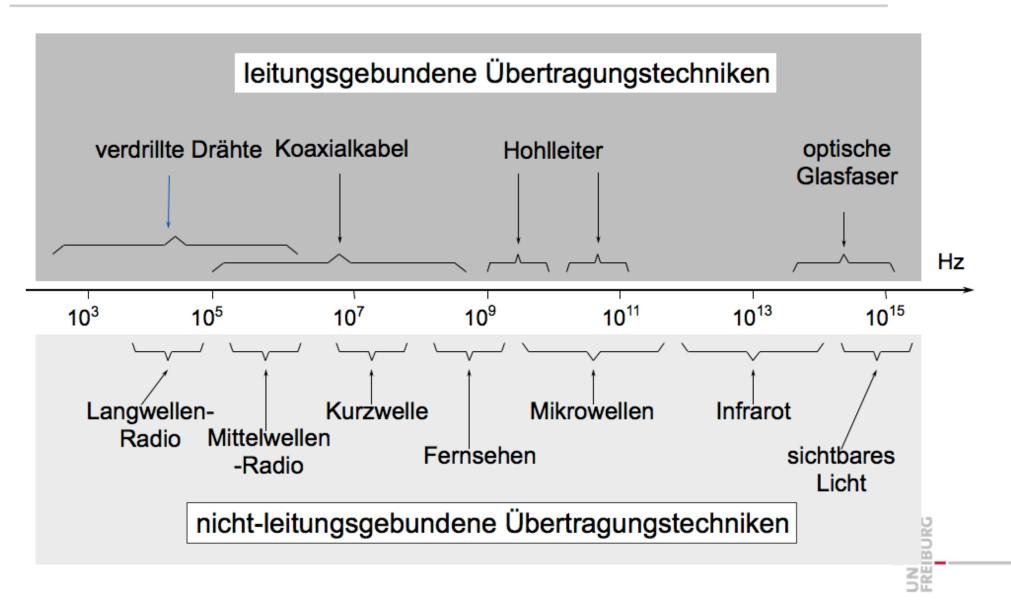
Glasfaser

- (a) Seitenansicht einer einfachen Faser
- (b) Schnittansicht eines Dreier-Glasfaserbündels



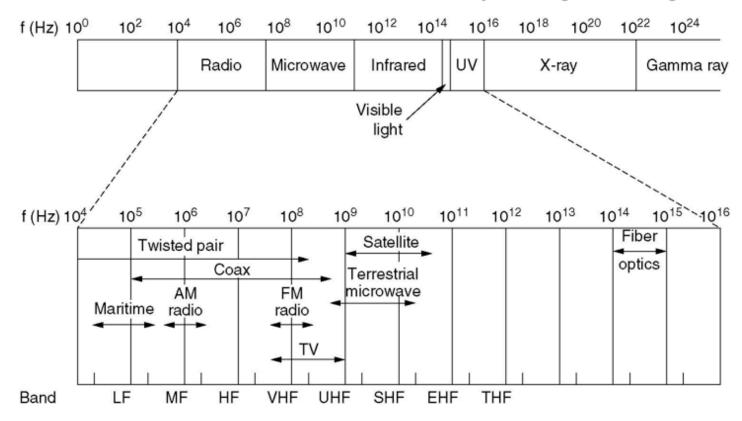
Glasfaser-Netzwerke


Glasfaserring mit aktiven Repeatern


Glasfaser-Netzwerke

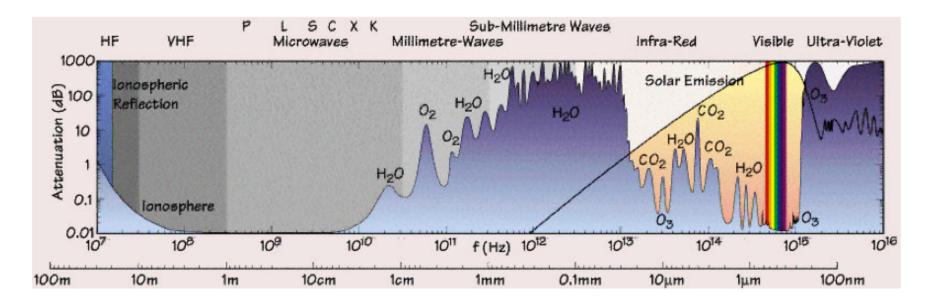
Eine passive Sternverbindung in einem Glasfasernetz

Das elektromagnetische Spektrum



Frequenzbereiche

- LF Low Frequency =
 - LW Langwelle
- MF Medium Frequency =
 - MW Mittelwelle
- HF High Frequency =
 - KW Kurzwelle


- VHF Very High Frequency =
 - UKW Ultrakurzwelle
- UHF Ultra High Frequency
- SHF Super High Frequency
- EHF Extra High Frequency
- UV Ultraviolettes Licht
- X-ray Röntgenstrahlung

Dämpfung in verschiedenen Frequenzbereichen

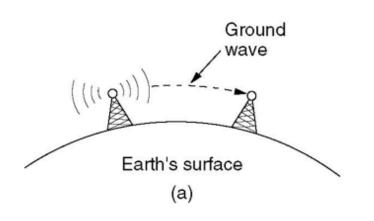
 Frequenzabhängige Dämpfung elektromagnetischer Wellen in der Atmosphäre

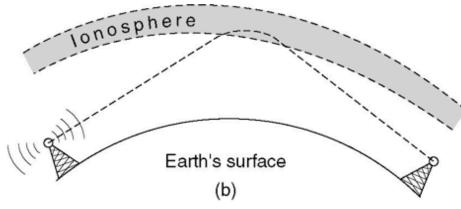
http://www.geographie.uni-muenchen.de/iggf/Multimedia/Klimatologie/physik_arbeit.htm

Frequenzbänder für Funknetzwerke

- VHF/UHF für Mobilfunk
 - Antennenlänge
- SHF für Richtfunkstrecken, Satellitenkommunikation
- Drahtloses (Wireless) LAN: UHF bis SHF
 - Geplant: EHF
- Sichtbares Licht
 - Kommunikation durch Laser
- Infrarot
 - Fernsteuerungen
 - Lokales LAN in geschlossenen Räumen

Ausbreitungsverhalten (I)


- Geradlinige Ausbreitung im Vakuum
- Empfangsleistung nimmt mit 1/d² ab
 - Theoretisch, praktisch mit h\u00f6heren Exponenten bis zu 4 oder 5
- Einschränkung durch
 - Dämpfung in der Luft (insbesondere HV, VHF)
 - Abschattung
 - Reflektion
 - Streuung an kleinen Hindernissen
 - Beugung an scharfen Kanten



Ausbreitungsverhalten (II)

- VLF, LF, MF-Wellen
 - folgen der Erdkrümmung (bis zu 1000 km in VLF)
 - Durchdringen Gebäude
- HF, VHF-Wellen
 - Werden am Boden absorbiert
 - Werden von der lonosphäre in 100-500 km Höhe reflektiert

- Ab 100 MHz
 - Wellenausbreitung geradlinig
 - Kaum Gebäudedurchdringung
 - Gute Fokussierung
- Ab 8 GHz Absorption durch Regen

Ausbreitungsverhalten (III)

- Mehrwegeausbreitung (Multiple Path Fading)
 - Signal kommt aufgrund von Reflektion, Streuung und Beugung auf mehreren Wegen beim Empfänger an
 - Zeitliche Streuung führt zu Interferenzen
 - Fehlerhafter Dekodierung
 - Abschwächung
- Probleme durch Mobilität
 - Kurzzeitige Einbrüche (schnelles Fading)
 - Andere Übertragungswege
 - Unterschiedliche Phasenlage
 - Langsame Veränderung der Empfangsleistung (langsames Fading)
 - Durch Verkürzen, Verlängern der Entfernung Sender-Empfänger

Mehrfachnutzung des Mediums

Raummultiplexverfahren

- Parallele und exklusive Nutzung von Übertragungskanäle
 - z.B. Extraleitungen/Zellen/Richtantenne

Frequenzmultiplexverfahren

- Mehrere zu übertragende Signale in einem Frequenzbereich gebündelt;
- Bei Funkübertragung werden unterschiedlichen Sendern unterschiedliche Frequenzen zugewiesen.

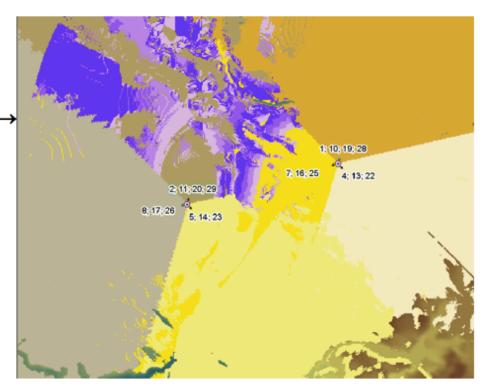
Zeitmultiplexverfahren

Zeitversetztes Senden mehrerer Signale

Wellenlängenmultiplexverfahren

- Optisches Frequenzmultiplexverfahren für die Übertragung in Glasfaserkabel

Codemultiplexverfahren


- Nur in Funktechnik: Kodierung des Signals in orthogonale Codes, die nun gleichzeitig auf einer Frequenz gesendet werden können
- Dekodierung auch bei Überlagerung möglich

Raum

- Raumaufteilung (Space-Multiplexing)

 - Verwendung gerichteter
 Antennen zur gerichtenen
 Kommunikations
 - GSM-Antennen mit Richtcharakteristik
 - Richtfunk mit Parabolantenne
 - Laserkommunikation
 - Infrarotkommunikation

Zeit

- Zeitaufteilung (Time-Multiplexing)
 - Zeitliche Aufteilung des Sende-/Empfangskanals
 - Verschiedene Teilnehmer erhalten exklusive Zeiträume (Slots) auf dem Medium
 - Genaue Synchronisation notwendig
 - Koordination notwendig, oder starre Einteilung

Zeit

- Zeitaufteilung (Time-Multiplexing)
 - Zeitliche Aufteilung des Sende-/Empfangskanals
 - Verschiedene Teilnehmer erhalten exklusive Zeiträume (Slots) auf dem Medium
 - Genaue Synchronisation notwendig
 - Koordination notwendig, oder starre Einteilung

Code

- CDMA (Code Division Multiple Access)
 - z.B. GSM (Global System for Mobile Communication)
 - oder UMTS (Universal Mobile Telecommunications System)
- Beispiel:
 - Sender A:
 - 0 ist (-1,-1)
 - 1 ist (+1,+1)
 - Sender B:
 - 0 ist (-1,+1)
 - 1 ist (+1,-1)
 - A sendet 0, B sendet 0:
 - Ergebnis: (-2,0)
 - C empfängt (-2,0):
 - Dekodierung bzgl. A: (-2,0) (-1,-1) = (-2)(-1) + 0(-1) = 2
 - A hat also 0 gesendet (da Ergebnis positiv)

Internet über Telefon

- Analog
 - typisch 3-4 kBit/s
 - maximal bis 56 kBit/s
- ISDN (Integrated Services Digital Network)
 - 128 kBit/s (Nutzdaten)
 - Hin/Rückrichtung jeweils 64 kBit/s
 - Pulse-Code Modulation (Amplitudenmodulation)
- DSL
 - maximal
 - bis 25 Mbit/s Downstream
 - bis 3,5 Mbit/s Upstream
 - typisch (DSL 6000)
 - 6 Mbit/s Downstream
 - 0,5 Mbit/s Upstream

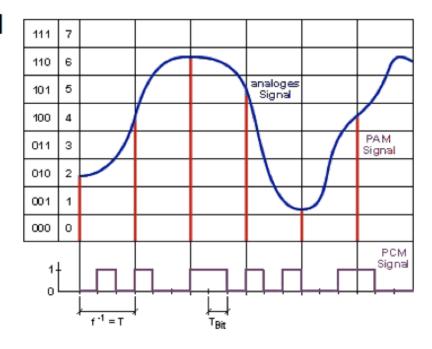
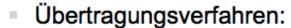
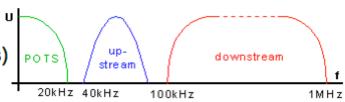
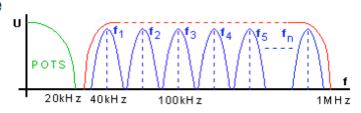
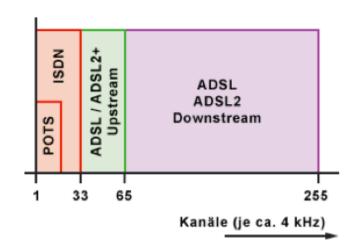



Abb. aus http://de.wikipedia.org/wiki/Puls-Code-Modulation

Beispiel DSL


- Asymmetric Digital Subscriber Line (ADSL)
 - momentan der Standard zur Anbindung von Endverbrauchern zu ISP (Internet Service Providers)
 - verwendet herkömmliche Kupferkabel




- Carrier-less Amplitude/Phase Modulation CAP (wie QAM)
 - Eine Modulation für Upstream/Downstream
- Discrete Multitone Modulation (DMT)
 - 256 Kanäle mit je 4 kHz Bandbreite

DMT: 3 Kanälstränge:

- POTS/ISDN (public switched telephone network/ Integrated Services Digital Network)
 - bleibt im Frequenzbereich 1-20 kHz von ADSL unberührt
- Upstream
 - 32 Trägerkanäle für Verbindung zum ISP
- Downstream
 - 190 Trägerkanäle für Verbindung vom ISP

Systeme II

2./3. Woche: Bitübertragungsschicht

Christian Schindelhauer

Technische Fakultät

Rechnernetze und Telematik

Albert-Ludwigs-Universität Freiburg