Exercise for the lecture Wireless Sensor Networks Summer 2016 Sheet 6

EXERCISE 7:

Consider aggregation in wireless sensor network with a routing tree. The sensor information of sensor *i* is called $x_i \in \mathbb{R}$ and $z_i \in \mathbb{Z}$ for the sensor set $\{1, \ldots, n\}$.

- 1. Which of the following functions can be easily aggregated?
- 2. What calculation has to be done at a router?
- 3. What information is passed from nodes to nodes?
- 4. How to collect the data if aggregation is not possible?

Answer these questions for the following outputs.

a)
$$y_1 = \frac{1}{n} \sum_{i=1}^n (x_i - \frac{1}{n} \sum_{j=1}^n x_j)^2$$

- **b**) $y_2 = \sum_{i=1}^n z_i \mod 3$
- c) $y_3 = \sum_{i=1}^n (x_i x_{n+1-i})^2$
- d) y_4 is the number of sensor nodes where z_i is larger than 10.
- e) y_5 is the third largest value x_i

f)
$$y_6 = \begin{cases} x_{\min\{z_1,\dots,z_n\}}, & \min\{z_1,\dots,z_n\} \in \{1,\dots,n\} \\ x_n, & \text{else} \end{cases}$$

g) y_7 is a random value x_i chosen uniformly at random from values (x_1, \ldots, x_n) .

h)
$$y_8 = \prod_{i=1}^n z_i$$

- i) $y_9 =$ sorted list of all elements (z_1, \ldots, z_n)
- j) $y_{10} =$ longest distance of a node to the base station.