Exercise for the lecture Wireless Sensor Networks Summer 2016 Sheet 9

EXERCISE 10:

Grid-Routing: Consider the following 32×16 grid with start node s and target node s.

- 1. Compute the number of perimeter grid cells.
- 2. Fill out the following table.

Algorithm/	time	traffic	competitive	competitive	comparative	combined
solution			time ratio	traffic ratio	traffic ratio	comp. ratio
Shortest						
path						
Flooding						
algorithm						
Greedy, right						
hand rule						
Alternating						
algorithm						

3. Now consider the following grid

and compute the number of perimeter grid cells.

4. Fill out the following table:

Algorithm/	time	traffic	competitive	competitive	comparative	combined
solution			time ratio	traffic ratio	traffic ratio	comp. ratio
Shortest						
path						
Flooding						
algorithm						
Greedy, right						
hand rule						
Alternating						
algorithm						

EXERCISE 11:

- 1. Define a beaconless greedy rule by defining the delay function of the answering time depending on the position of the start node, the target node, the forwarder node, and the current node's position.
- 2. Apply your greedy beaconless algorithm (without recovery) to the following graph, which is a unit-disk graph given by the sending radius.

Mark which nodes serve as forwarders. Does your message arrive at the target?

3. Discuss whether your algorithm needs a protest-rule or a planarization? If yes, show a counterexample for your algorithm. If no, show that your algorithm always succeeds.