

Wireless Sensor Networks 1. Basics

1

BURG

FREI

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 17.04.2016

- Moving particles with electric charge cause electromagnetic waves
 - frequency f : number of oscillations per second
 - unit: Hertz
 - wavelength λ : distance (in meters) between two wave maxima
 - antennas can create and receive electromagnetic waves
 - the transmission speed of electromagnetic waves in vacuum is constant
 - speed of light $c \approx 3.108$ m/s
- Relation between wavelength, frequency and speed of light:

$$\lambda \cdot f = c$$

guided media twisted pair optical coaxial cable waveguide fibre Hz 10³ 10⁵ 10⁹ **10**¹¹ 10¹³ **10**¹⁵ 10⁷ high lów infrared micro wave medium frequency frequency visible frequency radio TV light

unguided media

Picture under creative commons license http://creativecommons.org/licenses/by-sa/2.5/ Wavelength

- 0.1 Å

-{^{1 Å} 0.1 nm

- 1 nm

10 nm

-⁄100 nm

ί1μm

10 μm

∫ 1000 μm **ຳ** _{1 mm}້

- 1 cm

- 10 cm

- 1 m

10 m

– 100 m

1000 m

4

Louis E. Keiner - Coastal Carolina University **NN**

AM

Near IR

Far IR

f 1000 nm

400 nm

500 nm

– 600 nm

700 nm

A Bands for Wireless Networks

- VHF/UHF for mobile radio
 - antenna length
- SHF for point-to-point radio systems, satellite communication
- Wireless LAN: UHF to SHF
 - planned EHF
- Visible light

- -D
- communication by laser
- 🖉 Infrared
 - remote controls
 - LAN in closed rooms

BURG 5

Straight-lined propagation in vacuum

LASER

BURG

- Received power decreases with 1/d²
 - in theory
 - in practice higher exponents up to 4 or 5
 - Reduction because of
 - attenuation in air (in particular HF, VHF)
 - shadowing and mountain effect
 - reflection
 - diffusion at small obstacles
 - diffraction

Frequency Dependent Behavior

Enop

JS

lonosphäre

- VLF, LF, MF
 - follow the curvature of the earth (up to 1000 km for VLF)
 - permeate buildings
- HF, VHF

CoNe Freiburg

- absorbed by the ground
- reflected by the ionosphere 100-500 km height
- Over 100 MHz
 - straight-line propagation
 - marginal penetration of buildings
 - good focus
- Over 8 GHz absorption by rainfall

ground wave

Supr position

E=A²

8

Multiple Path Fading

- Signal arrives at receiver on multiple paths because of reflection, diffusion, and diffraction
- Signal time variation leads to interferences
 - decoding faults
 - attenuation
- Mobility problems
 - Fast fading
 - different transmission paths
 - different phasing
 - Slow fading

increase of distance between sender and receiver

Noise and Interference

Noise

 inaccuracies and heat development in electrical components

BURG

- modeled by normal distribution
- Interference from other transmitters
 - in the same spectrum
 - or in neighbored spectrum
 - e.g. because of bad filters
- Effect
 - Signal is disrupted

Signal Interference Noise Ratio

- reception energy = transmission energy / path loss
 - path loss ~ 1/d[¥]

≪γ**€** [2,5]

- Signal to Interference and Noise Ratio = SINR
 - S = (desired) Signal energy
 - I = energy of Interfering signals
 - N = Noise
- Necessary condition for reception

$$SINR = \frac{S}{I+N} \ge Threshold$$

- Attenuatation
 - Received signal power depends on the distance d between sender and receiver
- Friis transmission equation
 - distance: R
 - wavelength: λ
 - P_r: energy at receiver antenna
 - P_t: energy at sender antenna
 - G_t: sender antenna gain
 - G_r: receiver antenna gain

$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2$$

$$P_r(d) = P_r(d_0) \cdot \left(\frac{d_0}{d}\right)^2$$

Path Loss Exponent CoNe Freiburg

- Measurements
 - v path loss
 exponent
 - shadowing variance d²
 - reference path loss at 1m distance

	J		
Location	Average	Average	Range of
	of γ	of $\sigma^2[\mathrm{dB}]$	PL(1m)[dB]
Engineering Building	1.9	5.7	[-50.5, -39.0]
Apartment Hallway	2.0	8.0	[-38.2, -35.0]
Parking Structure	3.0	7.9	[-36.0, -32.7]
One-sided Corridor	1.9	8.0	[-44.2, -33.5]
One-sided patio	3.2	3.7	[-39.0, -34.2]
Concrete canyon	2.7	10.2	[-48.7, -44.0]
Plant fence	4.9	9.4	[-38.2, -34.5]
Small boulders	3.5	12.8	[-41.5, -37.2]
Sandy flat beach	4.2	4.0	[-40.8, -37.5]
<u>Dense bamboo</u>	5.0	11.6	[-38.2, -35.2]
Dry tall underbrush	$\overline{3.6}$	8.4	[-36.4, -33.2]

Karl, Willig, Protocols and Architectures for Wireless Sensor Networks, Wiley, 2005

Structure of a Broadband Digital

transmission

Cone Freiburg Computation of Fourier Coefficients

- Theorem of Fourier for period T=1/f:
 - The coefficients c, a_n, b_n are then obtained as follows

$$g(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(2\pi kft) + b_k \sin(2\pi kft)$$
$$a_k = \frac{2}{T} \int_0^T g(t) \cos(2\pi nft) dt$$
$$b_k = \frac{2}{T} \int_0^T g(t) \sin(2\pi nft) dt$$

• The sum of squares of the k-th terms is proportional to the energy consumed in this frequency: $(a_k)^2 + (b_k)^2$

A How often do you measure?

- How many measurements are necessary
 - to determine a Fourier transform to the k-th component, exactly?
- Nyquist-Shannon sampling theorem
 - To reconstruct a continuous band-limited signal with a maximum frequency f_{max} you need at least a sampling frequency of 2 f_{max}.

- For data transmission instead of bits can also be used symbols
 3
 - E.g. 4 Symbols: A, B, C, D
 A = 00, B = 01, C = 10, D =
- Symbols
 - Measured in baud
 - Number of symbols per sec
- Data rate
 - Measured in bits per secor
 - Number of bits per second
- Example
 - 2400 bit/s modem is 600 baud (uses 16 symbols)

UNI FREIBURG

Idea

- Focusing on the ideal frequency of the medium
- Using a sine wave as the carrier wave signals
- A sine wave has no information
 - the sine curve continuously (modulated) changes for data transmission,
 - implies spectral widening (more frequencies in the Fourier analysis)
- The following parameters can be changed:
 - Amplitude A
 - Frequency f=1/T
 - Phase ϕ

$$s(t) = A\sin(2\pi ft + \phi)$$

The time-varying signal s

 (t) is encoded as the
 amplitude of a sine curve:

 $f_A(t) = s(t)\sin(2\pi ft + \phi)$

- Analog Signal
- Digital signal
 - amplitude keying
 - special case: symbols 0 or 1
 - on / off keying

The time-varying signal s

 (t) is encoded in the
 frequency of the sine
 curve:

$$f_F(t) = a\sin(2\pi s(t)t + \phi)$$

- Analog signal
 - Frequency modulation (FM)
 - Continuous function in time
- Digital signal
 - Frequency Shift Keying (FSK)
 - E.g. frequencies as given by symbols

AAM AAM

 The time-varying signal s (t) is encoded in the phase of the sine curve:

Phase Modulation

$$f_P(t) = a\sin(2\pi ft + s(t))$$

- Analog signal
 - phase modulation (PM)
 - very unfavorable properties
 - es not used
- Digital signal
 - phase-shift keying (PSK)
 - e.g. given by symbols as phases

Digital and Analog signals in Comparison

For a station there are two options

- digital transmission
 - finite set of discrete signals
 - e.g. finite amount of voltage sizes / voltages
- analog transmission
 - Infinite (continuous) set of signals
 - E.g. Current or voltage signal corresponding to the wire
- Advantage of digital signals:
 - There is the possibility of receiving inaccuracies to repair and reconstruct the original signal
 - Any errors that occur in the analog transmission may increase further

22

BURG

• For phase signals $\phi_i(t)$

$$s_i(t) = \sqrt{\frac{2E}{T}} \cdot \sin(\omega_0 t + \phi_i(t))$$

PSK with Different Symbols

- Phase shifts can be detected by the receiver very well
- Encoding various Symoble very simple
 - Using phase shift e.g. π / 4, 3/4π, 5/4π, 7/4π
 - rarely: phase shift 0 (because of synchronization)
 - For four symbols, the data rate is twice as large as the symbol rate
- This method is called Quadrature Phase Shift Keying (QPSK)

Amplitude and Phase Modulation

CoNe Freiburg

- Amplitude and phase modulation can be successfully combined
 - Example: 16-QAM (Quadrature Amplitude Modulation)
 - uses 16 different combinations of phases and amplitudes for each symbol
 - Each symbol encodes four bits (2⁴ = 16)
 - The data rate is four times as large as the symbol rate

