

Wireless Sensor Networks 1. Basics

JRG

N N

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 17.04.2016

- Theorem of Fourier for period T=1/f:
 - The coefficients c, a_n , b_n are then obtained as follows

$$g(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(2\pi kft) + b_k \sin(2\pi kft)$$

$$a_k = \frac{2}{T} \int_0^T g(t) \cos(2\pi nft) dt$$

$$b_k = \frac{2}{T} \int_0^T g(t) \sin(2\pi nft) dt$$

The sum of squares of the k-th terms is proportional to the energy consumed in this frequency: $(a_k)^2 + (b_k)^2$

CoNe Freiburg

How often do you measure?

- How many measurements are necessary
 - to determine a Fourier transform to the k-th component, exactly?
- Nyquist-Shannon sampling theorem
 - To reconstruct a continuous band-limited signal with a maximum frequency f_{max} you need at least a sampling frequency of 2 f_{max}.

- For data transmission instead of bits can also be used symbols
 - E.g. 4 Symbols: A, B, C, D with
 - A = 00, B = 01, C = 10, D = 11
- Symbols
 - Measured in baud
 - Number of symbols per second
- Data rate
 - Measured in bits per second (bit / s)
 - Number of bits per second
- Example
 - 2400 bit/s modem is 600 baud (uses 16 symbols)

Broadband CoNe Freiburg

- Idea
 - Focusing on the ideal frequency of the medium
 - Using a sine wave as the carrier wave signals
- A sine wave has no information
 - the sine curve continuously (modulated) changes for data transmission,
 - implies spectral widening (more frequencies in the Fourier analysis)
- The following parameters can be changed:
 - Amplitude A
 - Frequency f=1/T
 - Phase ϕ

$$s(t) = A\sin(2\pi ft + \phi)$$

Amplitude Modulation

 The time-varying signal s
 (t) is encoded as the amplitude of a sine curve:

 $f_A(t) = s(t)\sin(2\pi ft + \phi)$

- Analog Signal
- Digital signal
 - amplitude keying
 - special case: symbols 0 or 1
 - on / off keying

Frequency Modulation

The time-varying signal s (t) is encoded in the frequency of the sine curve:

$$f_F(t) = a\sin(2\pi s(t)t + \phi)$$

- Analog signal
 - Frequency modulation (FM)
 - Continuous function in time
- Digital signal
 - Frequency Shift Keying (FSK)
 - E.g. frequencies as given by symbols

Phase Modulation

The time-varying signal s (t) is encoded in the phase of the sine curve:

$$f_P(t) = a\sin(2\pi ft + s(t))$$

- Analog signal
 - phase modulation (PM)
 - very unfavorable properties
 - es not used
- Digital signal
 - phase-shift keying (PSK)
 - e.g. given by symbols as phases

Digital and Analog signals in Comparison

For a station there are two options

- digital transmission
 - finite set of discrete signals
 - e.g. finite amount of voltage sizes / voltages
- analog transmission
 - Infinite (continuous) set of signals
 - E.g. Current or voltage signal corresponding to the wire
- Advantage of digital signals:
 - There is the possibility of receiving inaccuracies to repair and reconstruct the original signal
 - Any errors that occur in the analog transmission may increase further

- Phase shifts can be detected by the receiver very well
- Encoding various Symoble very simple
 - Using phase shift e.g. π / 4,
 3/4π, 5/4π, 7/4π
 - rarely: phase shift 0 (because of synchronization)
 - For four symbols, the data rate is twice as large as the symbol rate
- This method is called Quadrature Phase Shift Keying (QPSK)

Amplitude and Phase Modulation

- Amplitude and phase modulation can be successfully combined
 - Example: 16-QAM
 (Quadrature Amplitude Modulation)
 - uses 16 different combinations of phases and amplitudes for each symbol
 - Each symbol encodes four bits (2⁴ = 16)
 - The data rate is four times as large as the symbol rate

Nyquist's Theorem

- Definition
 - The band width H is the maximum frequency in the Fourier decomposition
- Assume
 - The maximum frequency of the received signal is f = H in the Fourier transform
 - (Complete absorption [infinite attenuation] all higher frequencies)
 - The number of different symbols used is V
 - No other interference, distortion or attenuation of
- Nyquist theorem
 - The maximum symbol rate is at most 2 H baud.
 - The maximum possible data rate is a bit more than
 2 log₂ H V / s.

15

Do more symbols help?

- Nyquist's theorem states that could theoretically be increased data rate with the number of symbols used
- Discussion:
 - Nyquist's theorem provides a theoretical upper bound and no method of transmission
 - In practice there are limitations in the accuracy
 - Nyquist's theorem does not consider the problem of noise

The Theorem of Shannon

- Indeed, the influence of the noise is fundamental
 - Consider the relationship between transmission intensity S to the strength of the noise N
 - The less noise the more signals can be better recognized
- Theorem of Shannon
 - The maximum possible data rate is H log₂(1 + S / N) bits/s
 - with bandwidth H
 - Signal strength S
- Attention
 - This is a theoretical upper bound
 - Existing codes do not reach this value

- Higher SIR decreases
 Bit Error Rate (BER) ***
 - BER is the rate of faulty received bits
- Depends from the
 - signal strength
 - noise
 - bandwidth
 - encoding
- Relationship of BER and SINR
 - Example: 4 QAM, 16 QAM, 64 QAM, 256 Q.

