

Wireless Sensor Networks 4. Medium Access

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 29.04.2016

FREIBURG

ISO/OSI Reference model

- 7. Application
 - Data transmission, e-mail, terminal, remote login
- 6. Presentation
 - System-dependent presentation of the data (EBCDIC / ASCII)
- 5. Session
 - start, end, restart
- 4. Transport
 - Segmentation, congestion
- 3. Network
 - Routing
- 2. Data Link
 - Checksums, flow control
- 1. Physical
 - Mechanics, electrics

- Bharghavan, Demers, Shenker, Zhang
 - MACAW: A Media Access Protocol for Wireless LAN's, SIGCOMM 1994
 - Palo Alto Research Center, Xerox
- Aim
 - Redesign of MACA
 - Improved backoff
 - Fairer bandwidth sharing using Streams
 - Higher efficiency
 - by 4- and 5-Handshake

- Worst-Case blockade
 - Sender sends RTS
 - Receiver is blocked
 - Sender is free
 - But the environment of the sender is blocked

BURG

4-Handshake increases Exposed Terminal Problem

- Overheard RTS blocks nodes
- even if there is no data transfer
- Solution
 - Exposed Terminals are informed whether data transmission occurs
 - Short message DS (data send)
- 5 Handshake reduces waiting time for exposed terminals

- Participants
 - Sender sends RTS
 - Receivers answers with CTS
 - Sender sends DS (Data Send)
 - Sender sends DATA PACKET
 - Receiver acknowledges (ACK)
- RTS and CTS announce the transmission duration
- Blocked nodes
 - have received RTS and DS
 - have received CTS
- Small effort decreases the number of exposed terminals

Unfair Distribution

- 4 and 5-Handshake create unfair distribution
 - A has a lot of data for B
 - D has a lot of data for C
 - C receives B and D, but does not receive A
 - B can receive A and C, but does not hears D

- A is the first to get the channel
- D sends RTS and is blocked
 - Backoff of D is doubling
- At the next transmission
 - A has smaller backoff
 - A has higher chance for next channel access

- Possibly, D is not available at the moment

JNI REIBURG

- Backoff parameter are overheard
 - participants adapt the parameters to the overheard backoff values
 - using MILD
- Motivation
 - if a participant has the same backoff value, then the fairness has been reached

- Prevention of collisions on the medium
 - Fair and efficient bandwidth allocation
- MAC for WSN
 - Regulates sleep cycles for participants duty cyclicy
 - Reduces waiting time for active reception
- Standard protocols are not applicable for WSN
 - Energy efficiency and sleep times must be added

MACA and WSN

- MACA:
 - Channel must be monitored for RTS and CTS
 - Nodes waking up can disrupt existing communications
- Solution in IEEE 802.11:
 - Announcement Traffic Indication Message (ATIM)
 - prevents receiver from starting a sleep cycle
 - informs about upcoming packages
 - is sent within the beacon interval
 - When no message is pending, then the client can switch off its receiver (for a short time)

- Schurgers, Tsiatsis, Srivastava
 - STEM: Toplogy Management for Energy Efficient Sensor Networks, 2001 IEEEAC
- Sparse Topology and Energy Management (STEM)
- Special hardware with two channels
 - Wakeup channel Messy
 - 👌 data channel
- no synchronization
- No RTS / CTS
- Suitable for decentralized multi-hop routing

- Wakeup channel
 - sender announces message
 - announcement will be repeated until the receiver acknowledges
 - receiver sleeps in cycles
- Data channel
 - is used for undisturbed transmission
- No RTS / CTS
- No carrier sensing

- Sleep cycles ensure efficiency in the data reception
 - longer cycles improve energy efficiency
 - but increase the latency
- Too long sleep cycles
 - increase the energy consumption at the transmitter
 - lead to traffic congestion in the network
- Lack of collision avoidance
 - can result in increased traffic because of long waiting times
 - increase energy consumption

STEM

- can be combined with GAF (Geographic Adaptive Fidelity)
- GAF reduces the sensor density, by allowing only the activation of one sensor in a small square

T-STEM

 STEM adds a busy-signal channel to wake up and to prevent communication from interruption

Preamble Sampling

- Only one channel available and no synchronization
- Receiver
 - wakes up after sleep period
 - listens for messages from channel
- Sender
 - sends a long preamble
 - and then the data packet

32

Treamble

PHY

Preamble Sampling

- Only one channel available, no synchronization
- Receiver
 - is awake after sleep period
 - Iistens channel for messages from
- Transmitter
 - sends long preamble
 - and then the package

And the M

Efficiency of Preamble Sampling Few messages Better: long sleep phases

- Receiver consume most of the total energy
- Many messages
 - Short sleep phases
 - Sender consume most of the total energy
 - We observe for preamble time T and some positive constants c, c ', c":

Energy =
$$cT + \frac{c'}{T} + c''$$

34

LE(T)

Sensor-Mac (S-MAC)

- Ye, Heidemann, Estrin
 - An Energy-Efficient MAC Protocol for Wireless Sensor Networks, INFOCOM 2002
- Synchronized sleep and wake cycles
- MACA (RTS / CTS)
 - for collision avoidance
 - and detection of possible sleep cycles

- Active phase
 - Carrier Sensing

- Send Sync packet synchronizer short sleep duration with ID and
- Interval for Request to Send (RTS)
- Interval for Clear-to-Send (CTS)

Each node maintains Schedule Table

Schedule

- with the sleep cycles of known neighbors
- At the beginning listen to the channel for potential neighbors
 - the sender adapts to the sleep cycles of the neighbors
 - if several sleep cycles are notices, then the node wakes up several times
- If after some time no neighbors have been detected (no sync)
 - then the node turns into a synchronizer
 - and sends its own Sync packets

Message Transmission

- If a node receives RTS for a foreign a node
 - then he goes to sleep for the announced time
- Packet is divided into small frames
 - be individually acknowledged with (ACK)
 - all frames are announced with only one RTS / CTS interaction
 - If ACK fails, the packet is immediately resent
- Small packets and ACK should avoid the hidden terminal problem
- All frames contain the planned packet duration in the header

Throughput CoNe Freiburg

Polastre, Hill, Culler, Versatile Low Power Media Access for Wireless Sensor Networks, SenSys'04