Wireless Sensor Networks

5. Routing

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
- Application
 - Data transmission, e-mail, terminal, remote login
- Presentation
 - System-dependent presentation of the data (EBCDIC / ASCII)
- Session
 - Start, end, restart
- Transport
 - Segmentation, congestion
- Network
 - Routing
- Data Link
 - Checksums, flow control
- Physical
 - Mechanics, electrics
Protocols of the Internet

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Telnet, FTP, HTTP, SMTP (E-Mail), ...</td>
</tr>
<tr>
<td>Transport</td>
<td>TCP (Transmission Control Protocol)</td>
</tr>
<tr>
<td></td>
<td>UDP (User Datagram Protocol)</td>
</tr>
<tr>
<td>Network</td>
<td>IP (Internet Protocol)</td>
</tr>
<tr>
<td></td>
<td>+ ICMP (Internet Control Message Protocol)</td>
</tr>
<tr>
<td></td>
<td>+ IGMP (Internet Group Management Protocol)</td>
</tr>
<tr>
<td>Host-to-Network</td>
<td>LAN (e.g. Ethernet, Token Ring etc.)</td>
</tr>
</tbody>
</table>
TCP/IP Layers

1. Host-to-Network
 - Not specified, depends on the local network, e.g. Ethernet, WLAN 802.11, PPP, DSL

2. Routing Layer/Network Layer
 (IP - Internet Protocol)
 - Defined packet format and protocol
 - Routing
 - Forwarding

3. Transport Layer
 - TCP (Transmission Control Protocol)
 • Reliable, connection-oriented transmission
 • Fragmentation, Flow Control, Multiplexing
 - UDP (User Datagram Protocol)
 • hands packets over to IP
 • unreliable, no flow control

4. Application Layer
 - Services such as TELNET, FTP, SMTP, HTTP, NNTP (for DNS), ...
Example: Routing between LANs

Stevens, TCP/IP Illustrated
- **IP Routing Table**
 - contains for each destination the address of the next gateway
 - destination: host computer or sub-network
 - default gateway

- **Packet Forwarding**
 - IP packet (datagram) contains start IP address and destination IP address
 - if destination = my address then hand over to higher layer
 - if destination in routing table then forward packet to corresponding gateway
 - if destination IP subnet in routing table then forward packet to corresponding gateway
 - otherwise, use the default gateway
IP Packet Forwarding

- **IP Packet (datagram) contains...**
 - TTL (Time-to-Live): Hop count limit
 - Start IP Address
 - Destination IP Address

- **Packet Handling**
 - Reduce TTL (Time to Live) by 1
 - If TTL ≠ 0 then forward packet according to routing table
 - If TTL = 0 or forwarding error (buffer full etc.):
 - delete packet
 - if packet is not an ICMP Packet then
 - send ICMP Packet with
 - start = current IP Address
 - destination = original start IP Address
Static and Dynamic Routing

- **Static Routing**
 - Routing table created manually
 - used in small LANs

- **Dynamic Routing**
 - Routing table created by Routing Algorithm
 - Centralized, e.g. Link State
 - Router knows the complete network topology
 - Decentralized, e.g. Distance Vector
 - Router knows gateways in its local neighborhood

\[n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \ldots \cdot n \]
\[2^n = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 - \ldots \cdot 2 \]

\[\frac{n \cdot (n-1)}{2} = \binom{n}{2} \]
Intra-AS Routing

- **Routing Information Protocol (RIP)**
 - Distance Vector Algorithmus
 - Metric = hop count
 - exchange of distance vectors (by UDP)

- **Interior Gateway Routing Protocol (IGRP)**
 - successor of RIP
 - different routing metrics (delay, bandwidth)

- **Open Shortest Path First (OSPF)**
 - Link State Routing (every router knows the topology)
 - Route calculation by Dijkstra’s shortest path algorithm
Distance Vector Routing Protocol

- Distance Table data structure
 - Each node has a
 - Line for each possible destination
 - Column for any direct neighbors
- Distributed algorithm
 - Each node communicates only with its neighbors
- Asynchronous operation
 - Nodes do not need to exchange information in each round
- Self-terminating
 - Exchange unless no update is available

Distance Table for A

<table>
<thead>
<tr>
<th>from A</th>
<th>B</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Distance Table for C

<table>
<thead>
<tr>
<th>from C</th>
<th>B</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>to A</td>
<td>3</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Routing Table entry:

- B
- B
- B
- D
Inter-AS
Distance Vector Routing Example

![Graph with nodes A, B, C, D, and E connected by links with distances labeled.]

<table>
<thead>
<tr>
<th>from A</th>
<th>via</th>
<th>entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>
Table: Routing Table

<table>
<thead>
<tr>
<th>from B</th>
<th>via</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>8</td>
</tr>
</tbody>
</table>

Diagram: Network Routing

![Network Diagram]

- **Path from B to C:**
 - B > A > C

- **Path from C to B:**
 - C > D > B

- **Path from C to E:**
 - C > D > E

- **Path from E to C:**
 - E > D > C

- **Path from E to B:**
 - E > D > B
“Count to Infinity” - Problem

- Good news travels fast
 - A new connection is quickly at hand
- Bad news travels slowly
 - Connection fails
 - Neighbors increase their distance mutually
 - "Count to Infinity" Problem
“Count to Infinity” - Problem

<table>
<thead>
<tr>
<th>from A</th>
<th>via</th>
<th>Routing Table entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>to B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>to C</td>
<td>3</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>from B</th>
<th>via</th>
<th>Routing Table entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>to A</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>to C</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>

- (B, A) no route
- (B, A, B, C) no route

Routing Table

<table>
<thead>
<tr>
<th>from A</th>
<th>via</th>
<th>Routing Table entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>to B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>to C</td>
<td>7</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>from B</th>
<th>via</th>
<th>Routing Table entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>to A</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>to C</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>

- (B, A) no route
- (B, A, B, C) no route

Routing Table

<table>
<thead>
<tr>
<th>from A</th>
<th>via</th>
<th>Routing Table entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>to B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>to C</td>
<td>7</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>from B</th>
<th>via</th>
<th>Routing Table entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>to A</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>to C</td>
<td>9</td>
<td>-</td>
</tr>
</tbody>
</table>

- (B, A) no route
- (B, A, B, C) no route

Path Vector

- B6DP
- B6DP
- B6DP

Bouw Gateway Protocol
Link-State Protocol

- Link state routers
 - exchange information using Link State Packets (LSP)
 - each node uses shortest path algorithm to compute the routing table

- LSP contains
 - ID of the node generating the packet
 - Cost of this node to any direct neighbors
 - Sequence-no. (SEQNO)
 - TTL field for that field (time to live)

- Reliable flooding (Reliable Flooding)
 - current LSP of each node are stored
 - Forward of LSP to all neighbors
 - except to be node where it has been received from
 - Periodically creation of new LSPs
 - with increasing SEQNO
 - Decrement TTL when LSPs are forwarded
Characteristics of routing in mobile ad hoc networks

- **Movement of participants**
 - Reconnecting and loss of connection is more common than in other wireless networks
 - Especially at high speed

- **Other performance criteria**
 - Route stability in the face of mobility
 - Energy consumption
Unicast Routing

- Variety of protocols
 - Adaptations and new developments
- No protocol dominates the other in all situations
 - Solution: Adaptive protocols?
Routing in MANETs

- Routing
 - Determination of message paths
 - Transport of data

- Protocol types
 - proactive
 - Routing tables with updates
 - reactive
 - Repair of message paths only when necessary
 - hybrid
 - Combination of proactive and reactive
Routing Protocols

- **Proactive**
 - Routes are **demand independent**
 - Standard Link-State und Distance-Vector Protocols
 - Destination Sequenced Distance Vector (**DSDV**)
 - Optimized Link State Routing (**OLSR**)

- **Reactive**
 - Route are determined when needed
 - Dynamic Source Routing (**DSR**)
 - Ad hoc On-demand Distance Vector (**AODV**)
 - Dynamic MANET On-demand Routing Protocol
 - Temporally Ordered Routing Algorithm (**TORA**)

- **Hybrid**
 - combination of reactive und proactive
 - Zone Routing Protocol (**ZRP**)
 - Greedy Perimeter Stateless Routing (**GPSR**)
Trade-Off

- Latency because of route discovery
 - Proactive protocols are faster
 - Reactive protocols need to find routes

- Overhead of Route discovery and maintenance
 - Reactive protocols have smaller overhead (number of messages)
 - Proactive protocols may have larger complexity

- Traffic-Pattern and mobility
 - decides which type of protocol is more efficient
Flooding

Algorithm
- Sender S broadcasts data packet to all neighbors
- Each node receiving a new packet
 • broadcasts this packet
 • if it is not the receiver

Sequence numbers
- identifies messages to prevent duplicates

Packet always reaches the target
- if possible
Packet for Receiver F
Possible collision at B
Nodes G, H, I do not receive the packet

Receiver F gets packet and stops
Flooding

- **Advantage**
 - simple and robust
 - the best approach for short packet lengths, small number of participants in highly mobile networks with light traffic

- **Disadvantage**
 - High overhead
 - Broadcasting is unreliable
 - lack of acknowledgements
 - hidden, exposed terminals lead to data loss or delay