

Wireless Sensor Networks 5. Routing

Christian Schindelhauer

Technische Fakultät

Rechnernetze und Telematik

Albert-Ludwigs-Universität Freiburg

Version 29.04.2016

ISO/OSI Reference model

- 7. Application
 - Data transmission, e-mail, terminal, remote login
- 6. Presentation
 - System-dependent presentation of the data (EBCDIC / ASCII)
- 5. Session
 - start, end, restart
- 4. Transport
 - Segmentation, congestion
- 3. Network
 - Routing
- 2. Data Link
 - Checksums, flow control
- 1. Physical
 - Mechanics, electrics

Protocols of the Internet

CoNe Freiburg

TCP/IP Layers

- 1. Host-to-Network
 - Not specified, depends on the local network,k e.g. Ethernet, WLAN 802.11, PPP, DSL
- 2. Routing Layer/Network Layer (IP - Internet Protocol)
 - Defined packet format and protocol
 - Routing
 - Forwarding
- 3. Transport Layer
 - TCP (Transmission Control Protocol)
 - Reliable, connection-oriented transmission
 - Fragmentation, Flow Control, Multiplexing
 - UDP (User Datagram Protocol)
 - hands packets over to IP
 - · unreliable, no flow control
- 4. Application Layer
 - Services such as TELNET, FTP, SMTP, HTTP, NNTP (for DNS), ...

Example: Routing between LANs

Routing Tables and Packet Forwarding

IP Routing Table

- contains for each destination the address of the next gateway
- destination: host computer or sub-network
- default gateway

Packet Forwarding

- IP packet (datagram) contains start IP address and destination IP address
 - if destination = my address then hand over to higher layer
 - if destination in routing table then forward packet to corresponding gateway
 - if destination IP subnet in routing table then forward packet to corresponding gateway false déchotomy
 - otherwise, use the default gateway

IP Packet Forwarding

IP -Packet (datagram) contains...

- TTL (Time-to-Live): Hop count limit
- Start IP Address
- Destination IP Address
- Packet Handling
 - Reduce TTL (Time to Live) by 1
 - If TTL ≠ 0 then forward packet according to routing table

1PV6

- If TTL = 0 or forwarding error (buffer full etc.):
 - delete packet
 - if packet is not an ICMP Packet then
 - send ICMP Packet with
 - start = current IP Address
 - destination = original start IP Address

Static and Dynamic Routing

1000 = 1000.499

$$M = 10$$

Static Routing

- Routing table created manually
- used in small LANs

Dynamic Routing

- Routing table created by Routing Algorithm
- Centralized, e.g. Link State _
 - Router knows the complete network topology
- Decentralized, e.g. Distance Vector Path Victor
 - Router knows gateways in its local neighborhood

$$\frac{m \cdot (n-1)}{2} = \binom{n}{2}$$

Intra-AS Routing

Within an

Artonomow System

- Routing Information Protocol (RIP)
 - Distance Vector Algorithmus
 - Metric = hop count
 - exchange of distance vectors (by UDP)
- Interior Gateway Routing Protocol (IGRP)
 - successor of RIP
 - different routing metrics (delay, bandwidth)
- Open Shortest Path First (OSPF)
 - Link State Routing (every router knows the topology)
 - Route calculation by Dijkstra's shortest path algorithm

Distance Vector Routing Protocol

- $A = \frac{10}{2} \log \frac{2\nu}{2} \log \frac{2\nu}{2} \log \frac{2\nu}{2}$
- Distance Table data structure
 - Each node has a
 - Line for each possible destination
 - Column for any direct neighbors
- Distributed algorithm
 - each node communicates only with its neighbors
- Asynchronous operation
 - Nodes do not need to exchange information in each round
- Self-terminating
 - exchange unless no update is available

Distance Table for C

uting .ble ntry
···· <i>y</i>

Inter-AS

Tier: WO Ties 1 Tie 2 Tinz

Distance Vector Routing Example

from A	vi		
to	В	С	entry
В	1	8	В
С	6	3	С
D	2	9	В
E	7	4	С

from A	vi		
to	В	С	entry
В	1	1	В
С	-	3	С
D	-	-	-
E	5	-	E

(A,B)	
(A,C)	
(A.B.C.	F

from		o material		
B to	Α	Οj	D	entry
Α	1	Six	ı	Α
С	1	3	•	С
D	•	11	1	С
E	-	-	8	D

from C to		ontra		
	Α	В	Е	entry
Α	3	1	ı	Α
В	-	5	1	В
D	-	-	8	E
E	-	-	1	E

from		via			
B to	Α	С	D	Entry	
Α	1	-	-	Α	
С	-	5 ,	-	С	
D	-	- /	1	D	
E	-	\ - \	8	D	

via

C

5

13

6

A

D

8

Entry

A

C

D

C

from

В

to

Α

C

D

E

+5		
1	6	
5	10	
1	6	—
9	% 13	•

	A	
B)-	5	3 (c)
1	7	1
(b)-		(E)

from		via		Fate.	
C to	Α	В	E	Entry	+
Α	3_		_	A	3
В	- ((5)-		В]
D	-	-	8	E	8
E		-	1	Е	

from		Cake		
C to	Α	В	E	Entry
Α	3	6	ı	Α
В	-	5		В
D	-	6	8	В
E	-	13	1	Е

"Count to Infinity" - Problem

- Good news travels fast
 - A new connection is quickly at hand
- Bad news travels slowly
 - Connection fails
 - Neighbors increase their distance mutally
 - "Count to Infinity" Problem

"Count to Infinity" - Problem

	via (Routing			via	a	Routing
from A	В	Table entry		from B	Α	С	Table entry
to B	2	В	to	Α	2	-	Α
C	no	BABC		С	5	-	A

Path-Vector

B6DP

Bords Gaterray

from A		via B	Routing Table entry		via			
				fr	om B	Α	С	Table entry
to	В	2	В	to	Α	2	-	Α
	С	7	В		С	9	-	Α
			-			-		-

Protocal

CoNe Freiburg

Link-State Protocol

- Link state routers
 - exchange information using Link State Packets (LSP)
 - each node uses shortest path algorithm to compute the routing table
- LSP contains
 - ID of the node generating the packet
 - Cost of this node to any direct neighbors
 - Sequence-no. (SEQNO)
 - TTL field for that field (time to live)
- Reliable flooding (Reliable Flooding)
 - current LSP of each node are stored
 - Forward of LSP to all neighbors
 - except to be node where it has been received from
 - Periodically creation of new LSPs
 - with increasing SEQNO
 - Decrement TTL when LSPs are forwarded

Characteristics of routing in mobile ad hoc

Movement of participants

 Reconnecting and loss of connection is more common than in other wireless networks

- Especially at high speed

Other performance criteria

- Route stability in the face of mobility

- energy consumption

Unicast Routing

- Variety of protocols
 - Adaptations and new developments
- No protocol dominates the other in all situations
 - Solution: Adaptive protocols?

Routing in MANETs

Routing

- Determination of message paths
- Transport of data
- Protocol types
 - proactive
 - Routing tables with updates
 - reactive
 - repair
 of message paths only when necessary
 - hybrid
 - combination of proactive and reactive

Routing Protocols

Proactive

- Routes are demand independent
- Standard Link-State und Distance-Vector Protocols
 - Destination Sequenced
 Distance Vector (**DSDV**)
 - Optimized Link State Routing (OLSR)

Reactive

- Route are determined when needed
 - Dynamic Source Routing (DSR)
 - Ad hoc On-demand Distance Vector (AODV)

floodi

- Dynamic MANET On-demand Routing Protocol
- Temporally Ordered Routing Algorithm (TORA)

Hybrid

- combination of reactive und proactive
 - Zone Routing Protocol (ZRP)
 - Greedy Perimeter Stateless Routing (GPSR)

Trade-Off

- Latency because of route discovery
 - Proactive protocols are faster
 - Reactive protocols need to find routes
- Overhead of Route discovery and maintenance
 - Reactive protocols have smaller overhead (number of messages)
 - Proactive protocols may have larger complexity
- Traffic-Pattern and mobility
 - decides which type of protocol is more efficient

Flooding

Algorithm

- Sender S broadcasts data packet to all neighbors
- Each node receiving a new packet
 - broadcasts this packet
 - if it is not the receiver
- Sequence numbers
 - identifies messages to prevent duplicates
- Packet always reaches the target
 - if possible

Packet for Receiver F

Receiver F gets packet and stops

Flooding

Advantage

- simple and robust
- the best approach for short packet lengths, small number of participants in highly mobile networks with light traffic

Disadvantage

- High overhead
- Broadcasting is unreliable
 - lack of acknowledgements
 - hidden, exposed terminals lead to data loss or delay