Wireless Sensor Networks

5. Routing

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 30.05.2016
- Perkins, Royer
 - Ad hoc On-Demand Distance Vector Routing, IEEE Workshop on Mobile Computing Systems and Applications, 1999

- Reaktives Routing-Protokoll

- Reactive routing protocol
 - Improvement of DSR
 - no source routing
 - Distance Vector Tables
 - but only for nodes with demand
 - Sequence number to help identify outdated cache info
 - Nodes know the origin of a packet and update the routing table
Algorithm

- Route Request (RREQ) like in DSR
- Intermediate nodes set a reverse pointer towards the sender
- If the target is reached, a Route Reply (RREP) is sent
- Route Reply follow the pointers

Assumption: symmetric connections
Route Reply
Data Packet[F]
Route Reply in AODV

- Intermediate nodes
 - may send route-reply packets, if their cache information is up-to-date

- Destination Sequence Numbers
 - measure the up-to-dateness of the route information
 - AODV uses cached information less frequently than DSR
 - A new route request generates a greater destination sequence number
 - Intermediate nodes with a smaller sequence number may not generate a route reply (RREP) packets
Timeouts

- Reverse pointers are deleted after a certain time
 - RREP timeout allows the transmitter to go back
- Routing table information to be deleted
 - if they have not been used for some time
 - Then a new RREQ is triggered
Link Failure Reporting

- Neighbors of a node X are active,
 - if the routing table cache are not deleted
- If a link of the routing table is interrupted,
 - then all active neighbors are informed
- Link failures are distributed by Route Error (RERR) packets to the sender
 - also update the Destination Sequence Numbers
 - This creates new route request
Detection of Link Failure

- **Hello messages**
 - neighboring nodes periodically exchange hello packets
 - Absence of this message indicates link failure

- **Alternative**
 - use information from MAC protocol
Sequence Numbers

- When a node receives a message with destination sequence number N
 - then this node sets its number to N
 - if it was smaller before

- In order to prevent loops
 - If A has not noticed the loss of link (C, D)
 - (for example, RERR is lost)
 - If C sends a RREQ
 - on path C-E-A
 - Without sequence numbers, a loop will be constructed
 - since A "knows" a path to D, this results in a loop (for instance, CEABC)
Sequence Numbers
Optimization
Expanding Ring Search

- Route Requests
 - *start with small time-to-live value (TTL)*
 - if no Route Reply (RREP) is received, the value is increased by a constant factor and resent

- This optimization is also applicable for DSR
\[\text{Traffic: } 1^2 + 2^2 + 3^2 + \ldots + d^2 = \Theta(d^3) \]

\[\text{Time: } 2(1 + 2 + 3 + \ldots + d) = \frac{d(d+1)}{2} = \Theta(d^2) \]

\[\text{Traffic: } 1 + (2^2 + 3^2 + 4^2 + \ldots + d^2) = \Theta(d^{1.5}) \]

\[\text{Time: } 1 + 2^2 + 3^2 + 4^2 + \ldots + d^2 = \Theta(d^2) \]
exponential expanding ring search

\[1, 2, 4, 8, 16, \ldots, d \]

Time: \[2 \cdot \left(1 + 2 + 4 + 8 + \ldots + d \right) \]
\[\leq 2d < 3d \]

Traffic: \[D \cdot \left(1 + 2^2 + 4^2 + 8^2 + \ldots + d^2 \right) \]
\[\leq \frac{d^4}{2} \]

\[1, 2, 2^2, 2^2, 2^2, 2^2, 2^2, 2^2, \ldots, 2^n, 3^n \]
DYMO - Dynamic MANET On-demand (AODVv2) Routing

- Literature

- Improvement of AODV
 - RREQ, RREP to construct shortest length paths
 - Path accumulation
 - a single route request creates routes to all the nodes along the path to the destination
 - Unreliable links can be assigned a cost higher than one
 - Sequence numbers to guarantee the freshness routing table entries
Routing in MANETs

- **Routing**
 - Determination of message paths
 - Transport of data

- **Protocol types**
 - **proactive**
 - Routing tables with updates
 - **reactive**
 - repair of message paths only when necessary
 - **hybrid**
 - combination of proactive and reactive
Routing Protocols for MANETs

- **Proactive**
 - Routes are demand independent
 - Standard Link-State and Distance-Vector Protocols
 - Destination Sequenced Distance Vector (DSDV)
 - Optimized Link State Routing (OLSR)

- **Reactive**
 - Route are determined when needed
 - Dynamic Source Routing (DSR)
 - Ad hoc On-demand Distance Vector (AODV)
 - Dynamic MANET On-demand Routing Protocol
 - Temporally Ordered Routing Algorithm (TORA)

- **Hybrid**
 - combination of reactive und proactive
 - Zone Routing Protocol (ZRP)
 - Greedy Perimeter Stateless Routing (GPSR)
Optimized Link State Routing

- Literature
 - First published 1999

- Most proactive protocols are based on
 - Link-state routing
 - Distance-Vector routing
Link State Routing

- Connections are periodically published throughout the network
- Nodes propagate information to their neighbors
 - i.e. flooding
- All network information is stored
 - with time stamp
- Each node computes shortest paths
 - possibly also other route optimizations
- Each node broadcasts its neighborhood list
 - Each node can determine its 2-hop neighborhood
- Reducing the number of messages
 - Fewer nodes participate in flooding
- Multipoint relay node (MPRs)
 - Are chosen such that each node has at least one multipoint relay node as in its 2-hop neighborhood
 - Only multipoint relay nodes propagate link information
- Node sends their neighborhood lists
 - Such that multipoint relay nodes in the 2-hop neighborhood can be chosen
Optimized Link State Routing (OLSR)

- Combines Link-State protocol and topology control
- Topology control
 - Each node chooses a minimal dominating set of the 2 hope neighborhood
 - *multipoint relays (MPR)*
 - Only these nodes propagate link information
 - More efficient flooding
 - Link State component
 - Standard link state algorithm on a reduced network
Optimized Link State Routing (OLSR)
Optimized Link State Routing (OLSR)
Optimized Link State Routing (OLSR)
Selection of MPRs

- Multipoint Relaying for Flooding Broadcast Messages in Mobile Wireless Networks, Amir Qayyum, Laurent Viennot, Anis Laouiti, HICCS 2002
- Problem is NP-complete
- Heuristics
 - recommended for OLSR
- Notations
 - $N(x)$: 1 hop neighborhood of x
 - $N^2(x)$: 2 hop neighborhood of x
 - Alle connections are symmetrical

$N^2(x) = N(N(x))$
Selection of MPRs

- At the beginning there is no MPR
 - Each node chooses its MPRs

- Rule 1: A node of x is selected as MPR, if
 - it in N(x) and
 - it is the only neighborhood node in the node N^2(x)

- Rule 2: If nodes in N^2 (x) are not covered:
 - Compute for each node in N(x) the number of uncovered nodes in N^2(x)
 - Select as MPR the node that maximizes the value
Rule 1
Rule 2
OLSR

- OLSR is flooding link information using MPRs
 - Multipoint-Relays
- Receivers choose their own MPRs for propagating
 - Each node chooses its own MPRs
- Routes use only MPRs as intermediate nodes
Zone Routing Protocol (ZRP)

- **Haas 1997**

- **Zone Routing Protocol combine**
 - **Proactive protocol**
 • for local routing
 - **Reactive protocol**
 • for global routing
ZRP

- **Routing zone of a node x**
 - Nodes in a given maximum hop-distance d

- **Peripheral nodes**
 - all nodes have exactly the hop-distance d
 - within the routing zone x
ZRP

- **Intra zone routing**
 - proactive update the connection information in the routing zone of node
 - e.g. with link state or distance vector protocols

- **Inter zone routing**
 - Reactive route discovery is used for distant / unknown nodes
 - Procedure similar to DSR
 - Only peripheral nodes reach further information
ZRP: Example with radius $d=2$

Routing zone of x

Peripheral nodes
ZRP: Example with radius $d=2$

route discovery for blue node
ZRP: Example with radius $d=2$

route discovery for blue node
ZRP: Example with radius $d=2$

route discovery for blue node

Route Reply
ZRP: Example with radius $d=2$

route discovery for blue node

Data transfer
Routing Protocols for WSNs

- Literature
Types of Communication

- **Single Hop**
 - Two participants, sender/receiver, e.g. outdoor temperature sensor
 - Base stations: master/slave, e.g. Bluetooth
 - Many participants, i.e. data mule

- **Multihop**
 - Local Communication
 - Point-to-Point/Unicast
 - Convergence
 - Aggregation
 - Divergence

Data Aggregation

- In multi-hop networks combining messages can improve networking
- Concatenation of messages
 - overall number of headers is reduced
 - especially for Preamble Sampling
 - smaller costs for collision avoidance
- Recalculation of contents
 - e.g. If the minimum temperature is required, then it satisfies to forward the smallest value
 - For this purpose, collect the input over some time
Convergence
Data Aggregation by Concatenation
Real Data Aggregation by Recalculation

17°C

19°C

20°C

= min(17, 19, 20)

minimum temperature 17°C
Simple Functions for Data Aggregation

- **Minimum**
 - inner node computes the minimum of input values

- **Maximum**
 - like Minimum

- **Number of sources**
 - inner node adds input values

- **Sum**
 - addition at inner nodes

\[
\min \left(\max \{x, y\} \right) = - \min \{-x, -y\}
\]
Aggregable Functions

- **Mean**
 - compute the number of sensors: \(n \)
 - compute the sum of sensor values: \(S \)
 - mean = \(\frac{S}{n} \)

- **Variance**
 - Compute average and the average of squares of values
 - \(V(X) = E(X^2) - E(X)^2 \)

\[\text{Median} \left(10, 0, 0, 15, 24 \right) = 10 \]
Hard Aggregable Functions

- The following functions cannot be aggregated easily
 - median 50%
 - p-quantile 25%
 - if p is not very small or large
 - number of different values
 - only for large data sets an approximation is possible

- Approximate solution
 - was presented in „Medians and Beyond: New Aggregation Techniques for Sensor Networks, Shrivastava et al. Sensys 04
 - using k words in each message an approximation ratio of \log{n}/k can be achieved
Routing Models for Data Aggregation

- Address Centric Protocol
 - each sensor sends independently towards the sink
 - not suitable for (real) aggregation

- Data Centric Protocol
 - Forwarding nodes can read and change messages
Communication Graphs for Aggregation

- **Tree Structure**
 - If there is only a single sink
 - and every source uses only a single path
 - then every communication graph in a WSN is a tree

- **DAG (directed acyclic graph)**
 - general case
 - caused by changing routing paths to the sink
 - may complicate data aggregation
 - e.g. sum

- **General graph**
 - Population protocols
 - are not used in WSNs
\[\frac{1}{n} + \frac{1}{2} = \frac{3}{16} \]

\[\frac{1}{n} + \frac{5}{16} = \frac{9}{16} \]

\[S_1 + S_2 = \frac{S_1 + S_2}{2} \]

\[S_1 + S_2 \]
\[\frac{3 + \frac{2}{8}}{2} = \frac{\frac{5}{16}}{2} \rightarrow \left(\frac{1}{3} \right) \]
Probabilistic Counting for Data Aggregation

- Hard problems for Data Aggregation
 - Counting of different elements in a multiset
 - Computation of Median
- Exact computation needs complete knowledge
 - therefore we compute approximations

Main Technique
- probabilistic counting
 - "Counting by Coin Tossings“, Philippe Flajolet, ASIAN 2004
- probabilistic sampling
Types of WSN Routing

- MANET Routing
 - Flooding Based Routing (MANET)
 - Flooding, DSR, AODV, DYMO
 - Cluster-Based Hierarchical Routing
 - Low-Energy Adaptive Clustering Hierarchy (LEACH)

- Geographic Routing
 - Greedy Routing
 - Face Routing

- Self-Organizing Coordinate Systems
 - Inferring Location from Anchor Nodes, Virtual Coordinates
 - Gradient Routing
 - Gradient-Based Routing (GBR)
 - Routing Protocol for Low Power and Lossy Networks (RPL)

Algorithms for Radio Networks

Routing

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Christian Schindelhauer