

Wireless Sensor Networks 5. Routing

JRG

ZZ

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 30.05.2016

- Perkins, Royer
 - Ad hoc On-Demand Distance Vector Routing, IEEE Workshop on Mobile Computing Systems and Applications, 1999
- Reaktives Routing-Protokoll
- Reactive routing protocol
 - Improvement of DSR
 - no source routing
 - Distance Vector Tables
 - but only for nodes with demand
 - Sequence number to help identify outdated cache info
 - Nodes know the origin of a packet and update the routing table

- Algorithm
 - Route Request (RREQ) like in DSR
 - Intermediate nodes set a reverse pointer towards thesender
 - If the target is reached, a Route Reply (RREP) is sent
 - Route Reply follow the pointers
- Assumption: symmetric connections

Route Reply

Route Reply in AODV

- Intermediate nodes
 - may send route-reply packets, if their cache information is up-to-date
- Destination Sequence Numbers
 - measure the up-to-dateness of the route information
 - AODV uses cached information less frequently than DSR
 - A new route request generates a greater destination sequence number
 - Intermediate nodes with a smaller sequence number may not generate a route reply (RREP) packets

- Reverse pointers are deleted after a certain time
 - RREP timeout allows the transmitter to go back
- Routing table information to be deleted
 - if they have not been used for some time
 - Then a new RREQ is triggered

- Neighbors of a node X are active,
 - if the routing table cache are not deleted
- If a link of the routing table is interrupted,
 - then all active neighbors are informed
- Link failures are distributed by Route Error (RERR) packets to the sender
 - also update the Destination Sequence Numbers
 - This creates new route request

-N

Detection of Link Failure

- Hello messages
 - neighboring nodes periodically exchange hello packets from
 - Absence of this message indicates link failure
- Alternative
 - use information from MAC protocol

Sequence Numbers

- When a node receives a message with destination sequence number N
 - then this node sets its number to N
 - if it was smaller before
- In order to prevent loops
 - If A has not noticed the loss of link (C, D)
 - (for example, RERR is lost)
 - If C sends a RREQ
 - on path C-E-A
 - Without sequence numbers, a loop will be constructed
 - since A "knows" a path to D, this results in a loop (for instance, CEABC)

в

Ε

CoNe Freiburg

Sequence Numbers

exponetial expanding ring scardy 11, 2, 4, 8, 16, ..., d d lime: 2. (1+2+4+8 + d) ⊆ 2d =(40

A 1+2²+4²+8²+...+d raffic 1, 2, 2^2 , 2

Literature

- I. Chakeres and C. Perkins, "Dynamic MANET Ondemand (DYMO) Routing," IETF MANET, Internet-Draft, 5 December 2008, <u>draft-ietf-manet-dymo-16</u>.
- Improvement of AODV
 - RREQ, RREP to construct shortest length paths
 - Path accumulation
 - a single route request creates routes to all the nodes along the path to the destination
 - Unreliable links can be assigned a cost higher than one
 - Sequence numbers to guarantee the freshness routing table entries

Routing in MANETs

- Routing
 - Determination of message paths
 - Transport of data
- Protocol types
 - proactive
 - Routing tables with updates
- reactive
 - repair of message paths only when necessary
 - hybrid
 - combination of proactive and reactive

FREIBURG

CoNe Freiburg

Routing Protocols for MANETs

Proactive

- Routes are demand independent
- Standard Link-State und Distance-Vector Protocols
 - Destination Sequenced
 Distance Vector (**DSDV**)
 - Optimized Link State Routing (**OLSR**)

Reactive

- Route are determined when needed
 - Dynamic Source Routing (**DSR**)
 - Ad hoc On-demand Distance Vector (AODV)
 - Dynamic MANET On-demand
 Routing Protocol
 - Temporally Ordered Routing Algorithm (TORA)

Hybrid

- combination of reactive und proactive
 - Zone Routing Protocol (**ZRP**)
 - Greedy Perimeter Stateless Routing (GPSR)

Optimized Link State Routing

Literature

- RFC3626: Clausen, Jacquet, Optimized Link State Routing Protocol, 2003
- First published 1999
- Most proaktive protocols are are based on
 - Unk-state routing
 - Distance-Vector routing

- Connections are periodically published throughout the network
- Nodes propagate information to their neighbors
 - i.e. flooding
- All network information is stored
 - with time stamp
- Each node computes shortest paths
 - possibly also other route optimizations

- Each nodes broadcasts its neighborhood list
 - Each node can determinate its 2-hop neighborhood
- Reducing the number of messages
 - fewer nodes participate in flooding
- Multipoint relay node (MPRs)

Freiburg

- are chosen such that each node has at least one multipoint relay node as in its 2-hop neighborhood
- Only multipoint relay nodes propagate link information
- Node sends their neighborhood lists
 - such that multipoint relay nodes in the 2-hop neighborhood can be chosen

- Combines Link-State protocol and topology control
- Topology control
 - Each node chooses a minimal dominating set of the 2 hope neighborhood
 - o multipoint relays (MPR)
 - Only these nodes propagate link information
 - More efficient flooding
- Link State component
 - Standard link state algorithm on a reduced network

FREIBURG

Optimized Link State Routing (OLSR)

Optimized Link State Routing (OLSR)

UNI FREIBURG

Optimized Link State Routing (OLSR)

Selection of MPRs

- Multipoint Relaying for Flooding Broadcast Messages in Mobile Wireless Networks, Amir Qayyum, Laurent Viennot, Anis Laouiti, HICCS 2002
- Problem is NP-complete
- Heuristics
 - recommended for OLSR
- Notations
 - N(x): 1 hop neighborhood of x
 - $N^2(x)$: 2 hop neighborhood of x
 - Alle connections are symmetrical

 $|V^{2}(\kappa) - N(A(\kappa))$

Selection of MPRs

- At the beginning there is no MPR
 - Each node chooses its MPRs
- Rule 1: A node of x is selected as MPR, if
 - it in N(x) and
 - it is the only neighborhood node in the node $N^2(x)$
- Rule 2: If nodes in N² (x) are not covered:
 - Compute for each node in N(x) the number of uncovered nodes in N²(x)
 - Select as MPR the node that maximizes the value

UNI FREIBURG

UNI FREIBURG

- OLSR is flooding link information using MPRs
 - Multipoint-Relays
- Receivers choose their own MPRs for propagating
 - Each node chooses its own MPRs
- Routes use only MPRs as intermediate nodes

Zone Routing Protocol (ZRP)

- Haas 1997
 - A new routing protocol for the reconfigurable wireless networks, Proc. of IEEE 6th International Conference on Universal Personal Communications, 562–566
- Zone Routing Protocol combine
 - Proactive protocol
 - for local routing
 - reactive protocol
 - for global routing

4(

- Routing zone of a node x
 - Nodes in a given maximum hop-distance d
- Peripheral nodes
 - all nodes have exactly the hop-distance d
 - within the routing zone x

- Intra zone routing
 - proactive update the connection information in the routing zone of node
 - e.g. with link state or distance vector protocols
- Inter zone routing
 - Reactive route discovery is used for distant / unknown nodes
 - Procedure similar to DSR
 - Only peripheral nodes reach further information

$\begin{array}{l} A \\ \textbf{CoNe} \\ \textbf{Freiburg} \end{array} \quad ZRP: Example with radius d=2 \end{array}$

UNI FREIBURG

UNI FREIBURG

A Rout CoNe Freiburg

Routing Protocols for WSNs

- Literature
 - From MANET To IETF ROLL Standardization: A Paradigm Shift in WSN
- Routing Protocols, Watteyne et al, IEEE Communication Survey & Tutorials, Vol. 13, No. 4, 4th Quarter, 2011
 - Routing Protocols in Wireless Sensor Networks: A Survey, Goyal,
- Tripathy, 2012 Second International Conference on Advanced Computing
 & Communication Technologies
 - Energy-Efficient Routing Protocols in Wireless Sensor Networks: A
- Survey, Pantazis et al., IEEE Communication Survey & Tutorials, Vol. 15, No. 2, 2nd Quarter, 2013

Types of Communication

- Two participants, sender/receiver, e.g. outdoor temperature sensor
- Base stations: master/slave, e.g. Bluetooth
- Many participants, i.e. data mule

🕫 Multihop

- Local Communication
- Point-to-Point/Unicast
- Convergence
- Aggregation
- Divergance

Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey, Pantazis et al., IEEE Communication Survey & Tutorials, Vol. 15, No. 2, 2nd Quarter, 2013

- In multi-hop networks combining mesage can improve networking
- Concatenation of messages
 - overall number of headers is reduced
 - especially for Preamble Sampling
 - smaller costs for collision avoidance
- Recalculation of contents
 - e.g. If the minimum temperature is required, then it satisfies to forward the smallest value
 - For this purpose, collect the input over some time

UNI FREIBURG

Data Aggregation by Concatenation

UNI FREIBURG

Real Data Aggregation by Recalculation

OSchindella

Ð

UNI FREIBURG

Simple Functions for Data Aggregation

10

10

6,7

100

10

- Minimum
 - inner node computes the minimum of input values
- Maximum
 - like Minimum

$$\operatorname{prim}\left(\max\{x,y\}=-\min\{-x,-y\}\right)$$

O

10

100

55

- Number of sources
 - inner node adds input values
- Sum
 - addition at inner nodes

Aggregable Functions

- Mean
 - compute the number of sensors: n
 - compute the sum of sensor values: S
 - mean = S/n
- Variance
 - Compute average and the average of squares of values
 - $V(X) = E(X^2) E(X)^2$

0 Medlan media (10,0,0,15,24) = 10

Hard Aggregable Functions

- The following functions cannot be aggregated easily 50%
 - median
 - p-quantile
 - if p is not very small or large
 - number of different values
 - only for large data sets an approximation is possible
- Approximate solution
 - was presented in "Medians and Beyond: New Aggregation Techniques for Sensor Networks, Shrivastava et al. Sensys 04

25%

 using k words in each message an approximation ratio of log n/k can be achieved

UNI FREIBURG

Routing Models for Data Aggregation

- Address Centric Protocol
 - each sensor sends independently towards the sink
 - not suitable for (real) aggregation
- Data Centric Protocol
 - Forwarding nodes can read and change messages

CoNe Freiburg

Communication Graphs for Aggregation

- Tree Structure
 - If there is only a single sink
 - and every source uses only a single path
 - then every communication graph in a WSN is a tree
- DAG (directed acyclic graph)
 - general case
 - caused by changing routing paths to the sink
 - may complicate data aggregation
 - e.g. sum
- General graph
 - Population protocols
 - are not used in WSNs

UNI FREIBURG

Probabilistic Counting for Data Aggregation

- Hard problems for Data Aggregation
 - Counting of different elements in a multiset
 - Computation of Median
- Exact computation needs complete knowledge
 - therefore we compute approximations
- Main Technique
 - probabilistic counting
 - "Counting by Coin Tossings", Philippe Flajolet, ASIAN
 - -> 2004
 - probabilistic sampling
 - "A note on efficient aggregate queries in sensor networks", Boaz Patt-Shamir, Theoretical Computer Science 370
 - (2007) 254–264

-

Types of WSN Routing

Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey, Pantazis et al., IEEE Communication Survey & Tutorials, Vol. 15, No. 2, 2nd Quarter, 2013

- MANET Routing
 - Flooding Based Routing (MANET)
 - Flooding, DSR, AODV, DYMO
 - Cluster-Based Hierarchical Routing
 - Low-Energy Adaptive Clustering Hierarchy (LEACH)
- Geographic Routing
 - Greedy Routing
 - Face Routing
- Self-Organizing Coordinate Systems
 - Inferring Location from Anchor Nodes, Virtual Coordinates
 - Gradient Routing
 - Gradient-Based Routing (GBR)
 - Routing Protocol for Low Power and Lossy Networks (RPL)

Algorithms for Radio Networks

Routing

University of Freiburg Technical Faculty Computer Networks and Telematics Christian Schindelhauer

