

Wireless Sensor Networks 5. Routing

JRG

ZZ

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 30.05.2016

Types of WSN Routing

Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey, Pantazis et al., IEEE Communication Survey & Tutorials, Vol. 15, No. 2, 2nd Quarter, 2013

- MANET Routing
 - Flooding Based Routing (MANET)
 - Flooding, DSR, AODV, DYMO
 - Cluster-Based Hierarchical Routing
 - Low-Energy Adaptive Clustering Hierarchy (LEACH)
- Geographic Routing
 - Greedy Routing
 - Face Routing
- Self-Organizing Coordinate Systems
 - Inferring Location from Anchor Nodes, Virtual Coordinates
 - Gradient Routing
 - Gradient-Based Routing (GBR)
 - Routing Protocol for Low Power and Lossy Networks (RPL)

UNI

Literature

- Heinzelman, W., Chandrakasan, A., and Balakrishnan, H., "Energy-Efficient Communication Protocols for Wireless Microsensor Networks", Proceedings of the 33rd Hawaaian International Conference on Systems Science (HICSS), January 2000.
- Heinzelman, Chandrakasan, Balakrishnan, An Application-Specific Protocol Architecture for Wireless Microsensor Networks, IEEE Transactions on Wireless Communications, Vol. 1, NO. 4, October 2002

ß

Code

TDMA

CDMA

RC

TDMA-based MAC + simple Routing Protocol

- Cluster heads (CH)
 - Randomized, adaptive, self-configuring algorithm
 - use CDMA for communication
- Other nodes
 - communicate only with cluster head using TDMA-MAC
- Application spedific data processing
 - aggregation, compression
- Two-hop-Routing
 - Nodes to CH, CH to base station
 - Minimum energy routing

Adaptive versus Static Clustering

- Cluster members transmit to a cluster head
- Cluster head
 - transmits to the sink
 - Cluster heads are energy intensive
 - are the first to die
- LEACH
 - nodes self-elect to become cluster heads
 - Cluster-heads data from their surrounding nodes and pass it on to the base station
 - is dynamic because the job of clusterhead rotates

Fig. 3. Dynamic cluster formation during two different rounds of LEACH. All nodes marked with a given symbol belong to the same cluster, and the cluster head nodes are marked with **•**.

LEACH Protocol

- Steps
 - Cluster Head Selection
 - probabilistic or
 - central (LEACH-C) by base station
 - Cluster Formation
- Steady State Phase
- Assumptions
 - All nodes can reach the base station (BS)
 - Short transmission ranges can save energy
 - energy path loss ~ d²

LEACH: Cluster Head Selection Algorithm

- Given
 - k: number of desired cluster heads
 - n: number of nodes
 - p = k/n desired fraction of nodes
 - such that 1/p is a natural number
 - t: round number
 - t₀ = t (t mod 1/p)
- Choose randomly $r \in [0,1]$
- In each round compute T(t): $T(t) = \frac{p}{1 p(t \mod \lceil \frac{1}{p} \rceil)}$ $T(t) = \frac{p}{1 p(t \mod \lceil \frac{1}{p} \rceil)}$

 $P = \frac{10}{100} = 0.1 \qquad P$ $P = \frac{4}{100} = 0.1 \qquad P$ $P = \frac{4}{100} = 0.152...$

- probability that a node i elects itself to become a cluster head
- If (r < T(t)) and
 - (node has not been a cluster head in the last 1/p rounds) then
 - Select node as cluster head for round r

$$\frac{P}{1-\frac{P}{p}+P} = \frac{P}{p} = 1$$

t= - 1

LEACH: Cluster Formation Algorithm

- Cluster Heads broadcasts an advertisement message using CSMA
- Based on RSSI (received signal strength indicator)
 - each non-cluster node determine its cluster head for this round
- Each non-cluster head transits a join-request message
 - using CSMA
- Cluster head node sets up a TDMA schedule for data transmission within the cluster
 - prevents collision
 - energy conservation for non-cluster-heads

Steady-state

Slot for

Clusters formed

Slot for

node i

Frame

Time

- Assumptions
 - Setup phase stars at the same time
 - BS sends out synchronized pulses to the nodes
 - Cluster heads are awake all the time
- To reduce inter-cluster interference, each cluster
 Communicates using direct-sequence spread spectrum
- Data is sent from the cluster head to the base station using CDMA

LEACH: Optimal number of clusters

Fig. 6. Average energy dissipated per round in LEACH as the number of clusters is varied between 1 and 11. This graph shows that LEACH is most energy efficient when there are between 3 and 5 clusters in the 100-node network, as predicted by the analysis.

FREIBURG

- Base station cluster formation
- Use a central control algorithm to form clusters
 - During setup phase each node sends its location and energy level to the base station
 - base station assigns cluster heads and cluster
 - base station broadcasts this information
 - steady-state phase is same as LEACH

Algorithms for Radio Networks

Routing

University of Freiburg Technical Faculty Computer Networks and Telematics Christian Schindelhauer

