

Wireless Sensor Networks 6. WSN Routing

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 30.05.2016

> JNI FREIBURG

Routing Protocol for Low power and Lossy Networks (RPL)

- Literature
 - IETF RFC 6550, RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, Winter, Thubert, Brandt, Hui, Kelsey, Levis, Pister, Struik, Vasseur, Alexander, March 2012

ETX

- Designed for Low-power and Lossy Networks (LLN)
 - limited processing power, memory, energy
 - interconnected by lossy links, low data rates
 - traffic patterns
 - Multipoint to point (convergecast)
 - Point to multipoint (multicast)
 - point to point (unicast)
- Design Principles
 - Routing Metric is variable
 - bidirectional links required
 - uses Trickle for data dissemination
 - uses DAG as basic topology

sat of nods / verticen set of edges lays knot modi

- DAG: directed acyclic graph
 - routed towards root nodes
- DAG root = sink of a DAG = LBR (LLN Border Router)
- DODAG: destination-oriented DAG
 - DAG with single root
- Rank:
 - partial order in corresponding with the DODAG
- Grounded DODAG
 - DODAG where RPL can find the root
- Floating DODAG
 - A DODAG where there is no path to the root because wrong pointers

doup up A stank

- Convergecast (MP2P)
 - DAG with multiple successors if possible
 - DAG defined by specific metrics (e.g. ETX, latency, DAG rank/hop count)
 - Least expensive paths
- Multicast
 - DAG also used for P2MP flows
- MP2P and P2MP for P2P (unicast)
- DAG
 - Depth (aka. rank), i.e. cost towards the sink (root)
 - Rank defines position in the DAG

RPL: MP2P Forwarding

Forward to nodes of lesser rank

- avoids loops
- loops may occur when the metric has changed or nodes leave due to rank inconsistency
- use redundancy
- Forward to nodes of equal rank
 - not using DÁG links
 - if forwarding to lesser rank (DAG-link) fails
- Do not forward to nodes of higher rank
 - causes loops

- Given LLN with ETX
 - ETX should be stable enough for route computation
 - Nodes are bidirectional and ETX is known at both ends
 - Or use any other comparable metric, e.g. hop distance
- Minimize ETX

- Sink broadasts RA-DIO
 - Router
 Advertisement
 (RA)
 - DODAG
 Information
 Object (DIO)
- Nodes A, B, C
 - receive RA-DIO
 - join DAG rooted to sink (LBR)

JNI Reibur

- Nodes A, B, C
 - receive RA-DIO
 - join DAG rooted to sink (LBR)
 - compute rank

BURG

- Nodes A, B, C
 - receive RA-DIO
 - join DAG rooted to sink (LBR)
 - compute rank

FREIBURG

- Node C
 - send RA-DIO
- Nodes B,F receive it
 - recompute rank

UNI FREIBURG

- Nodes B and F
 - recompute rank
- Node B
 - redirects to C
- Node F
 - joins the DAG

- Final network
- Rank is rounded
 - such that multiple paths exist
- Maintenance is continued
 - RA (router announcements) use Trickle algorithm

RPL: Convergecast (MP2P)

- MP2P traffic flows along DAG links
 - toward sink/DAG root/LBR

- Unicast message
 - travel towards the sink (up)
 - and then towards the target node (down)
- Non-storing case
 - message travels to sink and is sent via source routing
- Storing case
 - message travels up until a node knows the target

REIBURG

RPL: Loop Avoidance

- Node A looses connection towards sink
 - with no alternatives
- A sends out RA-DIO
 - and becomes root
 of a floating DAG
- Successors of A flood RA-DIO to inform all dependent nodes

- Floating DAG
 - does not need to satisfy the DAG constraint
- Nodes A becomes floating DAG
- Node B and D have alternate parents and remove links towards A

FREIBURG

- Node B will advertise with RA-DIO
- A joins DAG again

- Now link from E to B fails
- Nodes E,D,G
 become floating
 DAG
 - Informed by E
- Nodes I,F
 - have alternative routes

- Assume A advertises link
- D links to A
 - and forwards info
 to E and G
- Nodes E, G now repair links
- Eventually, again the optimal network will be found

- specified only for IPv6
- based on Distance Vector
- produces a stable DAG
 - well suited for traffic directions up and down
- problematic for other traffic directions
- Critical evaluation:
 - Clausen, T.; Herberg, U.; Philipp, M.; "A critical evaluation of the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL)",
- Wireless and Mobile Computing, Networking and Communications (WiMob), 2011 IEEE 7th International Conference on , vol., no., pp. 365-372, 10-12 Oct. 2011
 - assumes bi-directional connections
 - not completely specified
 - Loops are in real experiments a big unresolved problem

Wireless Sensor Networks 6. WSN Routing

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 30.05.2016

INI