

Wireless Sensor Networks 9. Energy Harvesting

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 30.05.2016

- $\Lambda M / M$
- Energy harvesting
 - can remove batteries from WSNs
 - potentially infinite lifetime
 - active time can be increased (or reduced)
- Example
 - solar energy only available at daylight
- Energy concept
 - necessary for the entire period
 - regulates interplay of sleep phase, data rate and short term energy source

- Typical task in battery operated WSN
 - minimize energy consumption
 - maximize lifetime 🧹
- Task in harvesting-WSN
 - continuous operation
 - i.e. infinite lifetime
 - term: energy-neutral operation

Possible Sources

- Piezoelectric effect
 - mechanical pressures produces voltage
- Thermoelectric effect
 - temperature difference of conductors with different thermal coefficient

Kinetic energy

- e.g. self-rewinding watches
- Micro wind turbines
- Antennas
- Chemical sources,...

Differences Compared to Batteries

- Time dependent ^L
 - form of operation has to be adapted over time
 - sometimes not predictable
- Location dependent
 - different nodes have have different energy
 - load balancing necessary
- Never ending supply

New efficiency paradigm

- utilization of energy for maximum performance
- energy saving may result in unnecessary opportunity costs

Solutions without Power Management

- Without energy buffer
 - harvesting hardware has to supply maximal necessary energy level at minimum energy input
 - only in special situation possible
 - e.g. light switch
- With energy buffer
 - power management system necessary

Power Management System

- Target
 - Providing the necessary energy from external energy source and energy buffer

Energy Sources

- Uncontrolled but predictable
 - e.g. daylight
- Uncontrolled and unpredictable
 - e.g. wind
- Controllable
 - energy is produced if necessary
 - e.g. light switch, dynamo on bike
- Partially controllable
 - energy is not always available
 - e.g. radio source in the room with changing reception

UNI FREIBURG

Harvesting Theory CoNe Freiburg

- P_s(t): Power output from energy source a time t
- P_c(t): Energy demand at time t
- Without energy buffer
 - $P_s(t) \ge P_c(t)$: node is active
- Ideal energy buffer
 - Continuous operation if

$$\int_{0}^{T} P_{c}(t)dt \leq \int_{0}^{T} P_{s}(t)dt + B_{0} \quad \forall \quad T \in [0,\infty)$$

- where B₀ is the initial energy
- energy buffer is lossless, store any amount of energy

 $P_{s}(t) > P_{c}(t)$

- P_s(t): Power output from energy source a time t
- P_c(t): Energy consumed at time t

Let
$$[x]^+ = \begin{cases} x & x \ge 0\\ 0 & x < 0 \end{cases}$$

- Non-ideal energy buffer
 - Continuous operation if

$$\underbrace{B_0 + \eta \int_0^T [P_s(t) - P_c(t)]^+ dt}_{Stories} - \int_0^T [P_c(t) - P_s(t)]^+ dt - \int_0^T P_{leak}(t) dt \ge 0$$

- B_0 is the initial energy
- η : efficiency of energy buffer
- Pleak(t): energy loss of the memory

Harvesting Theory

- P_s(t): Power output from energy source a time t
- P_c(t): Energy consumed at time t
- Let $[x]^+ = \begin{cases} x & x \ge 0\\ 0 & x < 0 \end{cases}$
- Non-ideal energy buffer with limited reception B
 - Continuous operation if

$$B_0 + \eta \int_0^T [P_s(t) - P_c(t)]^+ dt - \int_0^T [P_c(t) - P_s(t)]^+ dt - \int_0^T P_{leak}(t) dt \ge 0$$

- B_0 is the initial energy of the buffer
- η: efficiency of energy buffer
- P_{leak}(t): leakage power of the energy buffer

$$B_{0} + \eta \int_{0}^{T} [P_{s}(t) - P_{c}(t)]^{+} dt - \int_{0}^{T} [P_{c}(t) - P_{s}(t)]^{+} dt - \int_{0}^{T} P_{leak}(t) dt \leq B$$

$$12$$

If the power source $P_s(t)$ occurs regularly, then it satisfies the following equations

$$\int_{\tau}^{\tau+T} P_{\mathbf{s}}(t) dt \leq \rho_{\mathbf{1}} T + \sigma_{1}$$
$$\int_{\tau}^{\tau+T} P_{\mathbf{s}}(t) dt \geq \rho_{\mathbf{1}} T - \sigma_{2}$$

Fig. 2. Solar energy based charging power recorded for 9 days

13

Model of Benign Energy Behavior

- Benign energy consumption:
 - P_c(t) satisfies the following

R

Substitution into the non-ideal energy source inequality:

$$B_{0} + \eta \cdot \min\{\int_{T} P_{s}(t)dt\} - \max\{\int_{T} P_{c}(t)dt\} - \int_{T} P_{leak}(t)dt \ge 0$$

$$\Rightarrow B_{0} + \eta(\rho_{1}T - \sigma_{2}) - (\rho_{2}T + \sigma_{3}) - \rho_{leak}T \ge 0$$

$$= \text{This inequality must hold for } T=0$$

$$= I \text{This condition must hold for all } T$$

$$= I \text{This condition must hold for all } T$$

$$= \eta \rho_{1} - \rho_{leak} \ge \rho_{2}$$

15

If these inequalities hold then continuous operation can be guaranteed

Substituting in the second equation

$$B_0 + \eta \cdot \max\{\int_T P_s(t)dt\} - \min\{\int_T P_c(t)dt\} - \int_T P_{leak}(t)dt \leq B$$
$$\Rightarrow B_0 + \eta(\rho_1 T + \sigma_1) - (\rho_2 T - \sigma_4) - \rho_{leak}T \leq B$$

For T=0 we need

B₀ + $\eta(\sigma_1 - \sigma_4) \le B$ Substitution of B₀ ≥ $\eta\sigma_2 + \sigma_3$ yields B ≥ $\eta(\sigma_1 + \sigma_2) + \sigma_3 - \sigma_4$ For T → ∞ we have $\eta\rho_1 - \rho_{leak} \le \rho_2$ - This condition may be violated without problems

FREIBURG

Energy Neutral Operation

Theorem

 For benign energy sources the energy neutrality can be satisfied if the following conditions apply

Fig. 2. Solar energy based charging power recorded for 9 days

Parameter	Value	Units
ρ_1	23.6	mW
σ_1	1.4639×10^{3}	J
σ_2	1.8566×10^{3}	J

Further Considerations

- The behavior of energy sources can be learned
 - As a result, the available energy can be calculated
 - The task can be adapted to the energy supply
- Thereby
 - Nodes with better energy situation can take over routing
 - Measurements can occur seldomer, but will never stop

Wireless Sensor Networks 9. Sensor Coverage & Lifetime

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 30.05.2016

INI