Algorithms for Radio Networks

Localization
Localization

- Localization in an empty environment?
 - Requires some “stuff” around
 - Determine the physical position or logical location
- Reference points (“landmarks”)
 - Natural: Trees, mountains, river bend, earth’s surface, sun, stars, ...
 - Artificial: Road signs, Surveyor’s mark, Retro-reflector, buoys, lighthouse, radio beacon, ...
- Coordinate systems
 - Global coordinate frame, Earth coordinates
 - Local reference frame: Cartesian grid, floor tiles
 - Absolute or relative coordinates
Localization

› Applications
 • Surveying, geodesy
 • Naval navigation, aviation, space flight
 • Navigation of people inside buildings in urban areas
 • Cars on roads, logistics
 • Navigation of robots: Autonomous mobile units
 • Industrial machines, tools: Drills, rivet hammers
 • Networks: Routing algorithms, sensor networks
 • ...and many more!
Localization

- Parameter
 - Centralized or distributed computing
 - Availability of position information: Active vs. passive localization
 - Application
 - Indoors, outdoors, global
 - Sources of information: Sound, light, radio signal, magnetic field, ...

- Metrics
 - accuracy
 - precision
 - other costs
Sources of Information

- Neighborhood information
 - Range provides coarse location information
 - e.g. GSM / UMTS cell, wireless IDs
- Triangulation and trilateration
 - Angle differences
 - distance measurement
- Analysis of the environment
 - Characteristic "signature" by radio conditions in the environment
- Inertial navigation systems
 - Measurement of acceleration and rotation
Received Signal Strength Indicator

- Using the path loss at a known transmission power
- Measurement of the received signal

\[P_{\text{recv}} = c \frac{P_{\text{tx}}}{d^\alpha} \iff d = \sqrt[\alpha - 1]{\frac{cP_{\text{tx}}}{P_{\text{recv}}}} \]

- Path loss exponent \(\alpha \)
- Transmission power \(P_{\text{tx}} \)
- Problem: High error rate

\[\alpha < 2 : \text{hurkels} \]
\[\alpha > 2 : \text{obstacles} \]

[Sichitiu and Ramadurai, MASS 2004]
RSSI

- Problem: high error rate
 - Probability distribution for RSSI and given transmission power

 ‣ Problem: high error rate
 • Probability distribution for varying RSSI and distance

Problem: high error rate

- Probability distribution for varying RSSI and distance

[Sichitiu and Ramadurai, MASS 2004]
Time of Arrival

› Time of arrival (TOA)
 • Transmission time ("Time of flight") is measured
 • Transmission time = Reception time – Send time
 • Results from the quotient:
 - Transmission time = distance / speed signal

› Problem
 • Positions of measurement points (anchors) must be known (usually...)
 • Accurate time measurement
 • Clock synchronization
 • Relative ranges require more anchors
Time *Difference* of Arrival (ToA)

- Two different signals with different transmission speeds
 - E.g. ultrasound and radio signal, “thunderstorm”
 - Main component of the speed of sound
 - Calculate the different arrival times is distance
 - If one signal is very fast (e.g. “light”), eliminate it

- Problems:
 - calibration (hardware delay)
 - special hardware is required
Round Trip time (ToA)

- Two way communication, send a signal back and forth between two transceivers
 - E.g. radio signal, sound signal
 - Distance = 1/2 * Round trip time / c
- Problems:
 - Again: calibration (hardware delay)
 - Requires two transmitters and two receivers
- Similar: Measure distance to an obstacle (reflection)
 - Distance measurement by Laser or ultrasound
Algorithms for Radio Networks

Localization

University of Freiburg
Technical Faculty
Computer Networks and Telematics
Prof. Christian Schindelhauer