

Wireless Sensor Networks 1. Basics

JRG

N N

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 17.04.2016

- Web page
 - http://cone.informatik.uni-freiburg.de/lehre/aktuell/wsn-ss16
- Forum
 - http://archive.cone.informatik.uni-freiburg.de/forum3/viewforum.php?f=46
 - for discussions, remarks, critics, funnies, etc.
- Lecture
 - Lecturers:
 - Christian Schindelhauer (mostly)
 - Johannes Wendeberg (localization)
 - Monday, 14:15-16:00, room 101-01-009/013
 - Wednesday, 08:15-09:00, room 101-01-009/013
- Exercises
 - Tutors:
 - Amir Bannoura
 - Joan Bordoy
 - Wednesday, 09:15-20:00, room 101-01-009/013
 - starts 27.04.2016

CoNe Freiburg

Networks Types

- Cellular networks
 - one or more access stations
 - each access station covers a cell
 - e.g. mobile telephones, WLAN
- Mobile ad hoc networks
 - self-configuring network of mobile nodes
 - nodes serve as end-points or routers
 - without any dedicated infrastructure
- Wireless sensor network
 - connecting sensors and actuator units wireless communicating with one or more base stations
 - base station is more powerful than other nodes

Some Relevant Wireless Networks

- GSM (Global System for Mobile Communications) GPRS (General Packet Radio Service) EDGE (Enhanced Data Rates for GSM Evolution)
 - Smartphones, PDAs, Laptop/netbook, Tablets, Phablets
- UMTS (Universal Mobile Telecommunications Systems) HSDPA (High Speed Downlink Packet Access)
 - 3rd generation mobile communication standard
- LTE (Long Term Evolution)
 - 4th generation standard
- IEEE 802.11 a/b/g/n/ac Wi-Fi (Wireless Fidelity) Wireless Local Area Network (WLAN)
 - computers, cameras, printers
- Bluetooth (IEEE 802.15.1)
 - several version, Bluetooth v4.0, Bluetooth low energy

Some Relevant Wireless Networks

IEEE 802.15.4 + Zigbee

- Wireless Personal Area Network (WPAN)
- Wireless sensor networks
- Zigbee Alliance
 - defined higher protocol layers
- DECT ULE (Digital Enhanced Cordless Telecommunications Ultra Low Energy)
 - adapted standard for cordless phones
- Low-Power Wide-Area Network (LPWAN)
 - LoRaWAN (Long Range Wide Area Network)
- Narrow-Band Internet of Things (NB-IOT)
 - narrowband radio technology specially designed for the Internet of Things (GSM/LTE)

ISO/OSI Reference model

- 7. Application
 - Data transmission, e-mail, terminal, remote login
- 6. Presentation
 - System-dependent presentation of the data
- 5. Session
 - start, end, restart
- 4. Transport
 - Segmentation, congestion
- 3. Network
 - Routing
- 2. Data Link
 - Checksums, flow control
- 1. Physical
 - Mechanics, electrics

TCP/IP-Layer of the Internet

Application	Telnet, FTP, HTTP, SMTP (E-Mail),	
Transport	TCP (Transmission Control Protocol) UDP (User Datagram Protocol)	
Network	IP (Internet Protocol) + ICMP (Internet Control Message Protocol) + IGMP (Internet Group Management Protocco	
Host-to- Network	LAN (e.g. Ethernet, 802.11n etc.)	

UNI FREIBURG

CoNe Freiburg

Example: Routing between LANs

Data/Packet Encapsulation

Example Stacks

The Internet of Every Thing - steps toward sustainability CWSN Keynote, Sept. 26, 2011

UNI FREIBURG

UNI FREIBURG

Freiburg

Physics – Background

- Moving particles with electric charge cause electromagnetic waves
 - frequency f : number of oscillations per second
 - unit: Hertz
 - wavelength $\ \lambda$: distance (in meters) between two wave maxima
 - antennas can create and receive electromagnetic waves
 - the transmission speed of electromagnetic waves in vacuum is constant
 - speed of light c ≈ 3.108 m/s
- Relation between wavelength, frequency and speed of light:

$$\lambda \cdot f = c$$

A Electromagnetic Spectrum Freiburg

Bands CoNe Freiburg

- LF Low Frequency
- MF Medium Frequency
- HF High Frequency
- VHFVery High Frequency
- UHF Ultra High Frequency
- UV Ultra Violet light

Bands for Wireless Networks

- VHF/UHF for mobile radio
 - antenna length
- SHF for point-to-point radio systems, satellite communication
- Wireless LAN: UHF to SHF
 - planned EHF
- Visible light
 - communication by laser
- Infrared
 - remote controls
 - LAN in closed rooms

Propagation Performance

- Straight-lined propagation in vacuum
- Received power decreases with 1/d²
 - in theory
 - in practice higher exponents up to 4 or 5
- Reduction because of
 - attenuation in air (in particular HF, VHF)
 - shadowing and mountain effect
 - reflection
 - diffusion at small obstacles
 - diffraction

CoNe Freiburg

Frequency Dependent Behavior

- VLF, LF, MF
 - follow the curvature of the earth (up to 1000 km for VLF)
 - permeate buildings
- HF, VHF
 - absorbed by the ground
 - reflected by the ionosphere 100-500 km height
- Over 100 MHz
 - straight-line propagation
 - marginal penetration of buildings
 - good focus
- Over 8 GHz absorption by rainfall

ground wave

- Multiple Path Fading
 - Signal arrives at receiver on multiple paths because of reflection, diffusion, and diffraction
 - Signal time variation leads to interferences
 - decoding faults
 - attenuation
- Mobility problems
 - Fast fading
 - different transmission paths
 - different phasing
 - Slow fading
 - increase of distance between sender and receiver

Noise and Interference

- Noise
 - inaccuracies and heat development in electrical components
 - modeled by normal distribution
- Interference from other transmitters
 - in the same spectrum
 - or in neighbored spectrum
 - e.g. because of bad filters
- Effect
 - Signal is disrupted

Signal Interference Noise Ratio

- reception energy = transmission energy · path loss
 - path loss ~ $1/d^{\gamma}$

• γ∈[2,5]

- Signal to Interference and Noise Ratio = SINR
 - S = (desired) Signal energy
 - I = energy of Interfering signals
 - N = Noise
- Necessary condition for reception

$$SINR = \frac{S}{I + N} \ge Threshold$$

- Attenuatation
 - Received signal power depends on the distance d between sender and receiver
- Friis transmission equation
 - distance: R
 - wavelength: λ
 - P_r: energy at receiver antenna
 - P_t: energy at sender antenna
 - G_t: sender antenna gain
 - G_r: receiver antenna gain

$$\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2$$

$$P_r(d) = P_r(d_0) \cdot \left(\frac{d_0}{d}\right)^2$$

Path Loss Exponent

Measurements

- γ path loss
 exponent
- shadowing variance σ^2
- reference path loss at 1m distance

Location	Average of γ	Average of σ^2 [dB]	Range of PL(1m)[dB]
Engineering Building	1.9	5.7	[-50.5, -39.0]
Apartment Hallway	2.0	8.0	[-38.2, -35.0]
Parking Structure	3.0	7.9	[-36.0, -32.7]
One-sided Corridor	1.9	8.0	[-44.2, -33.5]
One-sided patio	3.2	3.7	[-39.0, -34.2]
Concrete canyon	2.7	10.2	[-48.7, -44.0]
Plant fence	4.9	9.4	[-38.2, -34.5]
Small boulders	3.5	12.8	[-41.5, -37.2]
Sandy flat beach	4.2	4.0	[-40.8, -37.5]
Dense bamboo	5.0	11.6	[-38.2, -35.2]
Dry tall underbrush	3.6	8.4	[-36.4, -33.2]

Karl, Willig, Protocols and Architectures for Wireless Sensor Networks, Wiley, 2005

- MOdulation/DEModulation
 - Translation of the channel symbols by
 - amplitude modulation
 - phase modulation
 - frequency modulation
 - or a combination thereof

- Theorem of Fourier for period T=1/f:
 - The coefficients c, a_n , b_n are then obtained as follows

$$g(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(2\pi k f t) + b_k \sin(2\pi k f t)$$
$$a_k = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$
$$b_k = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$

• The sum of squares of the k-th terms is proportional to the energy consumed in this frequency: $(a_k)^2 + (b_k)^2$

CoNe Freiburg

How often do you measure?

- How many measurements are necessary
 - to determine a Fourier transform to the k-th component, exactly?
- Nyquist-Shannon sampling theorem
 - To reconstruct a continuous band-limited signal with a maximum frequency f_{max} you need at least a sampling frequency of 2 f_{max}.

CoNe Freiburg

Symbols and Bits

- For data transmission instead of bits can also be used symbols
 - E.g. 4 Symbols: A, B, C, D with
 - A = 00, B = 01, C = 10, D = 11
- Symbols
 - Measured in baud
 - Number of symbols per second
- Data rate
 - Measured in bits per second (bit / s)
 - Number of bits per second
- Example
 - 2400 bit/s modem is 600 baud (uses 16 symbols)

UNI FREIBURG

Broadband CoNe Freiburg

- Idea
 - Focusing on the ideal frequency of the medium
 - Using a sine wave as the carrier wave signals
- A sine wave has no information
 - the sine curve continuously (modulated) changes for data transmission,
 - implies spectral widening (more frequencies in the Fourier analysis)
- The following parameters can be changed:
 - Amplitude A
 - Frequency f=1/T
 - Phase $\boldsymbol{\phi}$

$$s(t) = A\sin(2\pi ft + \phi)$$

Amplitude Modulation

 The time-varying signal s
 (t) is encoded as the amplitude of a sine curve:

 $f_A(t) = s(t)\sin(2\pi ft + \phi)$

- Analog Signal
- Digital signal
 - amplitude keying
 - special case: symbols 0 or 1
 - on / off keying

Frequency Modulation

The time-varying signal s (t) is encoded in the frequency of the sine curve:

$$f_F(t) = a\sin(2\pi s(t)t + \phi)$$

- Analog signal
 - Frequency modulation (FM)
 - Continuous function in time
- Digital signal
 - Frequency Shift Keying (FSK)
 - E.g. frequencies as given by symbols

Phase Modulation

The time-varying signal s (t) is encoded in the phase of the sine curve:

$$f_P(t) = a\sin(2\pi ft + s(t))$$

- Analog signal
 - phase modulation (PM)
 - very unfavorable properties
 - es not used
- Digital signal
 - phase-shift keying (PSK)
 - e.g. given by symbols as phases

Digital and Analog signals in Comparison

For a station there are two options

- digital transmission
 - finite set of discrete signals
 - e.g. finite amount of voltage sizes / voltages
- analog transmission
 - Infinite (continuous) set of signals
 - E.g. Current or voltage signal corresponding to the wire
- Advantage of digital signals:
 - There is the possibility of receiving inaccuracies to repair and reconstruct the original signal
 - Any errors that occur in the analog transmission may increase further

UNI FREIBURG

Phase Shift Keying (PSK)

For phase signals \u03c6_i(t)

$$s_i(t) = \sqrt{\frac{2E}{T}} \cdot \sin(\omega_0 t + \phi_i(t))$$

UNI FREIBURG

PSK with Different Symbols

- Phase shifts can be detected by the receiver very well
- Encoding various Symoble very simple
 - Using phase shift e.g. π / 4,
 3/4π, 5/4π, 7/4π
 - rarely: phase shift 0 (because of synchronization)
 - For four symbols, the data rate is twice as large as the symbol rate
- This method is called Quadrature Phase Shift Keying (QPSK)

Amplitude and Phase Modulation

- Amplitude and phase modulation can be successfully combined
 - Example: 16-QAM
 (Quadrature Amplitude Modulation)
 - uses 16 different combinations of phases and amplitudes for each symbol
 - Each symbol encodes four bits (2⁴ = 16)
 - The data rate is four times as large as the symbol rate

Nyquist's Theorem

- Definition
 - The band width H is the maximum frequency in the Fourier decomposition
- Assume
 - The maximum frequency of the received signal is f = H in the Fourier transform
 - (Complete absorption [infinite attenuation] all higher frequencies)
 - The number of different symbols used is V
 - No other interference, distortion or attenuation of
- Nyquist theorem
 - The maximum symbol rate is at most 2 H baud.
 - The maximum possible data rate is a bit more than
 2 log₂ H V / s.

Do more symbols help?

- Nyquist's theorem states that could theoretically be increased data rate with the number of symbols used
- Discussion:
 - Nyquist's theorem provides a theoretical upper bound and no method of transmission
 - In practice there are limitations in the accuracy
 - Nyquist's theorem does not consider the problem of noise

UNI FREIBURG

The Theorem of Shannon

- Indeed, the influence of the noise is fundamental
 - Consider the relationship between transmission intensity S to the strength of the noise N
 - The less noise the more signals can be better recognized
- Theorem of Shannon
 - The maximum possible data rate is H log₂(1 + S / N) bits/s
 - with bandwidth H
 - Signal strength S
- Attention
 - This is a theoretical upper bound
 - Existing codes do not reach this value

Bit Error Rate and SINR

- Higher SIR decreases
 Bit Error Rate (BER)
 - BER is the rate of faul received bits
- Depends from the
 - signal strength
 - noise
 - bandwidth
 - encoding
- Relationship of BER and SINR
 - Example: 4 QAM, 16 QAM, 64 QAM, 256 Q.

S/N dB