Wireless Sensor Networks

2. Multiplexing

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Multiple Use of the Medium

- **Spatial Multiplexing**
 - Parallel and exclusive use of transmission channels
 - e.g. Extra lines / cells / directional antenna

- **Frequency division multiplexing**
 - Multiple signals to be transmitted in a frequency range of bundled;
 - In radio transmission, different frequencies are assigned to different stations.

- **Time division multiplexing**
 - Delayed transmission of multiple signals

- **Code division multiplexing**
 - Coding of the signal into orthogonal codes, which can now be broadcast simultaneously on one frequency
 - Decoding with overlay also possible

- **Multiple-Input Multiple-Output**
 - Sending and receiving antennas by several
 - Using the spatial and temporal information about location of several waves
 - e.g. 802.11n
Space

- Spatial distribution (space multiplexing)
 - Utilization of distance loss for the parallel operation of different radio cells → cellular networks
 - Using directional antennas for communications directed requested
 - GSM antennas with directional characteristics
 - Radio with a satellite dish
 - Laser communications
 - Infrared communication
Frequency Multiplexing

- Allocation of bandwidth in frequency sections
- Spread of the channels and hopping
 - Direct Sequence Spread Spectrum (DSSS)
 - Xor a signal with a pseudo-random number sequence at the transmitter and receiver (Relates to code-division multiplexing)
 - Other signals appear as background noise
- Frequency Hopping Spread Spectrum (FHSS)
 - Frequency change by pseudo-random numbers
 - two versions
 - Quick change (almost hopping): Multiple frequencies per user data bits
 - Slowly changing (slow hopping): Multiple user bits per frequency
Time Multiplexing

- Temporal distribution of sender-/receiver channel
- Participants receive exclusive periods (slots) on the media
- Accurate synchronization necessary
- Coordination necessary, or rigid division
Direct Sequence Spread Spectrum

- A chip is a bit sequence (given by \{-1, +1\}), which encode a smaller set of symbols
- E.g. Transmission signal: 0 = (+1,+1,-1), 1=(-1,-1,+1)

 \[
 \begin{array}{cccc}
 0 & 1 & 0 & 1 \\
 +1 & +1 & -1 & -1 -1 +1 & +1 +1 -1 & -1 -1 +1
 \end{array}
 \]

- Coding by calculating the inner product $c_i s_i$ of the received signal and the chip $c_0 = - c_1$:

 \[
 \sum_{i=1}^{m} c_{0,i} s_i \quad \sum_{i=1}^{m} c_{1,i} s_i
 \]

- In the case of a superimposed signal, the original signal can be decoded by filter
- DSSS is used by GPS, WLAN, UMTS, ZigBee, Wireless USB based on the **Barker code**
 - Here for all $v<m$

 \[
 \left| \sum_{i=1}^{N-v} a_i a_{i+v} \right| \leq 1
 \]
 - Barker Code for 11Bit: +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1
CDMA (Code Division Multiple Access)
- e.g. GSM (Global System for Mobile Communication)
- or UMTS (Universal Mobile Telecommunications System)

Uses chip-sequence with
- \(C_i \in \{-1,+1\}^m \)
- \(-C_i = (-C_{i,1}, -C_{i,2}, \ldots, -C_{i,m})\)

so that the normalized inner product for all \(i \neq j \) the result is 0.

\[
C_i \cdot C_j = \frac{1}{m} \sum_{k=1}^{m} C_{i,k} C_{j,k} = 0 .
\]

Synchronized recipients get a linear combination of A and B

Multiplying by the desired chip sequence yields the desired message.
CDMA: Example 1

- **Sender A:**
 - 0 = (-1,-1)
 - 1 = (+1,+1)

- **Sender B:**
 - 0 = (-1,+1)
 - 1 = (+1,-1)

- **A sends 0, B sends 0:**
 - Result: (-2,0)

- **C receives (-2,0):**
 - Decoding of A: (-2,0) • (-1,-1) = (-2)(-1) + 0(-1) = 2
 - A has therefore sent 0 because result is positive
CDMA: Example 2

- Sample-code:
 - Code $C_A = (+1,+1,+1,+1)$
 - Code $C_B = (+1,+1,-1,-1)$
 - Code $C_C = (+1,-1,+1,-1)$

- A sends Bit 0, B sends Bit 1, C sends nothing
 - $V = C_1 + (-C_2) = (0,0,2,2)$

- Decoding for A: $V \cdot C_1 = (0,0,2,2) \cdot (+1,+1,+1,+1) = 4/4 = 1$
 - results in Bit 0

- Decoding for B: $V \cdot C_2 = (0,0,2,2) \cdot (+1,+1,-1,-1) = -4/4 = -1$
 - results in Bit 1

- Decoding for C: $V \cdot C_3 = (0,0,2,2) \cdot (+1,-1,+1,-1) = 0$
 - results in: no Signal.
Repetition

- **Multiplexed**
 - Spatial Multiplexing
 - Frequency division multiplexing
 - Time division multiplexing
 - Code division multiplexing
 - Multiple-input multiple-output (next lecture)

- **Modulation**
 - Amplitude modulation
 - Phase modulation
 - Frequency modulation
Repetition:
Complex Numbers

- i: imaginary number with
 - $i^2 = -1$

- A complex number is a linear combination of a real part a and imaginary b
 - $z = a + bi$

- Calculation rules:
 - $(a+bi)+(c+di) = (a+c) + (b+d)\ i$
 - $(a+bi) (c+di) = (ac - bd) + (ad + bc)\ i$
 - $1/ (a+b\ i) = (a-bi)/(a^2+b^2)$

- Complex conjugate
 - $(a+bi)^* = (a - bi)$
Exponentiation of Complex Numbers

- Important equation
 - $e^{i\pi} = -1$
 - $e^{i\varphi} = \cos \varphi + i \sin \varphi$

- Exponentiation of a complex number
 - $e^{a+bi} = e^a e^{bi} = e^a (\cos b + i \sin b)$

- Therefore
 - real part $e^{i\varphi}$: $\text{Re}(e^{i\varphi}) = \cos \varphi$
 - imaginary of $e^{i\varphi}$: $\text{Im}(e^{i\varphi}) = \sin \varphi$
Equivalent Representations of the FFT

- **Real number representation**
 - Sine and cosine functions of different frequencies

\[
g(x) = \sum_{k=0}^{N-1} a_k \cos \frac{2\pi kt}{T} + b_k \sin \frac{2\pi kt}{T}
\]

- **Complex representation**
 - Real part of the exponential function of different frequencies

\[
f(x) = \sum_{k=0}^{N-1} z_k e^{i2\pi kt/T}
\]

- **Computation of the inverse by cosine/sine integral product**

\[
a_k = \frac{2}{T} \int_{0}^{T} g(t) \cos(2\pi nt t) dt
\]

\[
b_k = \frac{2}{T} \int_{0}^{T} g(t) \sin(2\pi nt t) dt
\]

- **Computation of the inverse by the integral over the product with the complex conjugated carrier wave**

\[
z_k = \frac{1}{T} \int_{0}^{T} \left(e^{i2\pi kt/T} \right)^* f(x) dt
\]
\[f(x) = \sum_{k=0}^{N-1} z_k e^{i2\pi kt/T} \]