

Wireless Sensor Networks 2. Multiplexing

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Version 17.04.2016

Multiple Use of the Medium

Spatial Multiplexing

- Parallel and exclusive use of transmission channels
 - e.g. Extra lines / cells / directional antenna

Frequency division multiplexing

- Multiple signals to be transmitted in a frequency range of bundled;
- In radio transmission, different frequencies are assigned to different stations.

Time division multiplexing

- Delayed transmission of multiple signals

Code division multiplexing

- Coding of the signal into orthogonal codes, which can now be broadcast simultaneously on one frequency
- Decoding with overlay also possible

Multiple-Input Multiple-Output

- Sending and receiving antennas by several
- Using the spatial and temporal information about location of several waves
 - e.g. 802.11n

Space

- Spatial distribution (space multiplexing)
 - Utilization of distance loss for the parallel operation of different radio cells → cellular networks
 - Using directional antennas for communications directed requested
 - GSM antennas with directional characteristics
 - Radio with a satellite dish
 - laser communications
 - infrared communication

Frequency Multiplexing

- Allocation of bandwidth in frequency sections
- Spread of the channels and hopping
 - Direct Sequence Spread Spectrum (DSSS)
 - Xor a signal with a pseudo-random number sequence at the transmitter and receiver (Relates to code-division multiplexing)
 - Other signals appear as background noise
- Frequency Hopping Spread Spectrum (FHSS)
 - Frequency change by pseudo-random numbers
 - two versions
 - Quick change (almost hopping): Multiple frequencies per user data bits
 - Slowly changing (slow hopping): Multiple user bits per frequency

Time Multiplexing

- Temporal distribution of sender-/receiver channel
- Participants receive exclusive periods (slots) on the media
- Accurate synchronization necessary
- Coordination necessary, or rigid division

Direct Sequence Spread Spectrum

- A chip is a bit sequence (given by {-1, +1}), which encode a smaller set of symbols
- E.g. Transmission signal: 0 = (+1,+1,-1), 1=(-1,-1,+1)

• Coding by calculating the inner product c_i s_i of the received signal and the chip c_0 = - c_1 :

$$\sum_{i=1}^{m} c_{0,i} s_i \qquad \qquad \sum_{i=1}^{m} c_{1,i} s_i$$

- In the case of a superimposed signal, the original signal can be decoded by filter
- DSSS is used by GPS, WLAN, UMTS, ZigBee, Wireless USB based on the Barker code
 - Here for all v<m

$$\left| \sum_{i=1}^{N-v} a_i a_{i+v} \right| \le 1$$

- Barker Code for 11Bit: +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1

Code Division Multiple Access (CDMA)

- CDMA (Code Division Multiple Access)
 - e.g. GSM (Global System for Mobile Communication)
 - or UMTS (Universal Mobile Telecommunications System)
- Uses chip-sequence with
 - $C_i \in \{-1, +1\}^m$
 - $-C_i = (-C_{i,1}, -C_{i,2}, ..., -C_{i,m})$
- so that the normalized inner product for all i ≠ j the result is 0.

$$C_i \bullet C_j = \frac{1}{m} C_i \cdot (C_j)^T = \frac{1}{m} \sum_{k=1}^m C_{i,k} C_{j,k} = 0$$
.

- Synchronized recipients get a linear combination of A and B
- Multiplying by the desired chip sequence yields the desired message.

CDMA: Example 1

Sender A:

$$- 0 = (-1,-1)$$

$$-1=(+1,+1)$$

Sender B:

$$-0 = (-1,+1)$$

$$-1 = (+1,-1)$$

A sends 0, B sends 0:

- Result: (-2,0)
- C receives (-2,0):
 - Decoding of A: $(-2,0) \cdot (-1,-1) = (-2)(-1) + 0(-1) = 2$
 - A has therefor sent 0 because result is positive

CDMA: Example 2

- Sample-code:
 - Code $C_A = (+1,+1,+1,+1)$
 - Code $C_B = (+1,+1,-1,-1)$
 - Code $C_C = (+1,-1,+1,-1)$
- A sends Bit 0, B sends Bit 1, C sends nothing
 - $V = C_1 + (-C_2) = (0,0,2,2)$
- Decoding for A: V $C_1 = (0,0,2,2) (+1,+1,+1,+1) = 4/4 = 1$
 - results in Bit 0
- Decoding for B: V $C_2 = (0,0,2,2) (+1,+1,-1,-1) = -4/4 = -1$
 - results in Bit 1
- Decoding for C: $V \cdot C_3 = (0,0,2,2) \cdot (+1,-1,+1,-1) = 0$
 - results in: no Signal.

Repetition

Multiplexed

- Spatial Multiplexing
- Frequency division multiplexing
- Time division multiplexing
- Code division multiplexing
- Multiple-input multiple-output (next lecture)

Modulation

- Amplitude modulation
- Phase modulation
- Frequency modulation

Repetition: Complex Numbers

- i: imaginary number with
 - $-i^2 = -1$
- A complex number is a linear combination of a real part a and imaginary b
 - -z = a + bi
- Calculation rules:
 - (a+bi)+(c+di) = (a+c) + (b+d) i
 - (a+bi) (c+di) = (ac bd) + (ad + bc) i
 - $1/(a+b i) = (a-bi)/(a^2+b^2)$
- Complex conjugate
 - $(a+bi)^* = (a bi)$

Exponentiation of Complex Numbers

Important equation

- $e^{i\pi} = -1$
- $-e^{i\phi} = \cos \phi + i \sin \phi$

Exponentiation of a complex number

$$-e^{a+bi}=e^ae^b=e^a(\cos b+i\sin b)$$

Therefore

- real part $e^{i\phi}$: Re($e^{i\phi}$) = cos ϕ
- imaginary of $e^{i\phi}$: $Im(e^{i\phi}) = \sin \phi$

Equivalent Representations of the FFT

- Real number representation
 - Sine and cosine functions of different frequencies

$$g(x) = \sum_{k=0}^{N-1} a_k \cos \frac{2\pi kt}{T} + b_k \sin \frac{2\pi kt}{T}$$

 Computation of the inverse by cosine/sine integral product

$$a_k = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$

$$b_k = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$

- Complex representation
 - real part of the exponential function of different frequencies

$$f(x) = \sum_{k=0}^{N-1} z_k \ e^{i2\pi kt/T}$$

 Computation of the inverse by the integral over the product with the complex conjugated carrier wave

$$z_k = \frac{1}{T} \int_0^T \left(e^{i2\pi kt/T} \right)^* f(x) dt$$

$$f(x) = \sum_{k=0}^{N-1} z_k \ e^{i2\pi kt/T}$$

