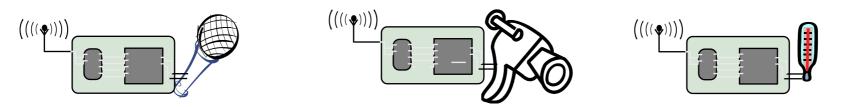


Wireless Sensor Networks 3. Overview

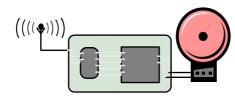
JRG

N III

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 26.04.2016


- In common: Self-organization, energy efficiency, (often) wireless multi-hop
- Differences
 - Applications, equipment: MANETs more powerful (read: expensive) equipment assumed, often "human in the loop"-type applications, higher data rates, more resources
 - Application-specific: WSNs depend stronger on application specifics; MANETs comparably uniform
 - Environment interaction: core of WSN, absent in MANET
 - Scale: WSN might be much larger (although contestable)
 - Energy: WSN tighter requirements, maintenance issues
 - Dependability/QoS: in WSN, individual node may be dispensable (network matters), QoS different because of different applications
 - Data centric vs. id-centric networking
 - Mobility: different mobility patterns like (in WSN, sinks might be mobile, usual nodes static)

FREIBURG



Roles of Participants in WSN

- Sources of data: Measure data, report them "somewhere"
 - Typically equip with different kinds of actual sensors

- Sinks of data: Interested in receiving data from WSN
 - May be part of the WSN or external entity, PDA, gateway, ...

Actuators: Control some device based on data, usually also a sink

3

Structuring WSN Application Types

- Interaction patterns between sources and sinks classify application types
 - Event detection: Nodes locally detect events (maybe jointly with nearby neighbors), report these events to interested sinks
 - Event classification additional option
 - Periodic measurement
 - Function approximation: Use sensor network to approximate a function of space and/or time (e.g., temperature map)
 - Edge detection: Find edges (or other structures) in such a function (e.g., where is the zero degree border line?)
 - Tracking: Report (or at least, know) position of an observed intruder ("pink elephant")

UNI

Deployment Options for WSN

- How are sensor nodes deployed in their environment?
 - Dropped from aircraft \Rightarrow Random deployment
 - Usually uniform random distribution for nodes over finite area is assumed
 - Is that a likely proposition?
 - Well planned, fixed \Rightarrow Regular deployment
 - E.g., in preventive maintenance or similar
 - Not necessarily geometric structure, but that is often a convenient assumption
 - Mobile sensor nodes
 - Can move to compensate for deployment shortcomings
 - Can be passively moved around by some external force (wind, water)
 - Can actively seek out "interesting" areas

Maintenance Options

- Feasible and/or practical to maintain sensor nodes?
 - E.g., to replace batteries?
 - Or: unattended operation?
 - Impossible but not relevant? Mission lifetime might be very small
- Energy supply?
 - Limited from point of deployment?
 - Some form of recharging, energy scavenging from environment?
 - E.g., solar cells

Characteristic Requirements for WSNs

- Type of service of WSN
 - Not simply moving bits like another network
 - Rather: provide answers (not just numbers)
 - Issues like geographic scoping are natural requirements, absent from other networks
- Quality of service
 - Traditional QoS metrics do not apply
 - Still, service of WSN must be "good": Right answers at the right time
- Fault tolerance
 - Be robust against node failure (running out of energy, physical destruction, ...)
- Lifetime
 - The network should fulfill its task as long as possible definition depends on application
 - Lifetime of individual nodes relatively unimportant
 - But often treated equivalently

UNI FREIBURG

7

Characteristic Requirements for WSNs

- Scalability
 - Support large number of nodes
- Wide range of densities
 - Vast or small number of nodes per unit area, very application-dependent
- Programmability
 - Re-programming of nodes in the field might be necessary, improve flexibility
- Maintainability
 - WSN has to adapt to changes, self-monitoring, adapt operation
 - Incorporate possible additional resources, e.g., newly deployed nodes

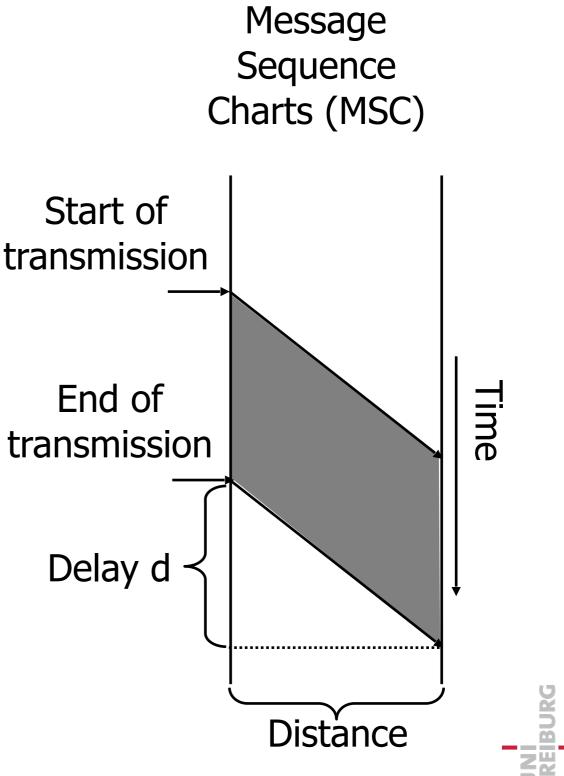
- Multi-hop wireless communication
- Energy-efficient operation
 - Both for communication and computation, sensing, actuating
- Auto-configuration
 - Manual configuration just not an option
- Collaboration & in-network processing
 - Nodes in the network collaborate towards a joint goal
 - Pre-processing data in network (as opposed to at the edge) can greatly improve efficiency

- Data centric networking
 - Focusing network design on data, not on node identities (id-centric networking)
 - To improve efficiency
- Locality
 - Do things locally (on node or among nearby neighbors) as far as possible
- Exploit tradeoffs
 - E.g., between invested energy and accuracy

10

CoNe Freiburg

Enabling Technologies for WSN


- Cost reduction
 - For wireless communication, simple microcontroller, sensing, batteries
- Miniaturization
 - Some applications demand small size
 - "Smart dust" as vision
- Energy harvesting
 - Recharge batteries from ambient energy (light, vibration, ...)

UNI FREIBURG

Signals propagate in medium, store data

- Signals traveling in a medium take time to reach destination – delay d
 - Depends on distance and propagation speed in transmission tr medium
- To represent one or several bits, a signal extending in time is needed – duration of transmission
 - Determined by rate r and data size
- During time d, r*d bits are generated
 - Stored in the medium

- Transmission errors
 - Signals are mutilated, not correctly converted to (intended) bits
 - Local issue
- Packets are missing
 - Local or end-to-end issue
- Overload problems
 - Flow control: Fast sender overruns slow receiver
 - Congestion control: Receiver would be fast enough, but sender injects more packets into network than network is able to handle
- Where and how to handle these errors?

Typical examples of services

- Datagram service
 - Unit of data are messages
 - Correct, but not necessarily complete or in order
 - Connection-less
 - Usually insecure/not dependable, not confirmed
- Reliable byte stream
 - Byte stream
 - Correct, complete, in order, confirmed
 - Sometimes, but not always secure/dependable
 - Connection-oriented

Almost all possible combinations are conceivable!

Sensor node architecture

Main components of a WSN node

- Controller
- Communication device(s)
- Sensors/actuators
- Memory
- Power supply

 Communication
 Controller
 Sensor(s)/

 device
 Controller
 actuator(s)

 Power supply
 Power supply

15

JNI Reiburg

Transceiver characteristics

- Capabilities
 - Interface: bit, byte, packet level?
 - Supported frequency range?
 - Typically, somewhere in 433 MHz 2.4 GHz, ISM band
 - Multiple channels?
 - Data rates?
 - Range?
- Energy characteristics
 - Power consumption to send/receive data?
 - Time and energy consumption to change between different states?
 - Transmission power control?
 - Power efficiency (which percentage of consumed power is radiated?)

Wireless Sensor Networks 3. Overview

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg

> JNI FREIBURG