

Wireless Sensor Networks 5. Routing

JRG

N III

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 30.05.2016

ISO/OSI Reference model

- 7. Application
 - Data transmission, email, terminal, remote login
- 6. Presentation
 - System-dependent presentation of the data (EBCDIC / ASCII)
- 5. Session
 - start, end, restart
- 4. Transport
 - Segmentation, congestion
- 3. Network
 - Routing
- 2. Data Link
 - Checksums, flow control
- 1. Physical
 - Mechanics, electrics

CoNe Freiburg

Protocols of the Internet

Application	Telnet, FTP, HTTP, SMTP (E-Mail),
Transport	TCP (Transmission Control Protocol) UDP (User Datagram Protocol)
Network	IP (Internet Protocol) + ICMP (Internet Control Message Protocol) + IGMP (Internet Group Management Protocol)
Host-to-Network	LAN (e.g. Ethernet, Token Ring etc.)

- I. Host-to-Network
 - Not specified, depends on the local network,k e.g. Ethernet, WLAN 802.11, PPP, DSL
- 2. Routing Layer/Network Layer (IP - Internet Protocol)
 - Defined packet format and protocol
 - Routing
 - Forwarding
- 3. Transport Layer
 - TCP (Transmission Control Protocol)
 - Reliable, connection-oriented transmission
 - Fragmentation, Flow Control, Multiplexing
 - UDP (User Datagram Protocol)
 - hands packets over to IP
 - unreliable, no flow control
- 4. Application Layer
 - Services such as TELNET, FTP, SMTP, HTTP, NNTP (for DNS), ...

Example: Routing between LANs

Routing Tables and Packet Forwarding

- IP Routing Table
 - contains for each destination the address of the next gateway
 - destination: host computer or sub-network
 - default gateway
- Packet Forwarding
 - IP packet (datagram) contains start IP address and destination IP address
 - if destination = my address then hand over to higher layer
 - if destination in routing table then forward packet to corresponding gateway
 - if destination IP subnet in routing table then forward packet to corresponding gateway
 - otherwise, use the default gateway

UNI FREIBURG

IP Packet Forwarding

- IP -Packet (datagram) contains...
 - TTL (Time-to-Live): Hop count limit
 - Start IP Address
 - Destination IP Address
- Packet Handling
 - Reduce TTL (Time to Live) by 1
 - If TTL \neq 0 then forward packet according to routing table
 - If TTL = 0 or forwarding error (buffer full etc.):
 - delete packet
 - if packet is not an ICMP Packet then
 - send ICMP Packet with
 - start = current IP Address
 - destination = original start IP Address

Static and Dynamic Routing

- Static Routing
 - Routing table created manually
 - used in small LANs
- Dynamic Routing
 - Routing table created by Routing Algorithm
 - Centralized, e.g. Link State
 - Router knows the complete network topology
 - Decentralized, e.g. Distance Vector
 - Router knows gateways in its local neighborhood

Intra-AS Routing

- Routing Information Protocol (RIP)
 - Distance Vector Algorithmus
 - Metric = hop count
 - exchange of distance vectors (by UDP)
- Interior Gateway Routing Protocol (IGRP)
 - successor of RIP
 - different routing metrics (delay, bandwidth)
- Open Shortest Path First (OSPF)
 - Link State Routing (every router knows the topology)
 - Route calculation by Dijkstra's shortest path algorithm

CoNe Freiburg

Distance Vector Routing Protocol

- Distance Table data structure
 - Each node has a
 - Line for each possible destination
 - Column for any direct neighbors
- Distributed algorithm
 - each node communicates only with its neighbors
- Asynchronous operation
 - Nodes do not need to exchange information in each round
- Self-terminating
 - exchange unless no update is available

Distance Table for C

Distance Vector Routing Example

from A	vi	optra	
to	В	С	entry
В	1	8	В
С	6	3	С
D	2	9	В
E	7	4	С

UNI FREIBURG

from A to	vi	ontra	
	В	С	entry
В	1	-	В
С	-	3	С
D	-	-	-
E	-	-	-

from B to	via			ontry
	Α	С	D	entry
Α	1	-	-	Α
С	-	3	-	С
D	-	-	1	С
Е	-	-	8	D

from C to	via			ontru
	Α	В	Е	entry
Α	3	-	-	Α
В	-	5	-	В
D	-	-	8	Е
Е	-	-	1	Е

from	via			Entro
to	Α	С	D	Entry
Α	1	-	-	Α
С	-	5	-	С
D	-	-	1	D
Е	-	-	8	D

via

С

8

5

13

6

Α

1

-

-

—

D

-

-

1

8

Entry

Α

С

D

С

from

Β

to

Α

С

D

Ε

 \longleftrightarrow

from	via			Entry
to	Α	В	Е	Entry
Α	3	-	-	Α
В	-	5	-	В
D	-	-	8	Е
Е	-	-	1	Е

from	via			Entry
to	Α	В	Е	Entry
Α	3	6	-	Α
В	-	5	-	В
D	-	6	8	В
Е	-	13	1	Е

"Count to Infinity" - Problem

- Good news travels fast
 - A new connection is quickly at hand
- Bad news travels slowly
 - Connection fails
 - Neighbors increase their distance mutally
 - "Count to Infinity" Problem

CoNe Freiburg

"Count to Infinity" - Problem

UNI FREIBURG

Link-State Protocol

- Link state routers
 - exchange information using Link State Packets (LSP)
 - each node uses shortest path algorithm to compute the routing table
- LSP contains
 - ID of the node generating the packet
 - Cost of this node to any direct neighbors
 - Sequence-no. (SEQNO)
 - TTL field for that field (time to live)
- Reliable flooding (Reliable Flooding)
 - current LSP of each node are stored
 - Forward of LSP to all neighbors
 - except to be node where it has been received from
 - Periodically creation of new LSPs
 - with increasing SEQNO
 - Decrement TTL when LSPs are forwarded

- Movement of participants
 - Reconnecting and loss of connection is more common than in other wireless networks
 - Especially at high speed
- Other performance criteria
 - Route stability in the face of mobility
 - energy consumption

Unicast Routing

- Variety of protocols
 - Adaptations and new developments
- No protocol dominates the other in all situations
 - Solution: Adaptive protocols?

Routing in MANETs

- Routing
 - Determination of message paths
 - Transport of data
- Protocol types
 - proactive
 - Routing tables with updates
 - reactive
 - repairm of message paths only when necessary
 - hybrid
 - combination of proactive and reactive

Routing Protocols for MANETs

Proactive

- Routes are demand independent
- Standard Link-State und Distance-Vector Protocols
 - Destination Sequenced
 Distance Vector (**DSDV**)
 - Optimized Link State Routing (OLSR)

Reactive

- Route are determined when needed
 - Dynamic Source Routing (**DSR**)
 - Ad hoc On-demand Distance Vector (AODV)
 - Dynamic MANET On-demand Routing Protocol
 - Temporally Ordered Routing Algorithm (TORA)

Hybrid

- combination of reactive und proactive
 - Zone Routing Protocol (**ZRP**)
 - Greedy Perimeter Stateless Routing (GPSR)

UNI FREIBURG

- Latency because of route discovery
 - Proactive protocols are faster
 - Reactive protocols need to find routes
- Overhead of Route discovery and maintenance
 - Reactive protocols have smaller overhead (number of messages)
 - Proactive protocols may have larger complexity
- Traffic-Pattern and mobility
 - decides which type of protocol is more efficient

- Algorithm
 - Sender S broadcasts data packet to all neighbors
 - Each node receiving a new packet
 - broadcasts this packet
 - if it is not the receiver
- Sequence numbers
 - identifies messages to prevent duplicates
- Packet always reaches the target
 - if possible

UNI FREIBURG

Packet for Receiver F

Receiver F gets packet and stops

Nodes G, H, I do not receive the packet

- Advantage
 - simple and robust
 - the best approach for short packet lengths, small number of participants in highly mobile networks with light traffic
- Disadvantage
 - High overhead
 - Broadcasting is unreliable
 - lack of acknowledgements
 - hidden, exposed terminals lead to data loss or delay

- Produces too many unnecessary (long) data packets
 - in the worst case, each participant sends each packet
 - many long transmissions collisions lead to long waiting times in the medium access
- Better approach:
 - Use of control packets for route determination
 - Flooding of control packet leads to DSR

A Dynamic Source Routing (DSR) Freiburg

- Johnson, Maltz
 - *Dynamic Source Routing in Ad Hoc Wireless Networks*, Mobile Computing, 1996
- Algorithm
 - Sender initiates route discovery by flooding of Route-Request (RREQ)-packets
 - Each forwarding node appends his ID to the RREQ-packet
 - The receiver generates the routing information from the RREQ packet by producing a Route-Reply (RREP)-packet
 - using the route information of the packet is sent back to the sender
 - Transmitter sends **data packet** along with route information to the receiver

UNI FREIBURG

- Route Reply
 - requires bidirectional connections
 - unidirectional links
 - must be tested for symmetry
 - or Route-Reply must trigger its own route-request
- Data packet has all the routing information in the header
 - hence: Source-Routing
- Route determination
 - if no valid route is known

DSR Extensions and Modifications

- Intermediate nodes can cache information RREP
 - Problem: stale information
- Listening to control messages
 - can help to identify the topology
- Random delays for answers
 - To prevent many RREP-packets (Reply-Storm)
 - if many nodes know the answer (not for media access)
- Repair
 - If an error is detected then usually: route recalculation
 - Instead: a local change of the source route
- Cache Management
 - Mechanisms for the deletion of outdated cache information

DSR Optimization Route Caching

- Each node stores information from all available
 - Header of data packets
 - Route Request
 - Route-Reply
 - partial paths
- From this information, a route reply is generated

Data packet [G,F,E,A]

DSR Optimization Route Caching

- If any information is incorrect
 - because a route no longer exists
 - then this path is deleted from the cache
 - alternative paths are used
 - or RREQ is generated
- Missing links are distributed by (RERR) packets in the network

Benefits

- Routes are maintained only between communicating nodes
- Route caching reduces route search
- Caches help many alternative routes to find
- Disadvantages
 - Header size grows with distance
 - Network may be flooded with route requests
 - Route-Reply-Storm
 - Outdated information may cause cache overhead

- Perkins, Royer
 - Ad hoc On-Demand Distance Vector Routing, IEEE Workshop on Mobile Computing Systems and Applications, 1999
- Reaktives Routing-Protokoll
- Reactive routing protocol
 - Improvement of DSR
 - no source routing
 - Distance Vector Tables
 - but only for nodes with demand
 - Sequence number to help identify outdated cache info
 - Nodes know the origin of a packet and update the routing table

- Algorithm
 - Route Request (RREQ) like in DSR
 - Intermediate nodes set a reverse pointer towards thesender
 - If the target is reached, a Route Reply (RREP) is sent
 - Route Reply follow the pointers
- Assumption: symmetric connections

Route Reply in AODV

- Intermediate nodes
 - may send route-reply packets, if their cache information is up-to-date
- Destination Sequence Numbers
 - measure the up-to-dateness of the route information
 - AODV uses cached information less frequently than DSR
 - A new route request generates a greater destination sequence number
 - Intermediate nodes with a smaller sequence number may not generate a route reply (RREP) packets

- Reverse pointers are deleted after a certain time
 - RREP timeout allows the transmitter to go back
- Routing table information to be deleted
 - if they have not been used for some time
 - Then a new RREQ is triggered

Link Failure Reporting

- Neighbors of a node X are active,
 - if the routing table cache are not deleted
- If a link of the routing table is interrupted,
 - then all active neighbors are informed
- Link failures are distributed by Route Error (RERR) packets to the sender
 - also update the Destination Sequence Numbers
 - This creates new route request

Detection of Link Failure

- Hello messages
 - neighboring nodes periodically exchange hello packets from
 - Absence of this message indicates link failure
- Alternative
 - use information from MAC protocol

Sequence Numbers

- When a node receives a message with destination sequence number N
 - then this node sets its number to N
 - if it was smaller before
- In order to prevent loops
 - If A has not noticed the loss of link (C, D)
 - (for example, RERR is lost)
 - If C sends a RREQ
 - on path C-E-A
 - Without sequence numbers, a loop will be constructed
 - since A "knows" a path to D, this results in a loop (for instance, CEABC)

FREIBURG

D

64

D

Β

Ε

Sequence Numbers

- Route Requests
 - start with small time-to-live value (TTL)
 - if no Route Reply (RREP) is received, the value is increased by a constant factor and resent
- This optimization is also applicable for DSR

DYMO - Dynamic MANET On-demand (AODVv2) Routing

- Literature
 - I. Chakeres and C. Perkins, "Dynamic MANET Ondemand (DYMO) Routing," IETF MANET, Internet-Draft, 5 December 2008, <u>draft-ietf-manet-dymo-16</u>.
- Improvement of AODV
 - RREQ, RREP to construct shortest length paths
 - Path accumulation
 - a single route request creates routes to all the nodes along the path to the destination
 - Unreliable links can be assigned a cost higher than one
 - Sequence numbers to guarantee the freshness routing table entries

UNI FREIBURG

Routing in MANETs

- Routing
 - Determination of message paths
 - Transport of data
- Protocol types
 - proactive
 - Routing tables with updates
 - reactive
 - repair of message paths only when necessary
 - hybrid
 - combination of proactive and reactive

UNI FREIBURG

Routing Protocols for MANETs

Proactive

- Routes are demand independent
- Standard Link-State und Distance-Vector Protocols
 - Destination Sequenced
 Distance Vector (**DSDV**)
 - Optimized Link State Routing (OLSR)

Reactive

- Route are determined when needed
 - Dynamic Source Routing (**DSR**)
 - Ad hoc On-demand Distance Vector (AODV)
 - Dynamic MANET On-demand Routing Protocol
 - Temporally Ordered Routing Algorithm (TORA)

Hybrid

- combination of reactive und proactive
 - Zone Routing Protocol (**ZRP**)
 - Greedy Perimeter Stateless Routing (GPSR)

Optimized Link State Routing

- Literature
 - RFC3626: Clausen, Jacquet, Optimized Link State Routing Protocol, 2003
 - First published 1999
- Most proaktive protocols are are based on
 - Link-state routing
 - Distance-Vector routing

Link State Routing

- Connections are periodically published throughout the network
- Nodes propagate information to their neighbors
 - i.e. flooding
- All network information is stored
 - with time stamp
- Each node computes shortest paths
 - possibly also other route optimizations

UNI FREIBURG

Optimized Link State Routing (OLSR)

- Each nodes broadcasts its neighborhood list
 - Each node can determinate its 2-hop neighborhood
- Reducing the number of messages
 - fewer nodes participate in flooding
- Multipoint relay node (MPRs)
 - are chosen such that each node has at least one multipoint relay node as in its 2-hop neighborhood
 - Only multipoint relay nodes propagate link information
- Node sends their neighborhood lists
 - such that multipoint relay nodes in the 2-hop neighborhood can be chosen

- Combines Link-State protocol and topology control
- Topology control
 - Each node chooses a minimal dominating set of the 2 hope neighborhood
 - multipoint relays (MPR)
 - Only these nodes propagate link information
 - More efficient flooding
- Link State component
 - Standard link state algorithm on a reduced network

UNI FREIBURG

Selection of MPRs

- Multipoint Relaying for Flooding Broadcast Messages in Mobile Wireless Networks, Amir Qayyum, Laurent Viennot, Anis Laouiti, HICCS 2002
- Problem is NP-complete
- Heuristics
 - recommended for OLSR
- Notations
 - N(x): 1 hop neighborhood of x
 - N²(x): 2 hop neighborhood of x
 - Alle connections are symmetrical

UNI

Selection of MPRs

- At the beginning there is no MPR
 - Each node chooses its MPRs
- Rule 1: A node of x is selected as MPR, if
 - it in N(x) and
 - it is the only neighborhood node in the node $N^2(x)$
- Rule 2: If nodes in N² (x) are not covered:
 - Compute for each node in N(x) the number of uncovered nodes in N²(x)
 - Select as MPR the node that maximizes the value

UNI FREIBURG

UNI FREIBURG

- OLSR is flooding link information using MPRs
 - Multipoint-Relays
- Receivers choose their own MPRs for propagating
 - Each node chooses its own MPRs
- Routes use only MPRs as intermediate nodes

Zone Routing Protocol (ZRP)

- Haas 1997
 - A new routing protocol for the reconfigurable wireless networks, Proc. of IEEE 6th International Conference on Universal Personal Communications, 562–566
- Zone Routing Protocol combine
 - Proactive protocol
 - for local routing
 - reactive protocol
 - for global routing

- Routing zone of a node x
 - Nodes in a given maximum hop-distance d
- Peripheral nodes
 - all nodes have exactly the hop-distance d
 - within the routing zone x

- Intra zone routing
 - proactive update the connection information in the routing zone of node
 - e.g. with link state or distance vector protocols
- Inter zone routing
 - Reactive route discovery is used for distant / unknown nodes
 - Procedure similar to DSR
 - Only peripheral nodes reach further information

UNI FREIBURG

Routing Protocols for WSNs

- Literature
 - From MANET To IETF ROLL Standardization: A Paradigm Shift in WSN Routing Protocols, Watteyne et al, IEEE Communication Survey & Tutorials, Vol. 13, No. 4, 4th Quarter, 2011
 - Routing Protocols in Wireless Sensor Networks: A Survey, Goyal, Tripathy, 2012 Second International Conference on Advanced Computing & Communication Technologies
 - Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey, Pantazis et al., IEEE Communication Survey & Tutorials, Vol. 15, No. 2, 2nd Quarter, 2013

Types of Communication

- Single Hop
 - Two participants, sender/receiver, e.g. outdoor temperature sensor
 - Base stations: master/slave, e.g. Bluetooth
 - Many participants, i.e. data mule
- Multihop
 - Local Communication
 - Point-to-Point/Unicast
 - Convergence
 - Aggregation
 - Divergance

a) Local Communication

b) Point-to-Point

c) Convergence

d) Aggregation

e) Divergance

Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey, Pantazis et al., IEEE Communication Survey & Tutorials, Vol. 15, No. 2, 2nd Quarter, 2013

Data Aggregation

- In multi-hop networks combining mesage can improve networking
- Concatenation) of messages
 - overall number of headers is reduced
 - especially for Preamble Sampling
 - smaller costs for collision avoidance
- Recalculation of contents
 - e.g. If the minimum temperature is required, then it satisfies to forward the smallest value
 - For this purpose, collect the input over some time

UNI FREIBURG

Data Aggregation by Concatenation

UNI FREIBURG

Real Data Aggregation by Recalculation

UNI FREIBURG

Simple Functions for Data Aggregation

- Minimum
 - inner node computes the minimum of input values
- Maximum
 - like Minimum
- Number of sources
 - inner node adds input values
- Sum
 - addition at inner nodes

UNI FREIBURG

Aggregable Functions

- Mean
 - compute the number of sensors: n
 - compute the sum of sensor values: S
 - mean = S/n
- Variance
 - Compute average and the average of squares of values
 - $V(X) = E(X^2) E(X)^2$

Hard Aggregable Functions

- The following functions cannot be aggregated easily
 - median
 - p-quantile
 - if p is not very small or large
 - number of different values
 - only for large data sets an approximation is possible
- Approximate solution
 - was presented in "Medians and Beyond: New Aggregation Techniques for Sensor Networks, Shrivastava et al. Sensys 04
 - using k words in each message an approximation ratio of log n/k can be achieved

UNI FREIBURG

Routing Models for Data Aggregation

- Address Centric Protocol
 - each sensor sends independently towards the sink
 - not suitable for (real) aggregation
- Data Centric Protocol
 - Forwarding nodes can read and change messages

Communication Graphs for Aggregation

- Tree Structure
 - If there is only a single sink
 - and every source uses only a single path
 - then every communication graph in a WSN is a tree
- DAG (directed acyclic graph)
 - general case
 - caused by changing routing paths to the sink
 - may complicate data aggregation
 - e.g. sum
- General graph
 - Population protocols
 - are not used in WSNs

- Hard problems for Data Aggregation
 - Counting of different elements in a multiset
 - Computation of Median
- Exact computation needs complete knowledge
 - therefore we compute approximations
- Main Technique
 - probabilistic counting
 - "Counting by Coin Tossings", Philippe Flajolet, ASIAN 2004
 - probabilistic sampling
 - "A note on efficient aggregate queries in sensor networks", Boaz Patt-Shamir, Theoretical Computer Science 370 (2007) 254–264

Types of WSN Routing

Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey, Pantazis et al., IEEE Communication Survey & Tutorials, Vol. 15, No. 2, 2nd Quarter, 2013

- MANET Routing
 - Flooding Based Routing (MANET)
 - Flooding, DSR, AODV, DYMO
 - Cluster-Based Hierarchical Routing
 - Low-Energy Adaptive Clustering Hierarchy (LEACH)
- Geographic Routing
 - Greedy Routing
 - Face Routing
- Self-Organizing Coordinate Systems
 - Inferring Location from Anchor Nodes, Virtual Coordinates
 - Gradient Routing
 - Gradient-Based Routing (GBR)
 - Routing Protocol for Low Power and Lossy Networks (RPL)

UNI

A Low-energy adaptive clustering **CoNe** hierarchy (LEACH)

Literature

- Heinzelman, W., Chandrakasan, A., and Balakrishnan, H., "Energy-Efficient Communication Protocols for Wireless Microsensor Networks", Proceedings of the 33rd Hawaaian International Conference on Systems Science (HICSS), January 2000.
- Heinzelman, Chandrakasan, Balakrishnan, An Application-Specific Protocol Architecture for Wireless Microsensor Networks, IEEE Transactions on Wireless Communications, Vol. 1, NO. 4, October 2002
- TDMA-based MAC + simple Routing Protocol
- Cluster heads (CH)
 - Randomized, adaptive, self-configuring algorithm
 - use CDMA for communication
- Other nodes
 - communicate only with cluster head using TDMA-MAC
- Application spedific data processing
 - aggregation, compression
- Two-hop-Routing
 - Nodes to CH, CH to base station
 - Minimum energy routing

Adaptive versus Static Clustering

- Cluster members transmit to a cluster head
- Cluster head
 - transmits to the sink
 - Cluster heads are energy intensive
 - are the first to die
- LEACH
 - nodes self-elect to become cluster heads
 - Cluster-heads data from their surrounding nodes and pass it on to the base station
 - is dynamic because the job of cluster-head rotates

Fig. 3. Dynamic cluster formation during two different rounds of LEACH. All nodes marked with a given symbol belong to the same cluster, and the cluster head nodes are marked with \bullet .

LEACH Protocol

- Steps
 - Cluster Head Selection
 - probabilistic or
 - central (LEACH-C) by base station
 - Cluster Formation
 - Steady State Phase
- Assumptions
 - All nodes can reach the base station (BS)
 - Short transmission ranges can save energy
 - energy path loss ~ d²

Given

- k: number of desired cluster heads
- n: number of nodes
- p = k/n desired fraction of nodes
 - such that 1/p is a natural number
- t: round number
- t₀ = t (t mod 1/p)
- Choose randomly $\ r\in [0,1]$
- In each round compute T(t) : $T(t) = \frac{p}{1 p(t \mod \lceil \frac{1}{p} \rceil)}$

probability that a node i elects itself to become a cluster head

If (r < T(t)) and</p>

(node has not been a cluster head in the last 1/p rounds) then

Select node as cluster head for round r

UNI FREIBURG

LEACH: Cluster Head Selection Algorithm

LEACH: Cluster Formation Algorithm

- Cluster Heads broadcasts an advertisement message using CSMA
- Based on RSSI (received signal strength indicator)
 - each non-cluster node determine its cluster head for this round
- Each non-cluster head transits a join-request message
 - using CSMA
- Cluster head node sets up a TDMA schedule for data transmission within the cluster
 - prevents collision
 - energy conservation for non-cluster-heads

IBURG

1()9

- Assumptions
 - Setup phase stars at the same time
 - BS sends out synchronized pulses to the nodes
 - Cluster heads are awake all the time
- To reduce inter-cluster interference, each cluster communicates using direct-sequence spread spectrum
- Data is sent from the cluster head to the base station using CDMA

0

Fig. 6. Average energy dissipated per round in LEACH as the number of clusters is varied between 1 and 11. This graph shows that LEACH is most energy efficient when there are between 3 and 5 clusters in the 100-node network, as predicted by the analysis.

UNI FREIBURG

111

- Base station cluster formation
- Use a central control algorithm to form clusters
 - During setup phase each node sends its location and energy level to the base station
 - base station assigns cluster heads and cluster
 - base station broadcasts this information
 - steady-state phase is same as LEACH

Algorithms for Radio Networks

Routing

University of Freiburg Technical Faculty Computer Networks and Telematics Christian Schindelhauer

