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Geometric Routing

§ Routing target:  
- geometric position 

§ Idea 
- send message to the 

neighbor closest to the 
target node (greedy 
strategy) 

§ Advantagements 
- only local decisions 
- no routing tables 
- scalable
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Position Based Routing

§ Prerequisites 
- Each node knows its position (e.g. GPS) 
- Positions of neighbors are known (beacon messages) 
- Target position is known (location service)
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Greedy forwarding and recovery

§ With position information 
- one can forward a message in the "right" direction 

(greedy forwarding) 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First Approaches

§ Routing in packet radio networks  
§ Greedy strategies: 

- MFR: Most Forwarding within Radius  [Takagi, Kleinrock 1984] 

- NFP: Nearest with Forwarding Progress  [Hou, Li 1986]
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barrier

Greedy forwarding and recovery

§ Greedy forwarding is stopped by barriers  

- (local minima) 

§ Recovery strategy:  

- Traverse the border of a barrier until a forwarding progress is possible (right-
hand rule)  

- routing time depends on the size of barriers
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Position Based Routing

§ Combination of greedy routing and recovery strategy 
§ Recovery from local minima (right hand rule) 

- Example: GPSR [Karp, Kung 2000] 
• B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for 

Wireless Sensor Networks,” Proc. MobiCom 2000, Boston, MA, Aug. 2000. 

8

X

s
t

?

advance perimeter

right hand 
rule



Greedy forwarding and recovery

§ Right-hand rule needs 
planar topology 
- otherwise endless recovery 

cycles can occur 

§ Therefor the graph needs 
to be made planar 
- erase crossing edges 

§ Problem 
- needs communication 

between nodes 
- must be done careful in order 

to prevent graph from 
becoming disconnected
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Problems of Recovery

§ Recovery strategy can 
produce large detours 

§ Solutions 
- Follow recovery strategy until 

the situation has absolutely 
improved 
• e.g. until the target is closer 

- Follow a thread 
• Face Routing strategy, GOAFR 
• Kuhn, Wattenhover, Zollinger, 

Asymptotically Optimal 
Geometric Mobile Ad-Hoc 
Routing, DIAL-M 2002
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Figure 2: The faces of a planar graph (the white
region is the infinite outer face).

Face Routing and AFR work on planar graphs. We use
the term planar graph for a specific embedding of a planar
graph, i.e. we consider Euclidean planar graphs. In this
case, the nodes and edges of a planar graph G partition the
Euclidean plane into contiguous regions called the f faces of
G (see Figure 2 as an illustration). Note that we get f − 1
finite faces in the interior of G and one infinite face around
G.

The main idea of the Face Routing algorithm is to walk
along the faces which are intersected by the line segment st
between the source s and the destination t. For completeness
we describe the algorithm in detail (see Figure 3).
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Figure 3: The Face Routing algorithm

Face Routing
0. Start at s and let F be the face which is incident to s

and which is intersected by st in the immediate region
of s.

1. Explore the boundary of F by traversing its edges and
remember the intersection point p of st with the edges

of F which is nearest to t. After traversing all edges, go
back to p. If we reach t while traversing the boundary
of F , we are done.

2. p divides st into two line segments where pt is the not
yet “traversed” part of st. Update F to be the face
which is incident to p and which is intersected by the
line segment pt in the immediate region of p. Go back
to step 1.

In order to simplify the subsequent proofs, we show that
Face Routing terminates in linear time.

Lemma 4.1. The Face Routing algorithm reaches the des-
tination t after traversing at most O(n) edges where n is the
number of nodes.

Proof. First we show that the algorithm terminates. By
the choices of the faces F in step 0 and 2, respectively, we
see that in step 1 we always find a point p which is nearer
to t than the previous p where we start the tour around
F . Therefore we are coming nearer to t with each iteration,
and since there are only finitely many intersections between
st and the edges of G, we reach t in a finite number of
iterations.

For the performance analysis, we see that by choosing p as
the st-“face boundary” intersection which is nearest to t, we
will never traverse the same face twice. Now, we partition
the edges E into two subsets E1 and E2 where E1 are the
edges which are incident to only one face (the same face lies
on both sides of the edge) and E2 are the edges which are
incident to two faces (the edge lies between two different
faces). During the exploration of a face F in step 2, an
edge of E2 is traversed at most twice and an edge of E1 is
traversed at most four times. Since the edges of E1 appear
in only one face and the edges of E2 appear in two faces, all
edges of E are traversed at most four times during the whole
algorithm. Each face in a planar connected graph (with at
least 4 nodes) has at least three edges on its boundary. This
together with the Euler polyhedral formula (n−m+ f = 2)
yields that the number of edges m is bounded by m ≤ 3n−6
which proves the lemma.

In order to obtain our new algorithm AFR, we are now going
to change Face Routing in two steps. In a first step we
assume that an upper-bound cd on the (Euclidean) length
cd(p∗) of a shortest route p∗ from s to t on graph G is
known to s at the beginning. We present a geometric ad-
hoc routing algorithm which reaches t with link distance cost
at most O(cd

2).

Bounded Face Routing (BFR[cd]). Let E be the ellipse
which is defined by the locus of all points the sum of whose
distances from s and t is cd, i.e. E is an ellipse with foci s
and t. By the definition of E , the shortest path (in 2) from
s to t via a point q outside E is longer than cd. Therefore,
the best path from s to t on G is completely inside or on E .
We change step 1 of Face Routing such that we always stay
within E .

0. Start at s and let F be the face which is incident to s
and which is intersected by st in the immediate region
of s.
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GOAFR: Adaptive Face Routing

§ Adaptive Face Routing 
§ Faces are traversed completely while the search 

area is restricted by a bounding ellipse 
§  Recovery strategy + greedy forwarding
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of the major axis of 1.2 |st| and an enlargement factor of
p

2. If there is no path
to the target within the bounding ellipse, the size of the ellipse is doubled and the
source starts face routing again.

AFR can be used on its own or as as a recovery strategy in combination with
greedy forwarding. This combination is called Greedy Other Adaptive Face Rout-
ing (GOAFR) [52]. A further improvement of this algorithm, called GOAFR+ is
presented in [49]. It employs method other than the bounding ellipse to restrict the
search area, namely a circle centered at the destination, which initially contains
the source node and is gradually reduced when the packet approaches the target.
Furthermore, GOAFR+ uses an early fallback strategy to leave the recovery mode
sooner to resume greedy forwarding. In contrast to the sooner back procedure, which
leaves greedy mode as soon as the distance to the destination is decreased since en-
tering face routing mode, GOAFR+ uses the following criterion: It maintains two
counters for the nodes on the traversal that are closer and for those that are not closer
to the destination than the start node of the traversal. If the number of nodes closer
to the destination exceeds the rest of the nodes on the traversal by a certain factor,
the traversal is stopped and the message is passed to the node that is closest to the
destination among the visited nodes and greedy forwarding is resumed. The use of
the two counters avoids multiple traversals of nodes that were already participat-
ing in a traversal before. Through this strategy the algorithm retains its asymptotic
efficiency. An overview of AFR and its variants is given in [52].
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Figure 10: Adaptive Face Routing (AFR) [52]. Faces are traversed com-
pletely while the search area is restricted by a bounding ellipse.

3.4 Recovery beyond Planarization

Recovery from local minima does not necessarily require creating a planar subgraph
prior to routing. One approach is to identify possible local minima beforehand, such
that a path around a void region is already established when a packet in greedy mode
arrives at a dead-end node. For this purpose Fang et al. [16] propose the Bound-
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Planarization

§ Construction of planar subgraph 
§ Gabriel graphs 

§ edges where closed disc of which 
line segment (u,v) is a diameter 
contains no other elements of S 

§ Relative Neighborhood Graph 
§ edges connecting two points 

whenever there does not exist a 
third point that is closer to both 

§ Delaunay Triangulation 
§ only triangles such that no point 

is inside the circumcircle
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Figure 8: GG (left), RNG (middle) and Delaunay triangulation (right)

As planarization removes crossing edges it may induce detours due to missing
edges. Therefore, planar subgraph constructions are desired that approximate the
original graph as closely as possible. This property can be formally described by the
so-called spanning ratio or stretch factor, which is defined by the maximum ratio of
the shortest path length between two nodes u and v in the subgraph over the shortest
path length between u and v in the original graph. A desired property is a constant
stretch factor, as it guarantees a constant overhead for any path in the subgraph.

For Gabriel graph and RNG, however, the spanning ratio is unbound. Bose et al.
[7] have proven length stretch factors of Q(

p
n) for the Gabriel graph and Q(n) for

the RNG, i.e. the detours induced by these subgraph constructions are not bounded
by a constant. In terms of hop count, both GG and RNG have unbounded stretch
factors as well.

To alleviate this problem, local construction schemes for the Delaunay triangu-
lation were considered, which is known to have a constant spanning ratio. The De-
launay triangulation of a given point set contains all triangles whose circumcircle is
empty (see Figure 8). In contrast to the GG or RNG, this criterion cannot be checked
locally by using only 1-hop information. Therefore, variants of the Delaunay trian-
gulation were considered, which can be constructed locally [29, 59, 60]. They are
described in the following.

The Restricted Delaunay Graph (RDG) [29] is obtained by locally constructing
Delaunay triangles, exchanging the local triangulations, and finally removing all
edges uv if there is another node connected to u or v without having uv in its local
triangulation. This scheme requires communication to obtain the desired subgraph,
but provides a subgraph with constant stretch factor.

The Partial Delaunay Triangulation (PDT) [60] has been proposed in two vari-
ants, using either only 1-hop or 2-hop information. Both variants keep the Gabriel
graph edges. A non-GG edge uv has at least one node in Gabriel circle over uv,
and if there are two or more of such nodes left and right of uv within the circle, the
edge is removed. If these nodes are located either only left or only right of uv within
the circle, the maximum Delaunay circle among u, v and those 1-hop neighbors is
considered. With 1-hop information, u keeps the edge uv if its transmission range
covers the Delaunay circle (i.e. it is able to reach every other node within this circle)
and the circle is empty. With 2-hop information u and v communicate and keep the
edge if both cover the Delaunay circle and there is no other node within this circle.
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Adaptive Face Routing

§ Spanning ratio/stretch factor 
- max{shortest path(u,v)/ 

        geometric distance(u,v)} 

§ Gabriel graphs 

§ Relative Neighborhood Graph 

§ Delaunay Triangulation 
- but possibly long edges 
- because the convex hull is always 

a sub-graph of the DT 

§ A lot of better techniques 
studied in literature
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Lower Bound for Geometric Routing

§ Kuhn, Wattenhover, Zollinger, Asymptotically Optimal Geometric Mobile Ad-Hoc 
Routing, DIAL-M 2002
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Time: Ω(d2)

time = #hops, traffic = #messages

d = length of shortest path

are various suggestions on how to construct a planar sub-
graph of the unit disk graph in a distributed way. Often
the intersection between the UDG and the Relative Neigh-
borhood Graph (RNG [24]) or the Gabriel Graph (GG [8]),
respectively, have been proposed. In the RNG an edge be-
tween nodes u and v is present iff no other node w is closer
to u and to v than u is to v. In the Gabriel Graph an edge
between u and v is present iff no other node w is inside or
on the circle with diameter uv. The Relative Neighborhood
Graph and the Gabriel Graph are easily constructed in a dis-
tributed manner. There have been other suggestions, such
as the intersection between the Delaunay triangulation and
the unit disk graph [17]. All mentioned graphs are connected
provided that the unit disk graph is connected as well. We
use the Gabriel Graph, since it meets all requirements as
shown in the following lemma.

Lemma 4.4. In the Ω(1)-model the shortest path for any
of the considered metrics (Euclidean distance, link distance,
and energy) on the Gabriel Graph intersected with the unit
disk graph is only by a constant longer than the shortest path
on the unit disk graph for the respective metric.

e’
e’’

e

w

u

v

Figure 7: The unit disk graph contains an energy
optimal path.

Proof. We show that at least one best path with respect
to the energy metric on the UDG is also contained in GG∩
UDG. Suppose that e = (u, v) is an edge of an energy
optimal path p on the UDG. For the sake of contradiction
suppose that e is not contained in GG ∩ UDG. Then there
is a node w in or on the circle with diameter uv (see Figure
7). The edges e′ = (u, w) and e′′ = (v, w) are also edges of
the UDG and because w is in the described circle, we have
e′2 +e′′2 ≤ e2. If w is inside the circle with diameter uv, the
energy for the path p′ := p \ {e} ∪ {e′, e′′} is smaller than
the energy for p and p no energy-optimal path. If w is on
the above circle, p′ is an energy-optimal path as well and
the argument applies recursively. Using Lemma 3.1, we see
that the optimal path costs with respect to the Euclidean
and the link distance metrics are only by a constant factor
greater than the energy cost of p. This concludes the proof.

Lemma 4.4 directly leads to Theorem 4.5.

Theorem 4.5. Let p∗
τ for τ ∈ {d, ℓ, E} be an optimal path

with respect to the corresponding metric on the unit disk
graph in the Ω(1)-model. We have

∀τ ∈ {d, ℓ, E} : cτ (AFR) ∈ O c2
τ (p∗

τ )

when applying AFR on GG ∩ UDG in the Ω(1)-model.

Proof. The theorem directly follows from Lemma 3.1,
Lemma 4.3, and Lemma 4.4.

5. LOWER BOUND
In this section we give a constructive lower bound for ge-

ometric ad-hoc routing algorithms.

w

Figure 8: Lower bound graph

Theorem 5.1. Let the cost of a best route for a given
source destination pair be c. Then any deterministic (ran-
domized) geometric ad-hoc routing algorithm has (expected)
cost Ω(c2) for link, distance, or energy cost.

Proof. We construct a family of networks as follows. We
are given a positive integer k and define a Euclidean graph
G (see Figure 8): On a circle we evenly distribute 2k nodes
such that the distance between two neighboring points is ex-
actly 1; thus, the circle has radius r ≈ k/π. For every second
node of the circle we construct a chain of ⌈r/2⌉ − 1 nodes.
The nodes of such a chain are arranged on a line pointing
towards the center of the circle; the distance between two
neighboring nodes of a chain is exactly 1. Node w is one
arbitrary circle node with a chain: The chain of w consists
of ⌈r⌉ nodes with distance 1. The last node of the chain of
w is the center node; note that the edge to the center node
does not need to have distance 1.

Please note that the unit disk graph consists of the edges
on the circle and the edges on the chains only. In particular,
there is no edge between two chains because all chains except
the w chain end strictly outside radius r/2. Note that the
graph has k chains with Θ(k) nodes each.

We route from an arbitrary node on the circle (the source
s) to the center of the circle (the destination t). An optimal
route between s and t follows the shortest path on the circle
until it hits node w, and then directly follows w’s chain to
t with link cost c ≤ k + r + 1 ∈ O(k). An ad-hoc routing
algorithm with routing tables at each node will find this best
route.



Lower Bound for Greedy Routing

§ J.Gao,L.J.Guibas,J.E.Hershberger,L.Zhang, A.Zhu,“Geometric spanner for routing in 
mobile networks,” in 2nd ACM Int. Symposium on Mobile Ad Hoc Networking & 
Computing (MobiHoc), 2001, pp. 45–55.  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Time: Ω(d2)

time = #hops, traffic = #messages

d = length of shortest path

This lower bound holds for any randomized or deterministic geographic routing
algorithm. A similar lower bound holds for greedy algorithms only. Greedy algo-
rithms cannot guarantee delivery in the worst case, but if there is a greedy path, it
is not even close to the optimal path in the worst case. Considering the graph in
Figure 12, a greedy choice based on distance minimization leads from s to node v
that is closer to the target. The path from v to t brings the message closer to the tar-
get in each step, but its length is quadratic in the length of the optimal path, which
leads from s through u to t. Thus, for distance-based greedy forwarding, there is a
quadratic lower bound with respect to the shortest path length [29].

� "#
$

Figure 12: Lower bound for greedy forwarding [29]

Considering the hop count metric, the quadratic lower bound for geographic rout-
ing implies that a quadratic number of messages is needed. This bound on the mes-
sage complexity can be reached by a flooding algorithm. Actually, flooding visits
all nodes in the network, but it can be limited by a doubling technique that repeats
restricted flooding while doubling the hop limit. This technique is also known as
expanding ring search [41] and has a quadratic message complexity. The quadratic
lower bound, which is defined in terms of the shortest path, suggests that geographic
routing strategies have the same worst case message complexity than flooding algo-
rithms, while flooding algorithms are obviously faster.

In fact, geographic routing is not as inefficient in the worst case as it seems.
We have seen that the difficulty of the geographic routing problem depends on the
void regions which are local minima to a greedy strategy and require a traversal.
Following the rationale in [5], one can show that in the worst case the traversal of
void regions is unavoidable. Thus, there is a lower bound on hop count and message
complexity of W(d+ p) for geographic single-path strategies, where d is the shortest
path length and p the perimeter of void regions. This analysis uses an abstraction
from the geometric issues connected with the problem of void identification and
graph planarization: By a geographic clustering technique [70], a unit disk graph can
be represented by a grid with usable and defective regions. This way the geographic
routing problem on unit disk graphs can be transformed to the problem of routing
on a defective grid with only local information. It inherently provides a minimum
distance property as defined in the W(1)-model.
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A Virtual Cell Structure

16

transmission radius 
(Unit Disk Graph)

v

nodes exchange beacon messages 
⇒ node v knows positions of ist neighbors

Rührup et al. Online Multi-Path Routing in a Maze, ISAAC 2006



v

node cell link cell barrier cell

each node classifies the cells  
in ist transmission range

A Virtual Cell Structure
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Routing based on the Cell Structure

§ Routing based on the cell 
structure uses cell paths 
cell path  
- = sequence of orthogonally 

neighboring cells 

§ Paths  
- in the unit disk graph and cell 

paths are equivalent up to a 
constant factor 

§ no planarization strategy 
needed 
- required for recovery using the  

right-hand rule
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Routing based on the Cell Structure
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node cell link cell barrier cell

v

virtual forwarding using cells

w

physical forwarding from v to w,  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Performance Measures

§ competitive ratio: 

§ competitive time ratio of a routing algorithm 
- h = length of shortest barrier-free path 
- algorithm needs T rounds to deliver a message

20

solution of the algorithm
optimal offline solution

h

T

single-path



Comparative Ratios

§ optimal (offline) solution for traffic: 
- h messages (length of shortest path) 

§ Unfair, because 
- offline algorithm knows the barriers 
- but every online algorithm has to pay  

exploration costs 

§ exploration costs 
- sum of perimeters of all barriers (p) 

§ comparative traffic ratio  

21

M = # messages used 
h = length of shortest path 
p = sum of perimeters

h



Comparative Ratios

§ measure for time efficiency: 
- competitive time ratio 

§ measure for traffic efficiency: 
- comparative traffic ratio  

§ Combined comparative ratio 
- time efficiency and traffic efficiency

22



Single Path Strategy

§ no parallelism 
- traffic-efficient (time = traffic) 
- example: GuideLine/Recovery 

§ follow a guide line connecting 
source and target 

§ traverse all barriers 
intersecting the guide line 

§ Time and Traffic:

23



Multi-path Strategy

§ speed-up by parallel 
exploration 
- increasing traffic 
- example: Expanding Ring 

Search 

§ start flooding with 
restricted search depth 

§ if target is not in reach 
then 
- repeat with double search 

depth 

§ Time 
§ Traffic

24



Algorithms under Comparative 
Measures

25

GuideLine/Recovery  
(single-path)

Expanding Ring Search  
(multi-path)

traffictime

scenario

maze

open space

GuideLine/Recovery  
(single-path)

Expanding Ring Search  
(multi-path)

time  
ratio

traffic 
ratio

combined 
ratio

Is that good?

It depends ... on the



The Alternating Algorithm

§ uses a combination of both strategies: 
1. i = 1 
2. d = 2i 
3. start GuideLine/Recovery with time-to-live = d3/2 
4. if the target is not reached then 

 start Flooding with time-to-live = d 

5. if the target is not reached then 
 i = i+1  
 goto line 2 

§ Combined comparative ratio: 
26



The JITE Algorithmus

§ Complex algorithm 
§ Message efficient parallel BFS 

(breadth first search)  
- using Continuous Ring Search 

§ Just-In-Time Exploration (JITE)  
- construction of search path 

instead of flooding 

§ Search paths surround barriers 
§ Slow Search 

- slow BFS on a sparse grid 

§ Fast Exploration 
- Construction of the sparse grid 

near to the shoreline

27
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Slow Search & Fast Exploration

§ Slow Search visits only 
explored paths 

§ Fast Exploration is 
started in the vicinity of 
the BFS-shoreline 

§ Exploration must be 
terminated before a 
frame is reached by the 
BFS-shoreline
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Performance of Geometric Routing 
Algorithms 
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Beacon-Less Geometric Routing

§ Literature 
- M. Heissenbüttel and T. Braun, A novel position-based and 

beacon-less routing algorithm for mobile ad-hoc networks, 
in 3rd IEEE Workshop on Applications and Services in 
Wireless Networks, 2003, pp. 197–209.  

- M. Heissenbüttel, T. Braun, T. Bernoulli, and M. Wälchli, 
BLR: Beacon-less routing algorithm for mobile ad-hoc 
networks,” Computer Communications, vol. 27 (11), pp. 
1076–1086, Jul. 2004.  

- H. Kalosha, A. Nayak, S. Rührup, and I. Stojmenovic, 
Select-and-protest-based beaconless georouting with 
guaranteed delivery in wireless sensor networks, in 27th 
Annual IEEE Con- ference on Computer Communications 
(INFOCOM), Apr. 2008, pp. 346–350.
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Beaconless Routing

§ Givens 
- Each node knows its position 
- A node knows the position of the 

routing target 
- No beacons 
- The neighborhood is unknown 
- Nodes listen to messages 
- Sparse routing information in 

packets 

§ The Idea 
- A packet carries the source and 

target coordinates 
- Only good located sensor answers
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Fig. 1: Forwarder (F), candidate (C) and destination (D).
Eligible candidates are within the forwarding area, which is
part of the greedy area (i.e. closer to the destination than the
forwarder).

use a reactive message exchange in which all neighbors are
involved in the worst case. This rises the question, whether
we can reduce this message overhead and thus achieve a
significant message reduction in comparison to conventional
protocols that rely on beaconing.

In this paper we answer this question and provide solu-
tions for both variants of the beaconless recovery problem:
Beaconless Forwarder Planarization (BFP) first constructs an
approximation of the planar subgraph and then sorts out nodes
that are not neighbors in a planar subgraph. We use proximity
graphs such as Gabriel graph and relative neighborhood graph
for the planar subgraph construction, because edges in these
graphs can be determined locally. We propose the Circlunar
Neighborhood Graph (CNG), a planar proximity graph that can
be constructed with less messages than the Gabriel graph and
that has a better connectivity than the relative neighborhood
graph. The second solution of the beaconless recovery problem
is Angular Relaying, which first tries to find the next neighbor
of a right-hand face traversal and then switches to another
neighbor, if the selected neighbor is not adjacent in the planar
Gabriel subgraph.

Overview of the paper: In Section II we review related
work. Section III describes the Beaconless Forwarder Pla-
narization method, which provides the general framework
of creating planar subgraphs reactively for face routing. In
Section IV we take a closer look at planar subgraph con-
structions and determine the crucial properties that affect the
efficiency of BFP. In Section V we introduce the Circlunar
Neighborhood Graph, a new proximity graph which has
advantageous properties for local subgraph construction in
beaconless protocols. It reduces the message overhead to a
constant number while providing better connectivity than the
relative neighborhood graph. Section VI describes the Angular
Relaying method, an alternative solution to the beaconless
recovery problem. In Section VII we present simulation results
for the aforementioned protocols.

II. RELATED WORK

One building block of geographic routing strategies are
greedy forwarding strategies. They are based on position-

based progress criterions such as MFR [22] or the greedy
method [10]. Progress in terms of MFR means to decrease
the distance of the projection on the straight line to the
target, while the greedy method simply refers to the Euclidean
distance. The first beaconless routing algorithms, BLR [15],
CBF [12], and IGF [1], use these greedy criterions to define
the delay functions, which determine the candidate with the
most progress by giving him the shortest timeout. There are
further protocols addressing specific problems of the initial
approaches. Blind Geographic Routing (BGR) [23] contains
a strategy to avoid simultaneous transmissions. Geographic
Random Forwarding (GeRaF) [25] divides the forwarding area
into zones and selects the next forwarder by contention among
the nodes within these zones. All these approaches work well
in dense networks, where there is always a neighbor closer to
the destination. If this is not the case and the greedy algorithm
faces a local minimum, delivery can only be guaranteed, if a
recovery from that situation is possible. Recovery strategies
have been developed for geographic routing algorithms (see
[7] for a survey) and many of them are based on face traversals
using a planar subgraph. Prominent subgraph constructions are
the Gabriel graph (GG) [13] and the relative neighborhood
graph (RNG) [17], but also localized variants of the Delaunay
triangulation have been proposed [14], [18], [20]. Face routing
on a planar subgraph in combination with greedy forwarding is
the idea behind the Greedy-Face-Greedy algorithm (GFG) [4],
which became a standard technique for geographic routing.

A. Beaconless Recovery

While the recovery problem is well studied for geographic
routing algorithms, the beaconless approaches leave room for
improvement. In beaconless routing, the term “recovery” is
often used in connection with heuristics, that enlarge the
set of possible candidates, if the forwarding area is empty,
but do not guarantee delivery. BLR, CBF and BGR use this
kind of heuristic. PSGR [24] contains a more sophisticated
recovery mechanism, however the delivery is questionable, as
no crossing-free subgraph is considered.

The following beaconless protocols contain a “real” recov-
ery strategy and can thus give delivery guarantees (cf. Table I).
However, all these strategies require position information of
the complete neighborhood to be exchanged in the worst case.

BLR Backup mode [16] (also called Request-response ap-
proach in [15]): The forwarder broadcasts a request and
all neighboring nodes respond. If a node is closer to the
destination, it becomes the next hop. Otherwise the forwarder
constructs a local planar subgraph (GG) from the position
information of the neighbors and forwards the packet using
the right-hand rule. The position when entering backup mode
is stored in the packet. Greedy forwarding is resumed when a
node is closer to the destination.

Request-Response can be regarded as reactive beaconing,
because all neighbors are involved in exchanging position
information. The following protocols use an approach, that
we classify as Select and Protest: they determine possible

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.
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Beaconless Routing 
The Roles

§ Forwarder 
- node currently holding the packet 

§ Forwarding Area 
- nodes in this area are allowed to 

accept the packets 

§ Candidates 
- nodes in the forwarding area 
- most suitable candidate chosen by 

contention 

§ Timer 
- each candidate has a time based on a 

delay function 
- The delay function has as parameters 

the coordinate of the forwarder the 
target and the own position
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Fig. 1: Forwarder (F), candidate (C) and destination (D).
Eligible candidates are within the forwarding area, which is
part of the greedy area (i.e. closer to the destination than the
forwarder).

use a reactive message exchange in which all neighbors are
involved in the worst case. This rises the question, whether
we can reduce this message overhead and thus achieve a
significant message reduction in comparison to conventional
protocols that rely on beaconing.

In this paper we answer this question and provide solu-
tions for both variants of the beaconless recovery problem:
Beaconless Forwarder Planarization (BFP) first constructs an
approximation of the planar subgraph and then sorts out nodes
that are not neighbors in a planar subgraph. We use proximity
graphs such as Gabriel graph and relative neighborhood graph
for the planar subgraph construction, because edges in these
graphs can be determined locally. We propose the Circlunar
Neighborhood Graph (CNG), a planar proximity graph that can
be constructed with less messages than the Gabriel graph and
that has a better connectivity than the relative neighborhood
graph. The second solution of the beaconless recovery problem
is Angular Relaying, which first tries to find the next neighbor
of a right-hand face traversal and then switches to another
neighbor, if the selected neighbor is not adjacent in the planar
Gabriel subgraph.

Overview of the paper: In Section II we review related
work. Section III describes the Beaconless Forwarder Pla-
narization method, which provides the general framework
of creating planar subgraphs reactively for face routing. In
Section IV we take a closer look at planar subgraph con-
structions and determine the crucial properties that affect the
efficiency of BFP. In Section V we introduce the Circlunar
Neighborhood Graph, a new proximity graph which has
advantageous properties for local subgraph construction in
beaconless protocols. It reduces the message overhead to a
constant number while providing better connectivity than the
relative neighborhood graph. Section VI describes the Angular
Relaying method, an alternative solution to the beaconless
recovery problem. In Section VII we present simulation results
for the aforementioned protocols.

II. RELATED WORK

One building block of geographic routing strategies are
greedy forwarding strategies. They are based on position-

based progress criterions such as MFR [22] or the greedy
method [10]. Progress in terms of MFR means to decrease
the distance of the projection on the straight line to the
target, while the greedy method simply refers to the Euclidean
distance. The first beaconless routing algorithms, BLR [15],
CBF [12], and IGF [1], use these greedy criterions to define
the delay functions, which determine the candidate with the
most progress by giving him the shortest timeout. There are
further protocols addressing specific problems of the initial
approaches. Blind Geographic Routing (BGR) [23] contains
a strategy to avoid simultaneous transmissions. Geographic
Random Forwarding (GeRaF) [25] divides the forwarding area
into zones and selects the next forwarder by contention among
the nodes within these zones. All these approaches work well
in dense networks, where there is always a neighbor closer to
the destination. If this is not the case and the greedy algorithm
faces a local minimum, delivery can only be guaranteed, if a
recovery from that situation is possible. Recovery strategies
have been developed for geographic routing algorithms (see
[7] for a survey) and many of them are based on face traversals
using a planar subgraph. Prominent subgraph constructions are
the Gabriel graph (GG) [13] and the relative neighborhood
graph (RNG) [17], but also localized variants of the Delaunay
triangulation have been proposed [14], [18], [20]. Face routing
on a planar subgraph in combination with greedy forwarding is
the idea behind the Greedy-Face-Greedy algorithm (GFG) [4],
which became a standard technique for geographic routing.

A. Beaconless Recovery

While the recovery problem is well studied for geographic
routing algorithms, the beaconless approaches leave room for
improvement. In beaconless routing, the term “recovery” is
often used in connection with heuristics, that enlarge the
set of possible candidates, if the forwarding area is empty,
but do not guarantee delivery. BLR, CBF and BGR use this
kind of heuristic. PSGR [24] contains a more sophisticated
recovery mechanism, however the delivery is questionable, as
no crossing-free subgraph is considered.

The following beaconless protocols contain a “real” recov-
ery strategy and can thus give delivery guarantees (cf. Table I).
However, all these strategies require position information of
the complete neighborhood to be exchanged in the worst case.

BLR Backup mode [16] (also called Request-response ap-
proach in [15]): The forwarder broadcasts a request and
all neighboring nodes respond. If a node is closer to the
destination, it becomes the next hop. Otherwise the forwarder
constructs a local planar subgraph (GG) from the position
information of the neighbors and forwards the packet using
the right-hand rule. The position when entering backup mode
is stored in the packet. Greedy forwarding is resumed when a
node is closer to the destination.

Request-Response can be regarded as reactive beaconing,
because all neighbors are involved in exchanging position
information. The following protocols use an approach, that
we classify as Select and Protest: they determine possible
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Beaconless Routing 
Problem: Recovery Strategy

§ Greedy Routing works 
perfectly 

§ But recovery strategy is 
problematic 
- How to construct local planar 

subgraphs on the fly 
- How to determine the next edge 

of a planar subgraph traversal 

§ Rules 
- no beacons allowed to solve this 

problem 
- but interaction with the 

neighborhood

33

s

t



Possible Recovery Strategies

§ BLR Backup Mode 
- Literature 

• M. Heissenbüttel, T. Braun, T. Bernoulli, and M. 
Wälchli, BLR: Beacon-less routing algorithm for 
mobile ad-hoc networks,” Computer Communications, 
vol. 27 (11), pp. 1076–1086, Jul. 2004.  

§ Algorithm 
- Forwarder broadcast to all neighboring nodes 
- All neighbors reply 
- Construct a local planar subgraph (Gabriel Graph) 
- Forward using right-hand-rule 

§ BLR guarantees delivery 
- but needs reaction of all neighbors (pseudo-

beacons)
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Protocol Empty Forwarding Recovery Guarant.
Area (from local minima) delivery

BLR use MFR area Beaconing + face routing yes
CBF use greedy area (left open) ??
IGF – – no
BGR rotate fwd. area – no
GeRaF – * – no
PSGR – * Bypass ??
NB-FACE – ** Clockwise timeout and yes

Gabriel neighbor selection
GDBF – ** Distance-based timeout, yes

Gabriel neighbor selection
*) Fwd. area covers the complete greedy area
**) Fwd. area covers the complete transmission area

TABLE I: Beaconless routing protocols and their recovery
methods

neighbors of a planar subgraph by a contention process and
allow protests afterwards to correct wrong decisions.

NB-FACE [21] is a beaconless variant of the face routing
algorithm. The delay function depends on the angle between
candidate, forwarder and previous hop such that the first
candidate in (counter-)clockwise order responds first. If this
node is not a neighbor in the Gabriel graph, then other nodes
may protest. The NB-FACE algorithm is similar to a variant
of our Angular Relaying scheme (Section VI). However, we
will see that NB-FACE yields not always optimal results.

GDBF [5], [6] provides a beaconless Gabriel graph con-
struction and serves as basis for face routing algorithms such
as GFG. The local Gabriel subgraph is constructed in two
phases, using a timer-based contention mechanism: First, the
candidates answer with a delay proportional to their distance
to the forwarder, but only if no other neighbor located within
their Gabriel circle has responded earlier. The thus constructed
subgraph contains directed (asymmetric) edges and is not nec-
essarily planar. Therefore, after the face routing algorithm has
selected a candidate that violates the Gabriel graph condition,
further nodes may protest against the decision in a second
phase. We will see that in the worst case all neighbors have
to respond when using the Gabriel graph. GDBF is a variant
of our more general BFP scheme.

III. BEACONLESS FORWARDER PLANARIZATION

The basic problem of beaconless protocols is that they cannot
rely on 1-hop-knowledge. But this knowledge is necessary to
build a planar subgraph. Thus, in a recovery situation, the
forwarder has to gather information and this is connected with
the exchange of messages. In contrast to the Request-Response
approach of BLR [15], where all neighbors announce their
positions upon request, we follow the idea of GDBF [6] to
reduce the message overhead.

Beaconless Forwarder Planarization (BFP) is a general
scheme, that can be used to construct different proximity
graphs, such as Gabriel graph and RNG. The BFP algorithm
is described in the following. It’s message complexity depends
on the chosen subgraph. We will later discuss appropriate
subgraph constructions and analyze the message complexity.

w2

w6

w4

w3

v
w1

w5

Fig. 2: BFP: Nodes respond in the order w1, w2, w3, w6; w4

and w5 are hidden. w4 protests against w6, and w5 remains
silent after w4’s protest

vu vu

Fig. 3: Proximity regions of GG and RNG: An edge (u, v)
exists only if the proximity region (shaded) is empty.

The BFP Algorithm

The BFP algorithm consists of two phases, the selection and
the protest phase. N(u, v) denotes the proximity region of the
chosen subgraph, e.g. the Gabriel circle or the RNG lune over
(u, v) (cf. Fig. 3).

1. Selection Phase The forwarder v broadcasts an RTS
(including its own position) and sets its timer to tmax. Each
candidate w sets its contention timer, using the following
delay function:

t(d) = d
r · tmax (1)

(d = distance to forwarder = |vw|, r = transmission radius,
tmax = maximum timeout). When the contention timer expires,
a candidate answers with a CTS. If a candidate w receives
the CTS of another node w′ that lies in the proximity region
N(u,w), then w cancels its timer and remains quiet. We
call this mechanism suppression and the candidate being
suppressed a hidden node. Hidden nodes listen to other nodes
after their timer expired. If a hidden node w receives the CTS
of another node w′ with w ∈ N(u,w′), then w′ violates the
proximity condition and w adds w′ to the set of violating nodes
S. We call (u,w′) a violating edge. See also Fig. 2.

2. Protest phase In the second phase, the hidden nodes
protest against violating edges. If the set of violating nodes S
is not empty, the hidden node w starts its timer, using the same
delay function as in the first phase (closest candidates protest
first). If w overhears a protest from another hidden node w′,
then the set of violating nodes has to be checked: A node x
can be removed from S, if w′ ∈ N(u, x). When the timer
expires and S is not empty, w sends the protest message. The
forwarder removes violating edges when it receives protests
and finally obtains a planar subgraph.
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Possible Recovery Strategies

§ NB-FACE 
- Literature 

• M. Narasawa, M. Ono, and H. Higaki, “NB-FACE: No-
beacon face ad- hoc routing protocol for reduction of 
location acquisition overhead,” in 7th Int. Conf. on Mobile 
Data Management (MDM’06), 2006, p. 102.  

§ Algorithm 
- Delay function depends on the angle between forwarder 

candidate and previous hop,  
• such that the first candidate in clockwise or counter-

clockwise order responds first.  
- If this node is not a neighbor of the Gabriel graph, then 

other nodes protest 
§ NB-Faces also guarantees delivery 

- this strategy was improved by Kalosha et al. in order to 
decrease the number of messages
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Protocol Empty Forwarding Recovery Guarant.
Area (from local minima) delivery

BLR use MFR area Beaconing + face routing yes
CBF use greedy area (left open) ??
IGF – – no
BGR rotate fwd. area – no
GeRaF – * – no
PSGR – * Bypass ??
NB-FACE – ** Clockwise timeout and yes

Gabriel neighbor selection
GDBF – ** Distance-based timeout, yes

Gabriel neighbor selection
*) Fwd. area covers the complete greedy area
**) Fwd. area covers the complete transmission area

TABLE I: Beaconless routing protocols and their recovery
methods

neighbors of a planar subgraph by a contention process and
allow protests afterwards to correct wrong decisions.

NB-FACE [21] is a beaconless variant of the face routing
algorithm. The delay function depends on the angle between
candidate, forwarder and previous hop such that the first
candidate in (counter-)clockwise order responds first. If this
node is not a neighbor in the Gabriel graph, then other nodes
may protest. The NB-FACE algorithm is similar to a variant
of our Angular Relaying scheme (Section VI). However, we
will see that NB-FACE yields not always optimal results.

GDBF [5], [6] provides a beaconless Gabriel graph con-
struction and serves as basis for face routing algorithms such
as GFG. The local Gabriel subgraph is constructed in two
phases, using a timer-based contention mechanism: First, the
candidates answer with a delay proportional to their distance
to the forwarder, but only if no other neighbor located within
their Gabriel circle has responded earlier. The thus constructed
subgraph contains directed (asymmetric) edges and is not nec-
essarily planar. Therefore, after the face routing algorithm has
selected a candidate that violates the Gabriel graph condition,
further nodes may protest against the decision in a second
phase. We will see that in the worst case all neighbors have
to respond when using the Gabriel graph. GDBF is a variant
of our more general BFP scheme.

III. BEACONLESS FORWARDER PLANARIZATION

The basic problem of beaconless protocols is that they cannot
rely on 1-hop-knowledge. But this knowledge is necessary to
build a planar subgraph. Thus, in a recovery situation, the
forwarder has to gather information and this is connected with
the exchange of messages. In contrast to the Request-Response
approach of BLR [15], where all neighbors announce their
positions upon request, we follow the idea of GDBF [6] to
reduce the message overhead.

Beaconless Forwarder Planarization (BFP) is a general
scheme, that can be used to construct different proximity
graphs, such as Gabriel graph and RNG. The BFP algorithm
is described in the following. It’s message complexity depends
on the chosen subgraph. We will later discuss appropriate
subgraph constructions and analyze the message complexity.
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Fig. 2: BFP: Nodes respond in the order w1, w2, w3, w6; w4

and w5 are hidden. w4 protests against w6, and w5 remains
silent after w4’s protest

vu vu

Fig. 3: Proximity regions of GG and RNG: An edge (u, v)
exists only if the proximity region (shaded) is empty.

The BFP Algorithm

The BFP algorithm consists of two phases, the selection and
the protest phase. N(u, v) denotes the proximity region of the
chosen subgraph, e.g. the Gabriel circle or the RNG lune over
(u, v) (cf. Fig. 3).

1. Selection Phase The forwarder v broadcasts an RTS
(including its own position) and sets its timer to tmax. Each
candidate w sets its contention timer, using the following
delay function:

t(d) = d
r · tmax (1)

(d = distance to forwarder = |vw|, r = transmission radius,
tmax = maximum timeout). When the contention timer expires,
a candidate answers with a CTS. If a candidate w receives
the CTS of another node w′ that lies in the proximity region
N(u,w), then w cancels its timer and remains quiet. We
call this mechanism suppression and the candidate being
suppressed a hidden node. Hidden nodes listen to other nodes
after their timer expired. If a hidden node w receives the CTS
of another node w′ with w ∈ N(u,w′), then w′ violates the
proximity condition and w adds w′ to the set of violating nodes
S. We call (u,w′) a violating edge. See also Fig. 2.

2. Protest phase In the second phase, the hidden nodes
protest against violating edges. If the set of violating nodes S
is not empty, the hidden node w starts its timer, using the same
delay function as in the first phase (closest candidates protest
first). If w overhears a protest from another hidden node w′,
then the set of violating nodes has to be checked: A node x
can be removed from S, if w′ ∈ N(u, x). When the timer
expires and S is not empty, w sends the protest message. The
forwarder removes violating edges when it receives protests
and finally obtains a planar subgraph.
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Location Service

§ How to inform all nodes about the position of the 
destination node(s) 

§ Categories 
- Flooding-based location dissemination 

• fastest and simplest way 
• yet many messages 

- Quorum-based and home-zone-based strategies 
• reduces communication overhead 

- Movement-based location dissemination 
• location information is spread only locally 
• table of location and time stamps is exchanged when to nodes 

come close to each other 
• only applicable to mobile networks 
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Quorum based Location Services

§ Location information at group of nodes 
§ Nodes need to be contacted to obtain information 
§ E.g. consider grid (Stojmenovic, TR 99) 

- Destination information information is stored on a row 
- Node needs to ask all nodes in a column to receive this 

information 
- reduces traffic by a factor of O(n1/2) 

§ Grid Location Service (Li et al. MobiCom 00) 
- location servers distributed by a hierarchical subdivision of 

the plane
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Home based Location Services

§ Each node has a home-zone 
- in this home zone (possibly far away) 
- another nodes is responsible for relaying position 

information 

§ Geographic Hash Tables (Ratnasami et al. 02) 
- Node and location are key-value pair 
- key is assigned to a location by a hash function 
- In this location the home zone router is responsible for 

storing this information 
- Each node updates his information at the home zone 

router 
- Nodes looking for a node contact home zone router
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Summary

§ Geometric Routing is a scalable alternative with only local information 
§ Recovery strategies 

- are necessary since barriers might occur 
§ Planarization 

- underlying communication graph should be planar 
- erase edges or use cell structure 

§ Beacon- and baconless Routing 
§ Location Service is necessary 
§ Real-world Solutions 

- Flooding 
- Alternating algorithm 
- Greedy with right-hand recovery 
- Greedy with flooding recovery
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