

Wireless Sensor Networks 7. Geometric Routing

REI

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 30.05.2016

- Stefan Rührup: Theory and Practice of Geographic Routing. In: Hai Liu, Xiaowen Chu, and Yiu-Wing Leung (Editors), Ad Hoc and Sensor Wireless Networks: Architectures, Algorithms and Protocols, Bentham Science, 2009
- Al-Karaki, Jamal N., and Ahmed E. Kamal. Routing techniques in wireless sensor networks: a survey. Wireless communications, IEEE 11.6 (2004): 6-28.

Geometric Routing

- Routing target:
 - geometric position
- Idea

- Advantagements
 - only local decisions
 - no routing tables
 - scalable

Position Based Routing

- Prerequisites
 - Each node knows its position (e.g. GPS)
 - Positions of neighbors are known (beacon messages)
 - Target position is known (location service)

A Greedy forwarding and recovery Freiburg

With position information

First Approaches

- Routing in packet radio networks
- Greedy strategies:
 - MFR: Most Forwarding within Radius [Takagi, Kleinrock 1984]
 - NFP: Nearest with Forwarding Progress [Hou, Li 1986]

Greedy forwarding and recovery

- Greedy forwarding is stopped by barriers
 - (local minima)
- Recovery strategy:
 - Traverse the border of a barrier until a forwarding progress is possible (righthand rule)
 - routing time depends on the size of barriers

Position Based Routing

- Combination of greedy routing and recovery strategy
- Recovery from local minima (right hand rule)
 - Example: GPSR [Karp, Kung 2000]
 - B. Karp and H. T. Kung, "GPSR: Greedy Perimeter Stateless Routing for Wireless Sensor Networks," Proc. MobiCom 2000, Boston, MA, Aug. 2000.

CoNe Freiburg

Greedy forwarding and recovery

- Right-hand rule needs planar topology
 - otherwise endless recovery cycles can occur
- Therefor the graph needs to be made planar
 - erase crossing edges
- Problem
 - needs communication between nodes
 - must be done careful in order to prevent graph from becoming disconnected

Problems of Recovery

- Recovery strategy can produce large detours
- Solutions
 - Follow recovery strategy until the situation has absolutely improved
 - e.g. until the target is closer
 - Follow a thread
 - Face Routing strategy, GOAFR
 - Kuhn, Wattenhover, Zollinger, Asymptotically Optimal Geometric Mobile Ad-Hoc Routing, DIAL-M 2002

GOAFR: Adaptive Face Routing

- Adaptive Face Routing
 - Faces are traversed completely while the search area is restricted by a bounding ellipse
 - Recovery strategy + greedy forwarding

- Construction of planar subgraph
 - Gabriel graphs
 - edges where closed disc of which line segment (u,v) is a diameter contains no other elements of S
 - Relative Neighborhood Graph
 - edges connecting two points whenever there does not exist a third point that is closer to both
 - Delaunay Triangulation
 - only triangles such that no point is inside the circumcircle

Adaptive Face Routing

- Spanning ratio/stretch factor
 - max{shortest path(u,v)/ geometric distance(u,v)}
- Gabriel graphs $\Theta(\sqrt{n})$
- Relative Neighborhood Graph $\Theta(n)$
- Delaunay Triangulation $\frac{4\pi}{3\sqrt{3}}$
 - but possibly long edges
 - because the convex hull is always a sub-graph of the DT
- A lot of better techniques studied in literature

Lower Bound for Geometric Routing

 Kuhn, Wattenhover, Zollinger, Asymptotically Optimal Geometric Mobile Ad-Hoc Routing, DIAL-M 2002

d = length of shortest path

time = #hops, traffic = #messages

Time: $\Omega(d^2)$

Lower Bound for Greedy Routing

 J.Gao,L.J.Guibas,J.E.Hershberger,L.Zhang, A.Zhu, "Geometric spanner for routing in mobile networks," in 2nd ACM Int. Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc), 2001, pp. 45–55.

CoNe Freiburg

A Virtual Cell Structure

16

CoNe Freiburg

A Virtual Cell Structure

UNI FREIBURG

Routing based on the Cell Structure

- Routing based on the cell structure uses cell paths cell path
 - sequence of orthogonally neighboring cells

Paths

- in the unit disk graph and cell paths are equivalent up to a constant factor
- no planarization strategy needed
 - required for recovery using the right-hand rule

Performance Measures

competitive ratio:

solution of the algorithm optimal offline solution

competitive time ratio of a routing algorithm

- h = length of shortest barrier-free path
- algorithm needs T rounds to deliver a message

Comparative Ratios

- optimal (offline) solution for traffic:
 - h messages (length of shortest path)
- Unfair, because
 - offline algorithm knows the barriers
 - but every online algorithm has to pay exploration costs
- exploration costs
 - sum of perimeters of all barriers (p)
- comparative traffic ratio

$$\mathcal{R}_{Tr} := \frac{M}{h+p}$$

M = # messages used
h = length of shortest path
p = sum of perimeters

UNI FREIBURG

Comparative Ratios

- measure for time efficiency:
 - competitive time ratio
- measure for traffic efficiency:
 - comparative traffic ratio
- Combined comparative ratio
 - time efficiency and traffic efficiency

$$\mathcal{R}_t := \frac{T}{h}$$

$$\mathcal{R}_{Tr} := \frac{M}{h+p}$$

$$\mathcal{R}_c := \max\{\mathcal{R}_t, \mathcal{R}_{Tr}\}$$

Single Path Strategy

no parallelism

- traffic-efficient (time = traffic)
- example: GuideLine/Recovery
- follow a guide line connecting source and target
- traverse all barriers intersecting the guide line
- Time and Traffic: O(h+p)

CoNe Freiburg

Multi-path Strategy

- speed-up by parallel exploration
 - increasing traffic
 - example: Expanding Ring Search
- start flooding with restricted search depth
- if target is not in reach then
 - repeat with double search depth
- Time $\mathcal{O}(h)$
- Traffic $\mathcal{O}(h^2)$

UNI FREIBURG

	time	traffic
<i>GuideLine/Recovery</i> (single-path)	$\mathcal{O}(h$	+p)
Expanding Ring Search (multi-path)	$\mathcal{O}(h)$	$\mathcal{O}(h^2)$

$$\mathcal{R}_t := \frac{T}{h}_M$$
$$\mathcal{R}_{Tr} := \frac{M}{h+p}$$

Is that good?

It depends on the	scenario	time ratio	traffic ratio	combined ratio
<i>GuideLine/Recovery</i> (single-path)	$\begin{array}{c} {}^{\text{maze}}\\ p=h^2 \end{array}$	$\mathcal{O}(h)$	$\mathcal{O}(1)$	$\mathcal{O}(h)$
<i>Expanding Ring Search</i> (multi-path)	open space $p < h$	$\mathcal{O}(1)$	$\mathcal{O}(h)$	$\mathcal{O}(h)$

UNI FREIBURG

The Alternating Algorithm

- uses a combination of both strategies:
- 1. i = 1
- 2. $d = 2^{i}$
- 3. start GuideLine/Recovery with time-to-live = $d^{3/2}$
- 4. if the target is not reached then start Flooding with time-to-live = d
- 5. if the target is not reached then

i = i+1 goto line 2

Combined comparative ratio:

$$\mathcal{R}_c = \mathcal{O}(\sqrt{h})$$

The JITE Algorithmus

Rührup et al. Online Multi-Path Routing in a Maze, ISAAC 2006

- Complex algorithm
- Message efficient parallel BFS (breadth first search)
 - using Continuous Ring Search
- Just-In-Time Exploration (JITE)
 - construction of search path instead of flooding
- Search paths surround barriers
- Slow Search
 - slow BFS on a sparse grid
- Fast Exploration
 - Construction of the sparse grid near to the shoreline

Slow Search & Fast Exploration

- Slow Search visits only explored paths
- Fast Exploration is started in the vicinity of the BFS-shoreline
- Exploration must be terminated before a frame is reached by the BFS-shoreline

Performance of Geometric Routing Algorithms

Strategy	Time	Traffic	Comb. Comp. Ratio
Exp. Ring Search [9, 18]	$\mathcal{O}(d)$	$\mathcal{O}(d^2)$	$\mathcal{O}(d)$
Lucas' Algorithm [13]	$\mathcal{O}(d+p)$	$\mathcal{O}(d+p)$	$\mathcal{O}(d)$
Alternating Strategy [20]	$\mathcal{O}(d^{3/2})$	$\mathcal{O}(\min\{d^2,d^{3/2}+p\})$	$\mathcal{O}(\sqrt{d})$
Selective Flooding [21]	$d \cdot 2^{\mathcal{O}\left(\sqrt{rac{\log d}{\log\log d}} ight)}$	$\mathcal{O}(d) + p d^{\mathcal{O}\left(\sqrt{rac{\log\log d}{\log d}} ight)}$	$d^{\mathcal{O}\left(\sqrt{rac{\log\log d}{\log d}} ight)}$
JITE (this paper)	$\mathcal{O}(d)$	$\mathcal{O}((d+p)\log^2 d)$	$\mathcal{O}(\log^2 d)$
Online Lower Bound (cf. [3])	$\Omega(d)$	$\Omega(d+p)$	$\Omega(1)$

Rührup et al. Online Multi-Path Routing in a Maze, ISAAC 2006

Beacon-Less Geometric Routing

Literature

- M. Heissenbüttel and T. Braun, A novel position-based and beacon-less routing algorithm for mobile ad-hoc networks, in 3rd IEEE Workshop on Applications and Services in Wireless Networks, 2003, pp. 197–209.
- M. Heissenbüttel, T. Braun, T. Bernoulli, and M. Wälchli, BLR: Beacon-less routing algorithm for mobile ad-hoc networks," Computer Communications, vol. 27 (11), pp. 1076–1086, Jul. 2004.
- H. Kalosha, A. Nayak, S. Rührup, and I. Stojmenovic, Select-and-protest-based beaconless georouting with guaranteed delivery in wireless sensor networks, in 27th Annual IEEE Con- ference on Computer Communications (INFOCOM), Apr. 2008, pp. 346–350.

UNI FREIBURG

3(

Beaconless Routing

- Givens
 - Each node knows its position
 - A node knows the position of the routing target
 - No beacons
 - The neighborhood is unknown
 - Nodes listen to messages
 - Sparse routing information in packets
- The Idea
 - A packet carries the source and target coordinates
 - Only good located sensor answers

H. Kalosha et al. Select-and-protest-based beaconless georouting with guaranteed delivery in wireless sensor networks InfoCom 2008

- Forwarder
 - node currently holding the packet
- Forwarding Area
 - nodes in this area are allowed to accept the packets
- Candidates
 - nodes in the forwarding area
 - most suitable candidate chosen by contention
- Timer
 - each candidate has a time based on a delay function
 - The delay function has as parameters the coordinate of the forwarder the target and the own position

H. Kalosha et al. Select-and-protest-based beaconless georouting with guaranteed delivery in wireless sensor networks InfoCom 2008

Beaconless Routing

eiburg Problem: Recovery Strategy

- Greedy Routing works perfectly
- But recovery strategy is problematic
 - How to construct local planar subgraphs on the fly
 - How to determine the next edge of a planar subgraph traversal

Rules

- no beacons allowed to solve this problem
- but interaction with the neighborhood

Possible Recovery Strategies

BLR Backup Mode

- Literature
 - M. Heissenbüttel, T. Braun, T. Bernoulli, and M. Wälchli, BLR: Beacon-less routing algorithm for mobile ad-hoc networks," Computer Communications, vol. 27 (11), pp. 1076–1086, Jul. 2004.
- Algorithm
 - Forwarder broadcast to all neighboring nodes
 - All neighbors reply
 - Construct a local planar subgraph (Gabriel Graph)
 - Forward using right-hand-rule
- BLR guarantees delivery
 - but needs reaction of all neighbors (pseudobeacons)

Possible Recovery Strategies

NB-FACE

- Literature
 - M. Narasawa, M. Ono, and H. Higaki, "NB-FACE: Nobeacon face ad- hoc routing protocol for reduction of location acquisition overhead," in 7th Int. Conf. on Mobile Data Management (MDM'06), 2006, p. 102.
- Algorithm
 - Delay function depends on the angle between forwarder candidate and previous hop,
 - such that the first candidate in clockwise or counterclockwise order responds first.
 - If this node is not a neighbor of the Gabriel graph, then other nodes **protest**
- NB-Faces also guarantees delivery
 - this strategy was improved by Kalosha et al. in order to decrease the number of messages

Location Service

- How to inform all nodes about the position of the destination node(s)
- Categories
 - Flooding-based location dissemination
 - fastest and simplest way
 - yet many messages
 - Quorum-based and home-zone-based strategies
 - reduces communication overhead
 - Movement-based location dissemination
 - location information is spread only locally
 - table of location and time stamps is exchanged when to nodes come close to each other
 - only applicable to mobile networks

UNI FREIBURG

Quorum based Location Services

- Location information at group of nodes
- Nodes need to be contacted to obtain information
- E.g. consider grid (Stojmenovic, TR 99)
 - Destination information information is stored on a row
 - Node needs to ask all nodes in a column to receive this information
 - reduces traffic by a factor of $O(n^{1/2})$
- Grid Location Service (Li et al. MobiCom 00)
 - location servers distributed by a hierarchical subdivision of the plane

UNI FREIBURG

Home based Location Services

Each node has a home-zone

- in this home zone (possibly far away)
- another nodes is responsible for relaying position information
- Geographic Hash Tables (Ratnasami et al. 02)
 - Node and location are key-value pair
 - key is assigned to a location by a hash function
 - In this location the home zone router is responsible for storing this information
 - Each node updates his information at the home zone router
 - Nodes looking for a node contact home zone router

- Geometric Routing is a scalable alternative with only local information
- Recovery strategies
 - are necessary since barriers might occur
- Planarization
 - underlying communication graph should be planar
 - erase edges or use cell structure
- Beacon- and baconless Routing
- Location Service is necessary
- Real-world Solutions
 - Flooding
 - Alternating algorithm
 - Greedy with right-hand recovery
 - Greedy with flooding recovery

Wireless Sensor Networks 7. Geometric Routing

Christian Schindelhauer Technische Fakultät Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Version 30.05.2016