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Abstract—We present a smartphone application to localize a
group of networking devices in a mobile environment without the
need of any further infrastructure. Ambient sound signals are the
only information source. Time marks are assigned to the recorded
audio stream for distinctive audio events, out of which we evaluate
the time differences of arrival (TDOA) between the devices. In
contrast to common multilateration approaches we do not need
any positional anchor points – neither any predefined smartphone
positions nor the positions of the environmental sounds. As an
application scenario we can localize arbitrary devices using only
the random environmental noise peaks, e.g. in crowded areas
like market places or concerts with the usual soundscape, or for
thunderstorm tracking. Especially, our solution becomes useful
when established positioning systems (e.g. GPS) are too imprecise
or fail, as during indoor self-localization.

We use a Wi-Fi connection to synchronize the clocks of the
devices and to exchange time marks. In our experiments we
evaluated the audio information and synchronized the devices
up to an order of 0.1 ms. This results in a positioning precision
in the order of 10 cm.

I. INTRODUCTION

Many applications on mobile devices like smartphones,
PDAs, laptops, and tablet computers rely on position in-
formation, e.g. for filtering data according to the location
context. Precise locality information is rarely provided by
the communication network itself. A common approach is to
equip the devices with additional hardware like GPS receivers
which raises costs and increases the energy consumption.
However, these approaches fail in shielded areas, in indoor
environments and for small distances. Here, a common method
is to create an infrastructure with fixed anchor points and to
compute the positions in the communication network using
time of arrival (TOA), time differences of arrival (TDOA) or
the received signal strength indication (RSSI) of radio signals.

In our approach the devices read only ambient sounds
like snapping fingers, clicking noises, coughing of nearby
passengers or other sounds which are ubiquitously available.
Based on the TDOA between the devices, the positions of the
devices and the sound signals as well can be computed.

We use three methods that resolve the positions of the
devices. Their application is dependent on the specific sce-
nario, the number of devices available and the origin of
the ambient sound signals. The Iterative Cone Alignment
algorithm calculates the positions of both the devices and the
sound signals in an iterative spring-mass simulation. It requires
at least four devices connected in a network for the localization

in the plane and five devices for three-dimensional positioning.
The Ellipsoid TDOA method needs exactly three devices in the
plane and four devices in three-dimensional space and assumes
distant origins of the sound signals, also see Table I.

If only two devices are available, merely a rough estimation
can be made, based upon the given time differences of sound
signals. We present the novel Arc Cosine Regression algorithm
which estimates the distance between two devices in two-
dimensional space. Compared to ordinary methods it achieves
higher robustness and reliability.

Furthermore, we designed and implemented a prototypical
localization framework currently available for laptop comput-
ers and iPhones. These mobile devices record ambient sound
signals with their built-in microphones. They are connected
via an arbitrary network, like Wi-Fi, GSM or the internet to
synchronize their clocks and to exchange time marks. The
computation is local on each device, and from the time marks
received from the other microphones logical sound events
are deduced and the relative positions are calculated and
displayed. As the main criterion for the deduction of logical
sound events the temporal proximity of time marks is used.

The localization methods use sound events as the only input
to determine the positions of all devices and the location
results are displayed on screen as an interactive 3D graphics
visualization.

Our solution can replace existing positioning methods like
GPS and wireless network localization when only relative
localization is needed.

A. Related Work

The localization problem of mobile devices has been a broad
and intensive research topic for infrastructural localization like
GPS, Wi-Fi fingerprinting or GSM localization. A popular
application of infrastructural localization is GSM localiza-
tion of mobile phones. Various techniques exist, including
angle/direction of arrival (AOA/DOA), time of arrival (TOA,
“time of flight”) and time difference of arrival (TDOA) [1].
Commonly a distance function using the received signal
strength indication (RSSI) is used. Stable results can be
achieved by fingerprinting using a map of base stations [2].

Another intensive research area is localization using the
RSSI function of Wi-Fi signals. Methods include Bayesian
inference [3], semidefinite programming for convex constraint
functions [4], [5], a combination of Wi-Fi and ultrasound for
TOA measurements like the Cricket system [6] or combina-978-1-4244-5864-6/10/$26.00 © 2010 IEEE



TABLE I
AVAILABLE METHODS FOR A MINIMUM NUMBER OF RECEIVERS.

Minimum number
of receivers In two dimensions In three dimensions

Two Distance estimation
Three Ellipsoid TDOA for a triangle Distance estimation
Four Iterative Cone Alignment Ellipsoid TDOA for a tetrahedron

Five and more Iterative Cone Alignment

tions of methods [7]. TOA distance functions can be used [8],
[9]. Wi-Fi Beamforming uses sensor arrays to determine signal
directions [10], [11].

RSSI evaluation usually comes with difficulties for indoor
localization due to the unpredictability of signal propagation
[12]. We focus on TDOA analysis in our approach. For
TDOA localization of sound and RF signals there is a basic
scheme of four or more known sensors locating one signal
source. This is solved in closed form [13], [14] or by iterative
methods [15], [16], [17]. TDOA determination can be done by
cross correlation of pairs of signals. An optimal shift between
signals is calculated, corresponding to the angle of the signal
[18]. However, we use signals with a characteristic peak.

Many approaches use pairs or sets of receivers to locate the
direction of audio sources by TDOA evaluation. Valin et al.
employ a grid of receivers and locate a speaker’s direction
[19]. Keyrouz and Diepold [20] simulate human binaural
hearing. They locate the direction of a signal using TDOA
and direction dependent signal characteristics of a human head
dummy. Fletcher et al. locate a signal emitter on the hyperbola
between two receivers [21].

B. Problem setting

Given a network of n synchronized devices Mi (i =
1, . . . , n) at unknown positions in p-dimensional Euclidean
space Rp. Now m sound signals Sj (j = 1, . . . ,m) are
produced at distant positions and at unknown times tj . They
travel with a fixed speed of sound c in a direct line. We expect
that the signals are discrete in a manner that they can be
distinguished from each other. Especially, we assume that we
can distinguish the direct signal from echoes from surrounding
walls. The signals are received by the devices at fixed time
points ti,j . This is the only input given in this problem setting.

Now the problem is to compute the positions of all receivers
solely from the information provided by the signal times.
Once the receiver positions have been calculated, all the signal
positions can be calculated by hyperbolic multilateration.

Our findings concentrate on audio signals and the speed of
sound. Of course, all of our findings can be applied to radio
or light signals if the synchronization problem can be solved
for the much higher speed of light.

The mathematical constraints are described by the signal
propagation equation

c(tj − ti,j) = ||Sj −Mi|| (1)

where || · || denotes the vector norm in Euclidean space.

By squaring the equations of form (1) we yield a quadratic
equation system which can be written in quadratic form.
Depending on the number of signals and receivers this system
is under-defined, well-defined or even over-defined.

It can be rewritten as an optimization problem where a
polynomial function of degree four needs to be minimized.
There is only small hope for an efficient solution for such
problems in general.

We have implemented an iterative method, the Cone Align-
ment, which solves the problem in many cases. It requires at
least four receivers in two-dimensional space and five receivers
in three-dimensional space [22].

However, if the signals origins can be assumed to be on the
horizon, i.e. being in a far distance, the problem can be solved
in an elegant closed form solution, requiring fewer receivers:
The Ellipsoid TDOA method [23] deals with the problem of
three unknown receivers in the plane. In this paper we briefly
summarize this method.

Next, we present and discuss two methods which reconstruct
the distance information between pairs of receivers using
only time differences at the receivers: The robust variance
method and the novel Arc Cosine Regression method which
outperforms the variance method in robustness and precision
and provides additional information about the uncertainty of
the estimation. They are compared to a simple convex hull
method based on the maximum measured time differences.

So, we have methods for two receivers, three receivers and
for at least four receivers, which covers all feasible situations
for relative positioning, see Table I: The Cone Alignment, the
Ellipsoid Method and the distance estimation methods form
the algorithmic background of an application for robust and
mobile infrastructure-less localization.

II. METHODS

If less than four receivers are available in the plane then
there is no unique solution to the problem of sound source
localization, if the positions of the receivers are not known.
However, under the assumption of infinitely distant sound
sources three receivers suffice. The Ellipsoid TDOA method
determines the relative distances in a triangle of devices [23].
We briefly summarize it in the following.

A. Ellipsoid TDOA method

Under the assumption that the sound signals originate from a
distant location the time difference of signal reception between
pairs of receivers depends only on the angle of the sound
source. Given three receivers A, B and C a sound signal S
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Fig. 1. Ellipsoid TDOA method

arrives at time points tA, tB and tC , see Fig. 1(a). The time
differences of arrival between the receivers are ∆t1 = tB−tA
and ∆t2 = tC − tA. For the angle α = ∠CAB we choose the
bisection of α and define γ as the angle of the sound source.
Now we write:

x := ∆t1 = d1 cos (γ − α/2) (2)
y := ∆t2 = d2 cos (γ + α/2) (3)

Combining these equation leads to the following ellipse equa-
tion:

x2
1
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+ y2

1

d22
+ xy

−2 cosα

d1d2
=
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2
− 1

2
cos 2α︸ ︷︷ ︸

sin2 α

(4)

It is helpful to draw a diagram of sound events Sj using
cartesian coordinates where the axes are ∆t1 and ∆t2. So,
the points corresponding to all possible sound events form an
ellipse with the origin as the center, see Fig. 1(b).
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Fig. 2. Arc Cosine Regression method. A distant sound signal Sj arrives at
A and B. Angle γ is calculated as cos(γ) = c∆t

d
.

From any set of three distinct sound events the ellipse equa-
tion (4) is uniquely determined, except for mirror symmetric
solutions. Then, from the equation the values d1, d2 and α of
the receiver triangle can be derived using basic algebra.

B. Arc Cosine Regression method

If we have only two receivers the Ellipsoid method can no
longer be used. Still, we are trying to estimate the distance
between the receivers.

Assuming a uniform distribution of the sound signals on
the horizon, it is possible to estimate this distance. Given
two receivers A and B in two-dimensional space (Fig. 2).
A number of signal sources Sj are created at distant points in
space arriving at times tA,j and tB,j at A and B, respectively.
They originate from equally distributed angles γ described as

cos(γ) =
c∆t

d
(5)

where c is the speed of sound, d the unknown distance between
A and B, and ∆tj = tA,j − tB,j is the time difference of the
signals arriving at both receivers.

We consider the upper semi-circle above A described by the
interval [0, π] and sound sources arriving in the circle sector
[φ, π] for arbitrary φ ∈ [0, π]. The probability that φ is greater
than the angle γ of any given sound source is noted as

P (φ > γ) =
φ

π
. (6)

The lower semi-circle in [0,−π] is symmetric. It combines to
the same probability

P (|φ| > |γ|) =

∣∣∣∣ φ2π
∣∣∣∣+

∣∣∣∣−φ2π

∣∣∣∣ =
φ

π
.

This is rewritten to the accumulated probability that ∆t is
greater than any given ∆tj :

F (∆t) = 1− φ

π
= 1− 1

π
arccos

(
c∆t

d

)
(7)

The accumulated probability function F (∆t) is depicted in
Fig. 3.
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Fig. 3. Accumulated probability distribution F (∆t). 20 time differences
are duplicated and sorted by their value (black crosses). The blue curve is the
regression of an arc cosine curve of the values. The maximum time difference
is ∆t = ±11.7 ms.
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Fig. 4. Density function f(∆t) (blue curve). The black dots indicate the
normalized count per interval for a random sampling of 100 000 equally
distributed distant sound sources.

The derivative of F yields the density function

f(∆t) =
1

π
√

d2

c2 −∆t2
(8)

which is defined in the domain
(
−dc , dc

)
. A sampling of

100 000 distant sound sources was performed and assigned to
intervals of time differences. The normalized count per interval
reflects the density function from an experimental point of
view. See Fig. 4 for an illustration of the density function and
the sampling experiment.

A common method to estimate the distance between two re-
ceivers is the evaluation of the variance of the time differences

of arrival. Given a continuous probability density function
f(x) the variance of a random variable X is described as

Var(X) =

∫
(x− µ)2f(x) dx .

Under the assumption that the signals are equally distributed
on the horizon and the receivers are synchronized we state the
mean µ to be zero. Then, the variance of the time differences
is evaluated to

d
c∫

− d
c

x2f(x) dx = σ2 =
d2

2c2
. (9)

Eq. (9) is solved for the receiver distance d = c
√

2σ2. We call
this the variance method.

As noted, the clocks of the receivers are synchronized.
Then, the time differences are symmetric: For every ∆t there
exists −∆t, a sound signal originating from the opposite
direction. We duplicate the time differences ∆t by their
negative pendants improving the variance estimation by this
symmetry.

A more sophisticated technique uses the accumulated prob-
ability distribution to gather information about the receiver
distance d, the Arc Cosine Regression method. The goal is to
solve the anti-derivative F (∆t) for d. Again we use symmetric
duplication of the time differences by their negative pendants.
The time differences are sorted by their value ∆tj and assigned
a coordinate (∆tj ,

1
mIj) where Ij denotes the sorted index

0 ≤ Ij ≤ m. For a minimum number of m ≥ 1 sound signals
we use linear regression. It can be applied after we rewrite
Eq. (7) such that d appears as a linear coefficient. We know
that sin(arccos(x)) =

√
1− x2, so we write:

Ij = 1− 1
π arccos

(
c
d∆tj

)
⇒

(
1− sin ((1− Ij)π)

2
)

︸ ︷︷ ︸
A

d2︸︷︷︸
x

= ∆t2jc
2︸ ︷︷ ︸

b

Now we solve the equation system Ax = b using the least
squares method:(

ATA
)
x = ATb

x =
(
ATA

)−1 (
ATb

)
(10)

With the vector x = {x1} we finally retrieve d =
√
x1.

One may argue that in realistic environments a situation
of equally distributed sound sources will hardly be seen. Our
simulations described in the following section point out that
the regression renders the results robust and the assumption not
at all far-fetched, especially for increased numbers of sound
events. Anyhow, the method also appears suitable for small
numbers of sound events.

C. Simulation

We have tested the distance approximation algorithms in a
simulated environment using a numerical computing software.
For the choice of parameters we concentrate on sound signals.



The two algorithms, the Arc Cosine and the variance
method, are compared to a simple convex hull method, which
deduces the distance d from the limits of the occurring time
differences:

d =
c

2
(∆tmax −∆tmin) (11)

Again, the method uses duplicated time differences as de-
scribed for the methods before.

Two microphones are placed in two-dimensional Euclidean
space with a distance of 4 m between them. This is a typical
real-world value and can be assumed without loss of general-
ity, as scaling the microphone distance is contained in scaling
the distance of the sound sources and signal runtime errors.

Sound sources are placed at random positions on a circle
around the center of the two microphones. The times when
sound signals arrive at the microphones are calculated, given
a signal speed of c = 343 m/s.

The behavior of the approximation is examined under four
types of parameter variation: We vary the distance of the
sound sources, the number of sound sources and the influence
of runtime errors during signal reception. The error model
is created as a Gaussian distribution which is added when
signals are timestamped at the receiver. As the last parameter
we violate the assumption of equally distributed sound sources
on a circle around the microphones.

a) Sound source distance: We assume that sound signals
originate from far distances. However, the distance approxima-
tion method can also be applied for medium-ranged scenarios
with some deterioration of performance.

We simulate 20 sound sources residing at random positions
on concentric circles with radii of 0.1, 0.2, 0.4, 0.6, 0.8, 1.0,
1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10, 12, 15, and 18
meters around the microphones. For every radius we generate
series of 100 runs and execute the algorithms. No runtime
error is assumed in this test. Fig. 5 shows the the mean and
standard deviation of the 100 runs for every radius.

We observe a systematic underestimation for close-ranged
distances. This is no surprise – when sound sources are
enclosed by the microphones the maximum time differences
of arrival cannot occur and the regression yields a narrow arc
cosine curve. For the variance and hull method we observe the
same behavior. The results recover if the sound sources are at
least at an equal range as the microphones, which is a radius
of 2 m.

These results indicate that we only need sound sources
slightly further away from the center than the microphones
– instead of the assumed distant sound sources.

b) Number of sound sources: In a second test we set the
sound sources to a fixed radius of 20 m and vary the number
of sound signals. We start with one source and run the test one
hundred times. This leads to a underestimation of the distance
when the time difference is below the possible maximum.

When we duplicate the time differences, as described in
the previous section, the variance can be calculated even for
one single sound event. The variance method averages to the
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Fig. 5. Increasing sound source distance results in low approximation errors.
Good results can be seen at radii of 2 m and above.
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Fig. 6. Higher numbers of sound sources result in better approximation
results. The variance method performs better when the number of sound
signals is small, though with a high standard deviation.

smallest underestimation of all methods – with a huge standard
deviation, though.

With two sources the distance error of the Arc Cosine
method decreases to 0.68 m, which is less than 20 % of the
microphone distance of 4 m. If more than five sound signals
are available the results become stable, which is indicated by
the decreasing standard deviation of the test series. See Fig. 6
for the graphical illustration of mean and standard deviation.

c) Runtime errors: The third experiment examines the
behavior of the algorithms under tightened conditions. The
time differences of arrival at the receiver can no longer be
precisely measured but vary by a Gaussian distributed error.
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Fig. 7. Gaussian runtime errors lead to an over-estimation of the distance
and high variance between runs. Realistic runtime errors lie below 1.0 ms.

This adds realism to the simulation: Timing errors originate
from bad synchronization of the receivers, from imprecise
audio processing or from varying hardware latency. Runtime
variations could also be effected by wind or by air temperature
differences.

Our experiment uses 20 sound sources. We start with a
slight error, a standard deviation of the runtime of 0.1 ms and
increase to a high error of 3.5 ms.

A moderate overestimation and an increase in standard
deviation appears in all three methods, while the results of
the variance and the Arc Cosine methods stay plausible,
altogether, see Fig. 7. In contrast, the hull method has a severe
overestimation: Together with the runtime errors the maximum
possible time differences increase.

A test run with a reduced number of 8 sound sources leads
to similar results with a slightly increased standard deviation.

In our real-world experiments with the Apple iPhones we
encounter a standard deviation of the runtime error below 1 ms.

d) Sector width: Of great interest is the behavior of
the algorithms if the assumption of equally distributed sound
sources is violated. We simulate a cutout of sound sources: The
signals originate from an increasingly narrow sector, such that
sound signals come only from a single direction. Again, we
use 20 sound sources at a distance of 20 meters.

In the case of a “vertical” cutout the last remaining sound
sources reside on the line of no time difference between the
microphones. The occurring time differences are near to zero.
In this case all three algorithms fail as they cannot distinguish
the small TDOA resulting from a narrow angle or from a small
receiver distance.

In the “horizontal” case the last remaining sound sources
reside on a line with the microphones, while the occurring
time differences are close to the extrema. Then, the variance
method tends to immense overestimation, while the Arc Co-
sine method still reports reasonable values, see Fig. 8.

sector width (radians)

m
ic

ro
ph

on
e

di
st

an
ce

er
ro

r(
m

et
er

s)

0.0 1.57 3.14 4.71 6.28
-4

-3

-2

-1

0

1

2

3

4

Distance estimation, varying sector width

sector width (radians)

m
ic

ro
ph

on
e 

di
st

an
ce

 e
rr

or
 (m

et
er

s)

variance

convex hull

arc cosine

 

π 2π3ππ
2 2

0

Fig. 8. Sounds from an increasingly smaller sector violate the assumption
of equal distribution of sound sources. Then, especially the variance method
suffers from false estimation.

The hull method is insensitive to this scenario, because the
maximum values do not change. However, it is disqualified if
runtime errors occur, which is common in reality.

The result of this last simulation suggests the employment
of the Arc Cosine method due to its robustness in the case
of runtime errors and when the sounds are not perfectly
distributed.

III. SMARTPHONE APPLICATION

We have designed and implemented a prototypical software
framework to support the development of TDOA localization
applications. Modules for network connection and manage-
ment, time synchronization and audio processing are included,
as well as an interface for 3D visualization. The framework
can serve as a platform for the verification of our algorithms
and for the programming of neat and easy-to-use gadget
applications for the public domain. Fig. 9 overviews the
components of the framework.

We assume that several devices are connected in a network
and are able to communicate via TCP or UDP. Then, the
devices find out their vicinity in the local network and the
Network Manager component maintains a routing table of all
involved devices. Whenever a sound signal is detected by a
device its timestamp is forwarded to the other devices where
it is assembled to a sound event as input for the localization.

Localization based upon time differences relies on precise
synchronization among the devices. Unsynchronized localiza-
tion is generally possible, but the time offset and the drift
between clocks are additional system variables which increase
the number of required sound events to determine them.

We use synchronized localization in our algorithms which
is provided by the Time Synchronization component. One
unique master is chosen among the devices which serves
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Fig. 9. Components of the software framework. Synchronized timestamps
are recorded on every device and routed to the other devices. There, they are
aggregated and forwarded as input for the TDOA localization algorithms.

as the time reference. All other devices periodically query
the master for its current time. This is done by a series of
pinging the master which answers with its current time Tref.
This timestamp is corrected by 1/2 RTT (round trip time),
assuming the network packet took the same runtime in both
directions. The obtained timestamps are filtered for high RTT,
which result from network jitter.

Our experiments indicate that clock drift correction is essen-
tial even with the utilized high precision event timers (HPET).
Although running with accurately constant speed, drift rates
between HPET clocks of 0.03 % were observed, which is
very high. We obtain both reference time Tref and clock
drift between client and master by linear regression of the
timestamp set. The client clock is corrected by the clock drift
rate τdrift. The synchronized time on all devices is

Tsync = Tref +
1

2
tRTT + (Tclient − Tlast) · τdrift (12)

where Tlast denotes the time of the last synchronization and
Tclient denotes the local time of the client.

The Timestamp Recorder component reads the microphone
and searches the audio stream for distinctive audio events. The
audio track is filtered for sharp sound events, like clapping or
finger clicking, and their points in time are determined. As a
peculiar mark for a sound event we use the moment when the
signal rises above a environment noise dependent threshold
for the first time. Here, background noise is filtered implicitly.
Fig. 10 displays an example for hands clapping.

Threshold comparisons turned out to be the most robust
approach with only little drawbacks in precision. Maximum
searches, either directly or derivative (edge detection) showed

Fig. 10. Timestamp Recorder. Environment noise dependent threshold
analysis of hands clapping. The moment when the signal rises above the
threshold is chosen as the timestamp.

Fig. 11. Screenshot of our application running on an Apple iPhone 3GS.
The screen displays the positions of four receivers (blue dots) and four sound
signals (numbered red dots) in the plane as a view from above.

to be slightly more precise but proved to be ambiguous with
fatal results in cases when hosts chose different maxima. In
the case of clicking audio signals with a steep initial edge
we calculate time marks with a precision of 0.1 ms. The
spatial equivalent is 3 cm. However, when signals are smooth,
like human speech, the time point of signal detection is not
determined. Clicking fingers or clapping one’s hands is still
adequate. In the following experiments we use sharp signals
created by clapping two wooden planks.



Fig. 12. Four iPhones and four laptops to be located from a series of distant
sound signals. The experimenter in the picture claps the wooden planks,
compare the device positions in Fig. 14.

The Timestamp Aggregation component collects the local
time marks from the Timestamp Recorder and the remote time
marks from other devices in the network. They are combined
to logical sound events. It is essential to aggregate the time
marks correctly to one sound event from the real world. We
choose temporal proximity of timestamps as the criterion. We
assume that the time between sound events is greater than the
maximum TDOA in a sound event, such that the aggregation is
uniquely determinable. Otherwise, we filter ambiguous events
to prevent false assembling.

Based on the framework we have implemented an ap-
plication for laptop computers and the Apple iPhone. The
iPhone 3GS provides all necessary hardware for our project:
A precise hardware timer (HPET), a Wi-Fi connection, a high
quality audio interface, and hardware accelerated 3D graphics.
Fig. 11 shows a screenshot of four computers located in a two-
dimensional environment. The positions of the devices have
been calculated, as well as the positions of four sound events.

IV. REAL-WORLD EXPERIMENTS

We have tested the theoretical approaches in several real-
world experiments. We use a network of laptops and Apple
iPhones as network nodes. Our software establishes network
communication and provides precise time synchronization.
With the built-in microphones we record sound signals. The
signals are exchanged to every participating computer and
computed locally.

The tests took place on a green field on our campus. Four
laptops and four iPhones were connected in a wireless network
using a Wi-Fi access point. Of course, one of the laptops could
have acted as a Wi-Fi hotspot as well. The network nodes were
positioned in an ellipse-like formation of the size 30 m× 25 m.

A volunteer agreed to act as a noisemaker utilizing two
wooden planks which were clapped. He was free to choose
positions making noise, but he was advised to choose varying
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Fig. 13. Overview on the microphone positions. The black line is the
experimenter’s path around the field. The four phases describe the experiment
development, see Fig. 15.

locations. A series of more than 50 sound signals was created
with sound signals at every 10–20 meters.

We noted down the positions of all laptops and smartphones
by measuring the distance to two anchor points. The anchor
points were chosen as a reference for a rectangular coordinate
system. Then, the coordinates of the devices were calculated
using trilateration. The positions of the microphones were
charted up to a precision of 10 cm. The trajectory of the
volunteer was recorded on video and transcribed to a polygon
path using world coordinates. We used an aerial image of the
green field and video recordings of the experiment to retrieve
the path of the experimenter (Fig. 13). The positions of the
sound signals were determined according to their geographic
coordinates up to a precision of 5 m.

The sound events recorded during the tests were assigned a
timestamp. The Arc Cosine Regression algorithm got these
timestamps as the only input and computed the distances
between all computers and iPhones. They form a complete
graph of 1

2 (n − 1)n = 28 distances between nodes. Using
optimization we calculated the relative positions (xi, yi) of
the microphones from the distances dij :

min
x,y

 n∑
i=1

n∑
j=i+1

(xi − xj)2 + (yi − yj)2 − d2ij


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The resulting positions were mapped to the real-world posi-
tions by a congruent rotation and translation. This was done
by calculating the SVD (Singular Value Decomposition) of
the point set correlation which provides a transformation to
minimize deviation between estimated and real positions in
the least squares sense.

The comparison of the localization algorithm and the mea-
sured microphone positions revealed an average deviation of
0.58 m with a standard deviation of 0.35 m. Fig. 14 shows
a large-scale view of the real microphone positions and the
results of our estimation.

In a subsequent evaluation the sound sources were added
consecutively starting with a single sound signal. As the
experimenter progressed on his track making noise, more
sounds were added and the calculation was repeated with

the new information. The obtained microphone distances were
merged into relative coordinates as in the experiment before
and fit to the real positions. The progress of the position errors
for every receiver and for every number of sound sources is
illustrated in Fig. 15.

Position errors decrease quickly after more than six sound
sources have been added. This has to be attributed not only to
the number of sound sources but also to the path covered by
the experimenter (compare Phase 1 in Fig. 13 and 15): Only
when the path describes a semi-circle around the microphones
their positions can be discovered. Then, errors reside below a
maximum of 2 m with an average of about 1 m – throughout
an acceptable value in a setup of an edge length of 30 m.

Note the error increase in Phase 3. This is when the ex-
perimenter’s distance increases and the signals arrive predom-
inantly from the same direction. This violates our assumption
of equally distributed sound sources resulting in a moderate
error increase to a maximum of 3 m.

Some outliers must be noted, for example the position of
Laptop 2 with 37 sound sources. This is a result of deficient
position reconstruction of the distances and not directly a
problem of the distance estimation. The optimization algo-
rithm might have run into a local minimum and estimated a
microphone entirely wrong. This can be solved by repeating
with different initial values.

V. CONCLUSIONS

We have considered the problem of relative localization
of nodes in a computer network solely based on ambient
signals. There is absolutely no knowledge available about the
received audio signals except that they can be distinguished
from each other. There are no anchor points given in the
network. Of course, a provided anchor point can extend the
relative localization to an absolute one. We use the fact that the
network nodes are synchronized and that the ambient signals
originate from punctual origins and we assume that they travel
with a constant speed on a direct line. Then, we can evaluate
the time differences of arrival to reconstruct the positions of
the receivers.

For this problem we presented an elegant closed-form
solution – the Ellipsoid TDOA method [23] for three receivers.
Although only three receivers are given, thus rendering the
underlying equation system under-determined, we provide a
solution in the plane to reconstruct the receiver positions. We
only need the assumption that the sounds originate from far
away.

In this paper, we presented a method to estimate distances
between only two receivers under the additional assumption
that sound sources are equally distributed. It is based on the
distribution of the time differences such that the distance can
be recovered by a regression of the distribution function.

Simulations indicate that our Arc Cosine Regression algo-
rithm outperforms a variance evaluation, especially when the
assumption of equally distributed sound sources is violated.
At the same time it retains the robustness of a variance
method when measurement errors occur. This is in contrast



to calculating the convex hull of the time differences and
deducing the receiver distance out of it, which is prone to
outliers.

We have created a software platform and implemented our
algorithms. We installed the software on the Apple iPhone
which provides the computational power and usability for
highly mobile applications at the same time.

The practicality of our algorithms has been proven in a real-
world experiment. A volunteer produced sound signals from
positions of his choice using two wooden planks. With the
built-in microphones the notebooks and smartphones nearby
were able to compute their relative positions within an error
below one meter.

A. Future work

It is very obvious that the distance estimation method using
the Arc Cosine Regression can be employed to support the
Iterative Cone Alignment as an initial guess of the iteration.
The distance estimation might accelerate the approximation
convergence and help to recover from ambiguities.

The Arc Cosine scheme could support the localization
in a second way. As the regression is very robust against
measurement errors it could be used to prefilter timestamps
for the iterative approach, e.g. false aggregations of timestamps
could be detected.

Furthermore, we plan to include the use of non-discrete
continuous signals, e.g. voices, traffic noise or analogous radio
signals. By testing for correlation of audio signals it should
be possible to detect time differences analogously to sharp
signals. This would dramatically increase the information basis
of the algorithms.

Of importance is also the question of unsynchronized lo-
calization. The use of radio signals from Wi-Fi access points,
from GPS or from broadcast prevents precise synchronization
among receivers due to the greater speed of light. We will
extend the distance estimation to unsynchronized operation.

Another interesting research topic is the mobility of contin-
uous signal sources and of receivers. Filtering techniques like
the Kalman Filter or particle filtering could be implemented
to combine single measurements and track devices and sound
sources over time.
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