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Abstract—We present an approach for the localization of
passive receiver nodes in a communication network. In our
settings the positions of the nodes are unknown. The only
source of information is the time when environmental sound or
ultrasound signals are received. The discrete signals occur at
unknown positions and times, but they can be distinguished. The
clocks of the receivers are synchronized, so the time differences
of arrival (TDOA) of the signals can be computed. The goal
is to determine the relative positions of all receiver nodes and
implicitly the positions and times of the environmental signals.

Our novel approach, the Iterative Cone Alignment algorithm,
solves iteratively a non-linear optimization problem of time dif-
ferences of arrival (TDOA) by a physical spring-mass simulation.
Here, our algorithm shows a smaller tendency to get stuck in local
minima than a non-linear least-squares approach.

The approach is tested in numerous simulations and in a real-
world setting where we demonstrate and evaluate a tracking
system for a moving ultrasound beacon without the need to
initially calibrate the positions of the receivers. Using our
approach we estimate the trajectory of a moving model train
with a precision in the range of centimeters.

I. INTRODUCTION

The increasing availability and computational power of
smartphones and handheld computers permits applications
never before possible. Devices are equipped with high reso-
lution displays, powerful processors, sensor systems, and mi-
crophones. However, the exact position of the phone remains
subject to external infrastructures like the GPS system, GSM
multilateration, or Wi-Fi based location services.
Localization approaches using these infrastructures heavily

depend on the availability of the external systems. Infras-
tructures could fail due to environmental conditions (indoor
locations, in the forest, on mountains), temporal unavailability
(network breakdown), or they could be deactivated for political
reasons. Besides, these location services are mostly too impre-
cise for many applications, especially for indoor localization.
Applications like navigation or augmented reality could benefit
from precise location information.
We address the problem of self-localization of four or more

receivers using the time differences of arrival (TDOA) of
acoustic signals from the environment – of which we do not
know the positions of origin. A sound source could be a finger
snapping, coughing, or the tick sound of a metronome. All
we assume is that the sound travels in a straight line from the
signal source to the receiver and that we can distinguish the
signal from the background noise.

A. Related work

Positioning of mobile devices with given infrastructure is
a broad and intensive research topic. Popular infrastructure-
based approaches for indoor and outdoor applications are GSM
localization [1], [2] and Wi-Fi network fingerprinting [3]. The
interpretation of the received signal strength indication (RSSI)
is an usual approach [4].
When RSSI or TOA (time of arrival, “time of flight”)

data is available the problem is reduced to a problem of
distance vectors. It is solved using the iterative Gauss-Newton
method [5] or by linear estimators [6]. Force-directed ap-
proaches are an alternative relaxing distance constraints in
large-scale networks [7], [8] and in the Vivaldi network
coordinate system [9].
We focus on TDOA localization. TDOA data of audible

sound can be obtained by discrete signal detection [10], [11]
or by cross correlation of signals [12]. Ultrasound is used in
[13], [14].
Usually, the receivers’ positions are known. Then, esti-

mating a sender’s position using time differences of arrival
can be addressed in closed form equations [15], [16] or by
iterative approaches [17], [18]. Hongyang et al. use three
anchor beacons [19]. Moses et al. use TDOA with additional
angle information to locate unknown sender and receiver
positions [20]. This would require expensive receiver arrays
or directed receivers.
Localization without anchors and relying only on TDOA

can be solved if assumptions on the signal positions are made,
i.e. the signals originate from far away [11], [21], [22], [23].
Close to our problem setting is the approach of Biswas and
Thrun [10]. No assumptions of the signal positions are re-
quired and only TDOA information is used to iteratively refine
a Bayesian network. However, the correct solution cannot be
found in every case. An upper error bound with signals in
the unit disc is shown in [24]. A very elegant approach was
proposed by Pollefeys and Nister [25]. The special case of ten
or more microphones is solved in a linear approach without
initialization and without assumptions on the positions.

B. Problem setting

We address the problem of self-localization of receivers
by using only TDOA information from unknown signal
sources [11]. Consider a network of n receivers at unknown
positions Mi (i = 1, . . . , n) in p-dimensional Euclidean space
R

p. The clocks of the receivers are synchronized. Now m sig-
nals are created at arbitrary positions Sj (j = 1, . . . ,m) ∈ R

p

at unknown time points tj . The signal wavefront propagates978-1-4577-1804-5/11/$26.00 ©2011 IEEE



spherically from the signals’ origins Sj with constant signal
velocity c. The signals arrive at the receivers at time points
Tij , which can be measured.
We assume that the signals are discrete, such that we can

distinguish them by their time points. Besides, we assume that
we can identify and filter echoes from surrounding walls and
from obstacles.
Now the problem is to calculate the positions of the re-

ceivers Mi, the positions of the signal origins Sj , and the
times tj when the signals were created – only from the times
Tij when the signals arrived.
The mathematical constraints between the receivers and

signals are described by the signal propagation equation

c (Tij − tj) = ||Mi − Sj || (1)

where || · || denotes the vector norm in Euclidean space.
An equation system is formed by the equations for n re-

ceivers and m signals. Depending on these numbers the equa-
tion system may be under-determined, uniquely determined,
or over-determined, as we will discuss in the next section.
For the cases of three receivers in the plane, and four

receivers in three-dimensional space, and under the assumption
that the signals originate from a distance, the problem can
be solved in closed form. Also, for a fixed number of eight
receivers in the plane, respectively ten receivers in 3D space,
the equation system can be solved directly [25].
To solve the equation system in general we have to square

the equations [26]. When we distribute the equations we get
squared and mixed terms. According to [11] and [25] it does
not seem likely that efficient solutions to the problem in
general can be found.
Non-linear approaches can solve the problem in many

cases [10]. However, the iterative methods tend to run in-
evitably into local minima from which they cannot recover,
even with repeated attempts. In this contribution we quantify
the chance of running into local minima and we present
an iterative method, the Cone Alignment algorithm, which
increases the probability of successful solving.

C. Solvability

Before we describe our solutions we discuss the degrees of
freedom and the theoretical bounds on how many receivers n
and signal origins m are necessary to find a unique solution.
The minimal solutions have also been appealed to in [26].
We start the discussion for the two-dimensional case. Since

the locations of all receivers and origins are unknown we face
2n + 2m variables. Furthermore, we do not know when a
signal has been created which adds m variables. Since we
have no anchor points the number of variables reduces by two
variables for translation (e.g. setting one node as origin) and
one variable for rotation (e.g. setting another node on the x-
axis and a third one with positive y-value).
We assume that all m signals are received at all n receivers

which results in the following equation for the degrees of
freedom G2 presented by the problem size:

G2(n,m) = 2n+ 3m− nm− 3 (2)

signal receivers
sources 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 3 3 3 3 3 3 3 3 3 3 3 3
3 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6
4 7 5 3 1 -1 -3 -5 -7 -9 -11 -13 -15
5 9 6 3 0 -3 -6 -9 -12 -15 -18 -21 -24
6 11 7 3 -1 -5 -9 -13 -17 -21 -25 -29 -33
7 13 8 3 -2 -7 -12 -17 -22 -27 -32 -37 -42
8 15 9 3 -3 -9 -15 -21 -27 -33 -39 -45 -51
9 17 10 3 -4 -11 -18 -25 -32 -39 -46 -53 -60
10 19 11 3 -5 -13 -21 -29 -37 -45 -53 -61 -69
11 21 12 3 -6 -15 -24 -33 -42 -51 -60 -69 -78
12 23 13 3 -7 -17 -27 -37 -47 -57 -67 -77 -87

TABLE I
Degrees of freedom for the two-dimensional case. Non-positive values

indicate potentially solvable problem instances.

If G2(n,m) > 0 then there is no unique solution for the
problem, i.e. it is under-determined. There is a chance of a
unique solution if it equals zero. For negative values the prob-
lem is over-determined, which might allow the compensation
of inaccuracies. See Table I for the two-dimensional case.
For the three-dimensional case the number of location

variables is increased by n + m. Here, three variables can
be set to a constant for the symmetry induced by translation
and three variables for the rotation symmetry which leads to
the following degrees of freedom, see Table II:

G3(n,m) = 3n+ 4m− nm− 6 (3)

Note that point and mirror symmetry is not covered by this
discussion. Since we assume that there is abundant supply of
ambient signals we can summarize that at least four receivers
might allow the solution in the two-dimensional case when
at least five signals are available. For the three-dimensional
case of the problem five receivers for at least nine signals
might be sufficient. However, in our simulations we saw that
ambiguities remain which cannot be explained by symmetries.
Stevénius [26] found 344 solutions to the problem of four
receivers and five signals in the plane. In fact, six signal
sources seem to be the minimum case for the problem.

D. Gradient descent method

A common approach to non-linear problems is an iterative
non-linear least-squares fit. The approach has shortly been
mentioned with regard to this problem in [25].
Using gradient descent or Newton’s method a system of

constraint equations is minimized for every pair of receivers
and signals. We describe the constraint equation by

fij(Mi,Sj , tj) := c (Tij − tj)− ‖Mi − Sj‖ . (4)

In every iteration we pursue to minimize

argmin
Mi,Sj ,tj

n∑
i=1

m∑
j=1

(fij(Mi,Sj , tj))
2



signal receivers
sources 1 2 3 4 5 6 7 8 9 10 11 12
1 0 2 4 6 8 10 12 14 16 18 20 22
2 3 4 5 6 7 8 9 10 11 12 13 14
3 6 6 6 6 6 6 6 6 6 6 6 6
4 9 8 7 6 5 4 3 2 1 0 -1 -2
5 12 10 8 6 4 2 0 -2 -4 -6 -8 -10
6 15 12 9 6 3 0 -3 -6 -9 -12 -15 -18
7 18 14 10 6 2 -2 -6 -10 -14 -18 -22 -26
8 21 16 11 6 1 -4 -9 -14 -19 -24 -29 -34
9 24 18 12 6 0 -6 -12 -18 -24 -30 -36 -42
10 27 20 13 6 -1 -8 -15 -22 -29 -36 -43 -50
11 30 22 14 6 -2 -10 -18 -26 -34 -42 -50 -58
12 33 24 15 6 -3 -12 -21 -30 -39 -48 -57 -66

TABLE II
Degrees of freedom for the three-dimensional case. Non-positive values

indicate potentially solvable problem instances.

We state the non-linear equation (4) as a least squares equation
system in matrix notation:

QTQu = QTb (5)

The equation system consists of the Jacobian Q containing
the partial derivatives for mn constraints and for 2n + 3m
unknowns in the planar case, respectively 3n+4m unknowns
in three dimensions,

Q :=

⎡
⎢⎢⎢⎢⎣

df11
dS1,1

· · · df11
dtm

df11
dM1,1

· · · df11
dMn,p

df12
dS1,1

· · · df12
dtm

df12
dM1,1

· · · df12
dMn,p

...
. . .

...
...

. . .
...

dfnm

dS1,1
· · · dfnm

dtm

dfnm

dM1,1
· · · dfnm

dMn,p

⎤
⎥⎥⎥⎥⎦

and of the function vector b := (f11, f12, . . . , fnm)
T contain-

ing the evaluation of mn function values. Mi,l,Sj,l denotes
the l-th scalar of Mi,Sj . Eq. (5) is solved for update vector
u := (S1,1, . . . , tm,M1,1, . . . ,Mn,p)

T in every iteration step
k. The state vector u(k) is then updated by u(k+1) ← u(k)−u,
where u(0) has been initialized with appropriate values. Here,
we can only use randomized input.
The equation system is usually solved by calculating the

Inverse (QTQ)−1. However, we recommend using LU or QR
decomposition for higher numerical stability.
We have observed that Newton’s method is very prone to

divergence when applied to arbitrary initial positions. There-
fore, we use gradient descent and let it run for some time until
the error function becomes steady before we switch to the fast
Newton method. In particular, this led to higher probability of
convergence.

II. ITERATIVE CONE ALIGNMENT

For the general case no closed form solution is known so
far. Iterative solutions of this problem use gradient descent,
which is prone to local minima, or Newton’s method, which
is prone to divergence. Enhancements of the gradient method
with “momentum” require scenario-dependent adjustments of
parameters.
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Fig. 1. Cone representation of Eq. (6) for p = 2. Top: Signal source S resides
offside the cone surface of receiver M and therefore it is not valid and Φ �= 0.
Bottom: Direction vector N0 intersects the cone to restore validity.

We now present an iterative solution, the Cone Alignment
algorithm, which uses a spring-mass simulation to solve the
problem for the general case. In the following we omit the
indices i, j for clarity.
Consider a receiver M and a signal origin S in p ∈ {2, 3}-

dimensional space. From the problem setting we know that

T = t+
1

c
‖M− S‖ . (6)

This equation describes a cone in the p+1-dimensional
space where signal time t is added as an extra variable, see
Fig. 1. The vector (M, T ) is the apex of the cone. (S, t)
describes a signal that occurred at position S at time point t. If
for all receivers M1, . . . ,Mn and signal sources S1, . . . ,Sm

these equations are satisfied we receive a possible solution
of the given problem. Of course, this does not necessarily
imply we found the correct solution as the problem might
be underconstrained. Recall that there is no absolute solution
since we obtain only a relative localization.

A. Error function

We use an error function to describe the potential energy of
springs. Starting from an initial setting for all positions and
time points our iterative approach greedily decreases the error
function. We define:

Φ((D, tD)) := c t− ‖D‖ (7)

If the error function Φ gives a non-zero value, which we
call an invalid location, one can change both the position and
time (S, t) of the signal source and the position vector M of



the receiver by moving it in p+1-dimensional space in order to
recover a valid position. Receiver time T is fixed by definition.
We define:

N :=

(
S−M

||S−M|| ,
1

c

)
(8)

The normalized direction vector N0 := N
‖N‖ describes the

shortest path from S to the cone surface of M in respect of
signal velocity c.
For the case that t > T + 1

c‖M−S‖ and thus N0 does not
intersect the cone, we choose N0 := (�0,−1) pointing along
the time axis ensuring an intersection.
By construction there is a scalar d ∈ R such that

Φ((M, T ) − (S, t) + dN0) = 0. d equals the distance along
N0 between (S, t) and the cone surface (Fig. 1). It can be
computed by

d :=

(
1− Φ((M, T )− (S, t) +N0)

Φ((M, T )− (S, t))

)−1

. (9)

We calculate a force to minimize d using the spring equation
F = −k dN0 where k is a constant describing the spring
stiffness. Applying F to every receiver particle and −F to the
corresponding signal particle changes the locations and time
points to minimize

Esum =

n∑
i=1

m∑
j=1

(dij)
2

which is proportional to the sum of the potential energy of
springs. In case of success all relations become valid which is
the only way to yield a value Esum = 0.

B. Particle simulation

We compute the signal source and receiver positions by
a simulation of a physical spring-mass system. It is based
on particles which are tuples (xt,vt,m0) representing the
receivers and signals in p+1-dimensional space at discrete
simulation times t. They have physical properties position x,
velocity v and mass m0 obeying Newton’s law of inertia.
Velocity changes result from the influence of forces F. In ad-
dition we introduce a quadratic damping, which is comparable
to aerodynamic drag, stabilizing the simulation. The temporal
integration is realized by a simple Euler-Cromer scheme with
a timestep of h = 1ms:

xt+h = xt + hvt+h

vt+h = vt +
h

m0
Ft

The simulation is initialized with all particles set to one
spot in the p+1-dimensional space, jittered by randomization
to avoid singularities. The initial signal source time is set to
the minimum of all associated receiver timestamps. This is the
closest position guess we can do by now, as no positions are
given.
After the start, forces are calculated. Position and velocity

updates are made accordingly to the Euler-Cromer scheme.
The simulation runs until a termination condition has been

met. Then, either the overall energy function Esum falls below
a fixed threshold or the overall particle velocity falls below a
fixed limit or a certain number of steps have been exceeded.
If no TDOA error was presumed the latter two cases are an
indication that the algorithm did not arrive at the zero of the
error function. We call this a local minimum.

C. Evaluation of the algorithm

Since we have no anchor points we cannot directly compare
our found positions to real-world positions (“ground truth”).
As no positions are known to the algorithm, the final trans-
lation and rotation of the signal source and receiver network
are not determined. For an evaluation of the quality of the
algorithm we use singular value decomposition (SVD) to
generate a rotation R and align our found positions with the
real-world positions [27].
Let G = {g} and H = {h} be a set of points in R

p (p ∈
{2, 3}), where G is the ground truth andH is our experimental
data. We calculate the cross correlation W by summing up the
dyadic products of G and H . By subtracting the arithmetic
centers μg and μh we eliminate the translation.

W =

m+n∑
i=1

(
(gi − μg)(hi − μh)

T)

Let the SVD of W be

W = UDVT = U

⎡
⎢⎢⎢⎣
σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σp

⎤
⎥⎥⎥⎦VT

whereD is a diagonal matrix of singular values σi (1 ≤ i ≤ p)
of W. U and V are unitary matrices. R = UVT creates a
rotation R with an optimal mapping of H to G:

H ′ = {h′} = {R(h− μh) + μg} ≈ {g} = G

The remaining localization error is retrieved by calculating the
root mean square (RMS) distance between G and H ′.

III. SIMULATION

We have implemented the algorithm in C++. Simula-
tions were run in both the two-dimensional and the three-
dimensional case. For the signal velocity we choose the speed
of sound at 20 ◦C, which is c = 343m/s.
The runtime of this algorithm is O(mn) and it converges

after 1,000 to 10,000 iterations for n,m ≤ 14 which gives
an absolute runtime of 0.01 to 0.70 seconds on a standard
PC. Most interestingly, the iteration count decreases with
increasing numbers of sound sources and microphones due
to over-determination (large negative degree of freedom).
For any number of microphones and sound sources n,m ≤

14 we created 100 random scenarios. Microphones and
sound sources were placed in a two-dimensional, resp. three-
dimensional space of 1000 meters edge length. For given
randomly distributed sound signals in space we calculated the
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(a) In two dimensions for 4 receivers and for 3 signal sources the risk of
ending in a local minimum is exceedingly high.
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(b) In three dimensions the risk of local minima is highest for 5 receivers
and for 4 signal sources.

Fig. 2. Distribution of local minima for two and for three dimensions for the
Cone Alignment algorithm. The risk of ending in a local minimum culminates
at the minimum cases and converges to zero in overdetermined scenarios.

timestamps at every microphone. Then, the timestamp infor-
mation was given to our algorithm and finally we evaluated
the quality of the result by applying SVD and comparing
the output of the simulation to the ground truth positions.
As an abort condition of the algorithm we chose an error
threshold ε. In the successful case the remaining RMS error
lay clearly below the threshold. If after 20.000 iteration steps
the threshold could not be reached, the run was marked as not
successful.

A. Local minima

In some cases the localization algorithm failed and got
stuck in a local minimum of the error function. This op-
poses reconstruction errors due to under-determined scenarios,
where constraints contain too little information and degrees of
freedom remain. Local minima occured mainly in uniquely
determined or over-determined scenarios.
The failure rate converges to zero with increasing number of

signals, depicted in Fig. 2(a) for the two-dimensional case and
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Fig. 3. TDOA error experiment of the Cone Alignment algorithm for 7
microphones and 7 signal sources. For TDOA error steps from 0 to 200ms a
total of 1700 experiments were run. With increasing error the average distance
from the real positions increases and local minima are harder to distinguish
from the optimal solution.

in Fig. 2(b) for three dimensions. Comparing this observation
with Table I and II shows that high failure rates correspond to
small absolute degrees of freedom.
In a visual representation we saw that items were blocked

on the wrong side of a line or a plane. We implemented an
algorithm that mirrored them on the other side by way of trial.
This successfully resolved local minima in some but not in all
cases. Experiments with different initial positions had some
improvement.
Furthermore, we ran experiments with simulated TDOA er-

ror. Here, the jitter in timestamping the signals at the receivers
is assumed to be Gaussian distributed. In our experiments we
found this to be realistic. The jitter may be induced from
synchronization errors and from imprecisions in determining
the timestamps. Errors of a standard deviation up to 200ms
were tested, which is a spatial equivalent of 70m.
With increasing TDOA error both the average distance

from the real positions and the tendency of local minima
increased. We observed this tendency difficult to quantitize as
with increasing error a local minimum is hard to distinguish
from the global minimum in the least-squares sense. See Fig. 3
for the example of seven microphones.
For our experiments we calculated the remaining errors Erem

after mapping the experimentally calculated positions to the
corresponding ground truth positions using SVD. We use the
root mean square (RMS) distance as a metric.
For the two-dimensional case at least four microphones are

necessary and sufficient to calculate the relative positions of
all microphone and sound locations. For increasing numbers
of sound sources the RMS distance error converges to zero.
If the number of sound sources is fixed to three, deploying
an increasing number of microphones makes the localization
error decrease to zero (Fig. 4(a)). In the three-dimensional
case we observed similar results, with convergence for five
microphones, respectively four sound sources (Fig. 4(b)).
These observations correspond to our considerations from
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(a) Two-dimensional case. Given at least 3 sound sources, respectively
4 microphones, RMS position errors decrease.
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(b) Three-dimensional case. Given at least 4 sound sources, respectively
5 microphones, RMS position errors decrease.

Fig. 4. Distance Erem from real positions (“ground truth”) in a series of
100 random runs in two and in three dimensions for any combination of
microphone and signal source numbers, filtered for successful runs.

Section I-C where we predicted the reconstructability of all
unknown positions for such numbers of sound sources and
microphones.
We ran a direct comparison of the gradient method and the

Cone Alignment. Both algorithms were run with and without
Newton’s method used afterwards. Again, we observe regions
with higher failure rate for the gradient method, especially in
the case of four microphones and in the case of three signal
sources.

B. Minimum case: Four receivers

We focus on the interesting case of four microphones in the
plane, the smallest case in which positions can be calculated.
Our simulations indicate that the Cone Alignment algorithm
has lower tendency to get stuck in local minima: Using Cone
Alignment we achieve a lower failure rate for a varying
number of sources (Fig. 5). We observe the same with a fixed
number of three signal sources.
As an explanation we suppose that the gradient descent

method fails to escape local minima, as it can only decrease
in its error function. In contrast, the particles of the Cone
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Fig. 5. Comparison of failure ratio for 100 runs per combination. In
the important case of 4 microphones in the plane the Cone Alignment
(red marks) can find the global minimum more frequently than the gradient
method (green marks).

Alignment gather momentum while relaxing the spring con-
straints. In this way, barriers can be overcome towards a
smaller minimum. As we implemented particle velocity as an
imitation of physical springs we did not have to optimize a
momentum parameter.
Furthermore, we observe a exceedingly high tendency to get

stuck if we used Newton’s method after the gradient descent
when we have four to six sound sources. We could not finally
elaborate the reason for that.
Both algorithms, the Cone Alignment and the gradient

method, benefit from the combination with Newton’s method.
We observed that scenarios with very shallow gradients were
marked as “unsolved” when an error threshold could not be
reached after a maximum number of iteration steps. In several
cases the threshold could be met when Newton’s method was
executed afterwards. In general, the number of iteration steps is
immensely reduced for both algorithms when the convergence
is finalized with Newton’s method.
With increasing number of both microphones and signals the

ratio of local minima decreases. Also, the disparity between
both algorithms diminishes.

C. High solvability

We have extended our algorithm and increased the success
rate of finding the global minimum by repeated executions
of the Cone Alignment algorithm, see Fig. 6. The repeated
attempts come with increased computational power for finding
a solution, but the calculations can trivially be executed in
parallel. In the minimum case of four microphones and six
signal sources in the plane we achieve a success rate of 99.4%
after 100 repeats with randomized initialization. Only 0.6% of
all cases remain stuck and unsolvable.
In the case of the gradient descent method and Newton’s

method combined we could not achieve such a high success
rate. After 100 repeats still 2.4% of all scenarios fail to be
solved, which is more by a factor of four.
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Fig. 6. In the important minimum case of 4 microphones and 6 signal sources
in 2D space the Cone Alignment algorithm solves 99.4% of all scenarios. With
12 attempts we solve more than 95%. Using gradient descent we achieve only
97.6% after 100 attempts.

A least squares fit of the distribution in Fig. 6 appears
to follow the power law y = 1 − axb. Omitting the first
two data points we yield an exponent bcone = −1.02 for the
Cone Alignment and bgrad = −0.83 for the gradient descent
method. The coefficient of determination is R2 > 0.98 in
both cases, suggesting the regression is trustable. The larger
negative exponent bcone is a clear indication that the Cone
Alignment converges faster towards one and thus towards
finding a solution for a scenario after a number of repeats.
As we can split larger scenarios into subsets of this size

and merge them after solving a subset, we can solve larger
scenarios in the same way. This form of repeating should
work also for the other minimum cases, for 5 / 4 and for 7 / 3
microphones and sound sources, which we both found to be
unique, and for the three-dimensional case.

IV. REAL-WORLD EXPERIMENTS

We have verified our approach in real-world indoor and
outdoor scenarios. In our experiments we use laptop computers
and Apple iPhones as receiver devices in a wireless network.
Once our software is started the receivers connect in a peer-
to-peer network model and synchronize their clocks. Every
device begins to record audio signals, either audible sound or
ultrasound. In the case of audible sound we use the built-in
microphones of the devices. Ultrasound signals are received by
the laptops with external receiver devices attached, which we
have built. From the discrete audio signals the time points of
arrival are calculated using the synchronized time. The time
points are committed to every participating device and the
position calculations are executed locally.
TDOA localization with unsynchronized devices might be

possible in general. For example distance estimation ap-
proaches might be used without synchronization if the offset
between receivers is calculated from the mean of the TDOA.
However, the number of required sound events will increase to
compensate for the additional variables. Another problem in
unsynchronized localization is the drift of clocks which needs
to be included into the mathematical model or eliminated by
very precise calibration of the clocks.

Our algorithm relies on precise synchronization between
the receivers. First, the connected clients negotiate one master
device which acts as a time reference. Then, the other clients
adjust their clocks to the reference. The calculation is done in
an adaption of the Network Time Protocol algorithm. Both, the
time offset and the timer drift is considered. With a 802.11 b/g
Wi-Fi connection we achieve a synchronization precision of
better than 0.1ms. See [28] for a summary of synchronization
in wireless sensor networks.

A. Self-localization by clapping

Our first real-world test took place in an outdoor setting on
a green area on our campus. We arranged a scenario of four
laptops and four Apple iPhones in a roughly elliptic formation
of the dimensions 30m× 30m. The devices were connected
over a dedicated Wi-Fi access point. Alternatively, one of the
laptops could have been used as a Wi-Fi hotspot, making the
setup independent from external infrastructures.
With the network connection the timestamping software

running on each device could communicate with the other
instances and provide synchronization among all devices. With
their built-in microphones they recorded any incoming sound
event. The time points of the sounds were calculated by
analysis of the audio stream. Sharp sound events like clapping,
coughing, or finger clicking are detected by comparing the
audio signal to an environment noise dependent threshold.
We charted the positions of all laptops and smartphones

by measuring the distances to two anchor points using a
measuring tape. The anchors were chosen as reference points
for a Cartesian coordinate system. Then we calculated the x/y-
coordinates of the devices up to a precision of 10 cm using
trilateration.
Now an assistant was assigned to walk in the experiment

field creating noises by clapping two wooden bars, which made
a noise with sharp characteristics. The assistant was allowed
to choose the locations of the sounds arbitrarily, but to move
in between, such that the signals were well distributed.
The positions of the sound signals were marked with plastic

caps on the floor. precision of 30 cm. Using the synchronous
time base the software on every receiver calculated a syn-
chronized timestamp of every sound event. A filter removed
signals which had been missed by more than one computer,
which occurred in some cases as a result of environmental
noise. After filtering we identified a total of 15 sound signals
at 15 noted positions.
With these timestamps given as input the Cone Alignment

algorithm computed the relative locations of the receivers and
of the origins of the sounds. In the experiments we did not
encounter the local minima issue as we had strictly over-
determined scenarios.
The experimental data and the real-world positions were

aligned by a congruent transformation by using singular value
decomposition (SVD), minimizing the distances between ex-
perimental and ground truth positions. Recall, as pointed out
in Section I, that our approach uses no anchor points in space
and provides only relative localization.
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Fig. 7. Eight devices to be located by receiving 15 unknown sound signals
produced by an assistant clapping two wooden bars. The average location
error of the receivers is 0.28m (σ = 0.14m).

The average location error (euclidean distance) of the micro-
phones after alignment was 0.28m with a standard deviation of
0.14m. The average error of the sound sources was measured
to 0.39m with a standard deviation of 0.28m. The higher
error of the sound sources might be influenced by imprecise
noise generation above the cones and the placement and
measurement of the cone positions.
In these audio experiments we saw that in a controlled

environment we could yield very precise timing of the audio
events – and hearable sounds are cheaply available in many
situations. However, we require that no additional clicking
noise is created during the experiments. Otherwise the asso-
ciation of timestamps to sound events (the single claps of the
experimenter) will become ambiguous.
In our next experiment we present an ultrasound beacon

system which is less vulnerable to association ambiguities.
The beacon can be attached to ground or airborne vehicles
and provides a periodic signal. This enables us to track the
moving vehicle in real-time.

B. Ultrasound tracking system

A number of tracking systems and approaches are available
that achieve high precision in indoor and outdoor environ-
ments. Many of them are optical systems. However, most
commercially available systems are expensive and need to
be calibrated. Approaches using TDOA multilateration require
receivers with calibrated locations. Usually, the positions have
to be tediously measured by hand. This can be disadvantageous
for industrial applications as these have to be easy to use.
Now, we present a tracking system for moving targets using

our algorithm. It can quickly be set up, without the need
to calibrate the positions of the devices. Of course, when
the positions of at least three of the devices are given, the
relative coordinates that we obtain can be converted to absolute
coordinates.

Fig. 8. Left: Receiver platine with ultrasound capsule and USB connector.
Right: Beacon with eight ultrasound capsules facing in all directions, attached
to a moving model train.

We understand that audible sounds are not appropriate here,
they would simply be annoying. We use ultrasound as a
medium. Our ultrasound tracking system consists of a sender
beacon and receivers that record and process the signals from
the beacon. It has been assembled from off-the-shelf compo-
nents and underprices most commercially available tracking
systems.
The beacon creates short ultrasound pulses at periodic in-

tervals. With eight ultrasound capsules facing in all directions
it creates an approximately isotropic signal. For the lateral
directivity of the beacon we have encountered an issue of
noice cancelation at certain angles in the far field. This lead
to a spiky directivity diagram, but did not have noticeable
impact on our experiments. The characteristic might be more
homogeneous if the size of the beacon is smaller, because of
the better overlap of the lobes of the sound capsules.
The interval of the ultrasound pulses can freely be chosen. It

should be so large that signals arriving at the receivers can be
distinguished. For example, in an experimental setup with the
dimensions of 20m the interval should be larger than 50ms.
In our experiment we use an interval of 300ms.
Our ultrasound beacon can be carried by a person or it is

attached to a moving unit, for example a model car or a model
aircraft. It is battery powered so it can be used independently
from line voltage.
We record the signal using external receiver devices with

ultrasound microphones (Fig. 8). After filtering with an analog
band-pass filter the signal is amplified and digitized by an
analog-to-digital converter. Over a serial connection the data
is forwarded to a processing computer, for example a laptop.
Here, the data stream is searched for signal peaks, as in the
case of audio signals. We send very short peaks of 1ms with
no information encoded in the signal.
In an experiment we track a moving model train. On a very

simple trajectory, an oval of the dimensions 3.9m× 1.8m, the
train circles with a velocity of about 0.5m/s. In our experiment
the ultrasound beacon is attached to the roof of the model
train (Fig. 8).
Five receivers are placed roughly in an oval around the

track, at a distance of 4 – 6m. As we conduct a 2D experiment
we place the receivers at the same height as the beacon.
Of course, our algorithm can be used in three-dimensional
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Fig. 9. Trajectory of the model train with the ultrasound beacon on top. We
observe a small overestimation resulting in a RMS track error of 2.5 cm. The
five receivers reside outside the track at a distance of 4 – 6m.

settings, as described in Section II and III. Then, we distribute
the receiver devices in space.
Next, the ultrasound microphones are roughly oriented

towards the oval track and connected to adjacent laptops. With
our software running they can find each other in a Wi-Fi
network and synchronize their clocks.
Using a measuring tape we measured the positions of

the ultrasound capsules up to a precision of 3 cm. For the
dimensions of the train track we describe the geometrical
shape of the track.
For the tracking experiment we assume that the signals are

spatially coherent, in such that the moving beacon has limited
velocity. In this way we filter implausible timestamps. The
phenomenon of multipath propagation, i.e. echoes from walls,
was encountered by issuing a dead time of the timestamp
detector after every received signal. In rare cases a detector
did not receive a signal in the direct path, but only a delayed
echo of the same signal, which is then detected as the first
signal. These false signals can be detected and filtered in the
way described.
After approximately three rounds the Cone Alignment algo-

rithm got the TDOA data as the only input. We calculate both

the unknown ultrasound receiver positions and the trajectory of
the train on the track. The computed receiver positions were fit
to the measured coordinates using SVD. Comparing the data
we find it well matching the ground truth data. However, we
observe some overestimation. The receivers show an average
deviation from the real positions of 44.5 cm (σ = 7.7 cm).
The overestimation is weakly pronounced for the trajectory

of the model train (Fig. 9). We observe only a small overesti-
mation which results in a root mean square (RMS) track error
of 2.5 cm.
In comparison, the tracking system in [29] uses a similar

setup of an oval trajectory with a model train. In the radar
experiments an overall standard deviation of 3.6 cm is yielded,
with notable overestimation of the real track and with large
outliers in case of disturbances. Using a laser scanner precise
results were obtained, however the authors describe that the
scanner is susceptible to losing track of the train. Both
techniques require calibration and they are prone to influences
of the environment.
In contrast, our ultrasound system is not affected by ob-

stacles in the environment, as long as a line-of-sight to the
beacon exists, and the financial effort should be way below
the costs of the radar and the laser system.

V. CONCLUSIONS

We have addressed the problem of self-localization using
nothing but TDOA information. Receivers have absolutely no
knowledge about the signals and there is no assumption of the
origin or the direction of the signals. There are no positional
anchors among the receiver nodes. We only assume that the
discrete signals can be distinguished from each other. The goal
is to calculate the positions of the receivers and the positions
of the signal origins – as well as the signal times implicitly.
In this contribution we have presented our novel Cone

Alignment algorithm. The iterative spring-mass simulation
solves the problem of relative localization in a energy min-
imization manner. Particles obeying Newton’s law of inertia
gather momentum while spring constraints are relaxed.
Like all iterative approaches to this problem the algorithm

suffers from the risk of local minima. We have quantified
the success rate of our algorithm and we have increased the
probability of solving the scenario of four microphones and
six signals to 99.4%. Here, the algorithm outmatches the non-
linear least squares approach, especially in the minimum case
of four receivers in a plane.
Our software platform establishes network communication

between Windows notebooks and smartphones [11]. We re-
quire nothing but an active Wi-Fi connection in the same
network. Then, we can synchronize the devices up to an order
of 0.1ms.
In our real-world experiments we have proven the viability

of our approach. We have located the positions of laptop
receivers with unknown audio signals from the surroundings.
Furthermore, using our algorithm we have created a quick-

setup reference system for ultrasound vehicle tracking where



precise indoor locations in the order of centimeters are pro-
vided. There is no need to measure the positions of reference
receivers. As the sole tasks we attach an ultrasound beacon
to the moving vehicle and place the receivers at generally
distributed, but arbitrarily chosen, positions in the room.

A. Future work

In graphical representations of the problem we have seen
that we could solve the problem of local minima in some
cases by flipping the particles. In this way, we might further
increase the success rate of the algorithm.
We also plan to improve the practical aspects of our

localization scheme. For many scenarios the assumption of
discrete, distinguishable sound events is impractical. We en-
visage speaker tracking and locating ourselves by passing cars.
This requires to calculate TDOA by comparing audio signals
using cross correlation. We expect this will extend the number
of application scenarios for our technique.
For tracking experiments in three dimensions we plan to

redesign our hardware prototype. A smaller, spherical ultra-
sound beacon can be carried by a model aircraft, such as a
quadrotor. Here, we will also address the directivity issue and
increase the range and the reliability of the system.
Furthermore, we aim to improve the prediction of moving

signals. Under the assumption of spatial coherence of signals
we plan to apply filtering techniques like the Kalman filter or
a Monte Carlo simulation. Then, we can estimate the beacon’s
position and interpolate in case of missing signals.
Of great interest is also the question of unsynchronized

localization. This would simplify the approach immensely and
would be helpful especially for unreliable network connections
and for mobile networks like GSM or UMTS.
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