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Abstract—Localization based on the time difference of ar-
rival (TDoA) has turned out to be a promising approach for
indoor environments, especially in combination with innovative
self-calibrating TDoA algorithms that eliminate the need to
measure the positions of reference receivers. We consider the
previously unsolved problem of locating a moving target receiver
by discrete signals from stationary beacons at unknown locations.
We assume that the beacons are small and inexpensive and they
require no further communication, i.e. they are unsynchronized.
They only emit short discrete signals at regular intervals, of
which we assume that they can be distinguished. The moving
target travels on an unknown trajectory, receiving signals from
the beacons and calculating the TDoA of the signals. First,
we discuss adaptions of two TDoA algorithms by which the
senders can be located from unknown signals. Second, we propose
two novel approaches based on probabilistic state estimation
to enable robust localization of the mobile receiver using the
discrete arrival times, once the senders have been located. The
probabilistic algorithms use the particle filter and the unscented
Kalman filter to estimate the position and velocity of the target,
as well as the unknown synchronization offsets of the senders. We
provide a motion model and a sensor model for which we take
into account that the signals of the beacons are received as singles,
each at a different time. We verify the feasibility and robustness
of our approach in extensive simulations, where we analyze the
reliability of localization and compare both algorithms.

I. INTRODUCTION

The rise of mobile technology in every-day life and the em-
ployment of mobile autonomous agents in industrial logistics
has led to an increasing demand for location based services
in indoor scenarios. Navigation satellite based solutions lack
connectivity in these environments, so alternatives must be
considered. One approach that prevailed in such environments
is the time difference of arrival (TDoA) method using ultra-
sound. In contrast to many TDoA localization systems that
track the position of a moving signal emitter [1], [2], we
consider the problem of calculating and tracking the position
of a continuously moving receiver by the signals of an
arbitrary number of stationary sender beacons.

In this context, one may think of an application for industrial
logistics where a large number of autonomous agents trans-
port goods based on dynamic assignments. Forwarding goods

from a material source to a drain requires absolute localization
in the work environment. We suggest an application where
inexpensive ultrasound beacons are randomly placed at the
ceiling of a hall, emitting energy-efficient short signal bursts,
and mobile autonomous units equipped with a cost-efficient
ultrasound receiver unit, navigating by the locality information
of the ultrasound system. By the agents passively receiving
ultrasound signals from several beacons, the number of agents
is not limited by the channel, in contrast to a scenario where
agents actively emit an ultrasound signal.

A fundamental aspect of this setting is the assumption that
signals can be clearly identified and distinguished by the
receiver. This is achieved by modulating individual digital
identification codes on the signal by the senders, which are
detected by the receivers. A promising approach for this was
demonstrated in [3]. The risk of collision of signals is high in
such as setting, however loss of a few signals is acceptable.
We assume that collisions can be detected and the signals
are discarded.

In our setting, we assume that the beacon positions and the
receiver to track are unknown in advance. Neither the sending
times nor the intervals, when the senders emit new signals, are
known to the receiver. As the receiver moves continuously,
the mathematical problem results in an increasing number
of unknown variables in each measurement, growing faster
than constraints in the equation system are generated by the
measurements. This equation system does not yield a unique
solution in non-linear optimization approaches.

Furthermore, we assume that the sender clocks are un-
synchronized, i.e. the time differences of the first signal of
the beacons are not determined. Therefore, once the sender
positions and the intervals are known, there still remains an
unknown offset. Besides, in practical application appears the
problem of oscillator drift of the sender clocks, which requires
continuous observation and correction of the sender offsets, i.e.
the time differences of the sender clocks.

In this paper we propose an approach based on probabilistic
state estimation which recursively estimates the receiver posi-
tion and the sender offsets only by the reception times of the
signals from the sender beacons. We have developed a motion978-1-4673-1954-6/12/$31.00 © 2012 IEEE
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model for the moving receiver and a sensor model for the
observed reception times which considers the unknown time
offsets of the senders. We implemented the approach using a
particle filter, yielding a robust solution, yet at high computa-
tional cost, and the unscented Kalman filter (UKF), creating
an algorithm which is still reliable, and also computationally
efficient. We evaluate and compare these two algorithms for
which we have created and run numeric simulations.

This paper is composed of six sections. After discussing
some related approaches in Section II we introduce the prob-
lem in Section III. In Section IV two methods to localize
the senders are discussed, as the senders are unknown in the
beginning. Section V describes the proposed approaches with
the particle filter and the unscented Kalman filter and the
motion and sensor models. The algorithms are analyzed and
compared in Section VI where we present simulation results
in a typical application scenario.

II. RELATED WORK

In mobile robotics the localization based on landmarks is
a well-known approach. Based on these measurements they
estimate their position and velocity. For robust state estimation
probabilistic estimators are applied, such as extended Kalman
filters [4] and combinations of the unscented Kalman filter and
the unscented particle filter [5].

Saloranta and Abreu present a solution [6] in which a
moving vehicle is able to localize the surrounding senders
and itself using a weighted least squares procedure with the
knowledge of the trajectory and odometry measurements. This
procedure is limited by its assumption of a simple trajectory.
The method used by Chan and Wen [7] is based on the
Angle of Arrival (AoA) and Time of Arrival (ToA) methods
to localize a moving receiver. The assumptions here are
synchronized clocks between senders and the receiver and
no drastic change of the direction of movement. We consider
unsynchronized clocks.

The TDoA localization problem of moving receivers has
been analyzed in combination with the frequency differences
of arrival (FDoA) technique to estimate the position of a
fixed [8] or moving source [9], [10]. An approach in which
the sender is not fixed and the receiver location is not exactly
known was presented in [11]. Our setting is distinguished
from FDoA, as discrete measurements are received, so no
continuous comparison of the phase is possible.

We focus on systems based on TDoA. In popular approaches
the position of the receiver is tracked. The algorithms used
are squared or maximum likelihood estimators [12], particle
filters [2], [13] or Kalman filters [14], [15]. We apply the
particle filter and the unscented Kalman filter, which has a
slightly better performance than the extended Kalman filter in
non-linear settings [16].

III. PROBLEM FORMULATION

We consider the localization problem of a receiver moving
on an unknown trajectory in two-dimensional Euclidean space.
Mt ∈ R2 denotes the position of the receiver at time t.

measurement 1
measurement 2 measurement 3

continuously 
moving 
receiver

Fig. 1. Schematic of the under-determined equation system: In the example a
receiver moves continuously, obtaining three signals from three senders (white
diamonds), yielding nine measurements. The measurements are received at
nine unknown receiver positions (black dots), which results in 18 unknown
variables only for the receiver.

The scenario also consists of m stationary senders which are
placed randomly at unknown positions Si (1 ≤ i ≤ m). Every
sender emits discrete signals at regular points in time at a fixed
interval Ii. The interval may differ from sender to sender. The
sending time of the ki-th signal at sender position Si is then
described by

tkii = t0i + kiIi , (ki > 0). (1)

Furthermore, we assume that a ki-th signal of sender Si
propagates in a straight line from the sender to the receiver
and is received at time point

Tkii =
1

c
‖M− Si‖+ tkii, (2)

where c is the signal velocity and ‖ · ‖ denotes the Euclidean
norm. Furthermore, we assume that the signals can be distin-
guished, as explained previously.

The computation of the length of the intervals of the
different senders by the receiver is straightforward by receiving
two or more successive signals k1, k2, k1 6= k2, emitted by the
same sender Si while it is temporarily stationary. Then the
interval for sender Si is

Ii =
1

k1 − k2
(Tk1i − Tk2i) . (3)

The sending timestamps, as well as the positions of the
senders and the current receiver position, remain unknown up
to now, and only the signal speed c and the time when a signal
has been received, T , are known. To successfully compute the
position of the receiver more effort is needed.

In addition to this, the senders are assumed to be unsyn-
chronized, i.e. they send the signals after different intervals
and have a different initial send time t0i. Consequently, there
is an unknown time offset δij between the senders, which
describes the send time difference between senders Si and Sj .
It is calculated by

δij = t0i − t0j = (tkii − kiIi)− (tkjj − kjIj) . (4)
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If all
(
m
2

)
offsets are known or equal to zero, the senders

are considered synchronized. Since the offsets are transitive,
only m− 1 offsets must be computed, relative to one sender.
Considering the case that the receiver is continuously moving,
signals are received at different positions. This results in the
following hyperbolic equation in which two signals, originat-
ing from two different senders Si and Sj , are received at the
positions Mkii and Mkjj :

1

c
(‖Mkii − Si‖ − ‖Mkjj − Sj‖) = ∆tij + δij , (5)

where ∆tij represents the unsynchronized time difference of
arrival of the two signals originated by Si and Sj , which may
be calculated based on the reception times and the intervals as

∆tij = (Tkii − Tkjj)− (kiIi − kjIj) . (6)

In this equation is m the number of senders, so m − 1
offsets are required. Assuming the intervals Ii and Ij are
known, there exist 2mn + 2m + (m − 1) unknown variables
after n received signals from each sender, but only mn time
measurements (cf. Fig. 1). One can see that this equation sys-
tem is under-determined and cannot be solved in closed form
without further information or assumptions on the scenario.

IV. SENDER LOCALIZATION

Since the sender positions are assumed to be unknown in
the beginning, they need to be calculated. The calculation
of senders is based solely on evaluation of the observed
time differences by the receivers. This eliminates the need
to measure the senders by hand, enabling the user of the
localization system to install them at arbitrary places. In
this way a “plug-and-play” localization system is created.
Calculation of the sender positions is a onetime task. Once
the sender positions are known, the position information is
downloaded by the receivers, so they may localize themselves
with respect to the senders.

For localization of the senders only by measurements of
unknown receivers, an adaption of two approaches may be
applied, the Ellipsoid TDoA method [17] and statistical ap-
proaches that estimate the distance between senders based on
the distribution and minima/maxima of the observed reception
times [18], [19], [20]. For the statistical algorithms the receiver
has to be brought close to every sender, such that the receiver
and every pair of senders is aligned and the maximum possible
time difference is produced. Alternatively, the receiver moves
on a trajectory beyond the vicinity of the senders. If the
receiver moves slowly in comparison to the signal velocity,
an approximation of the time differences at certain points can
be measured.

To compute the distances between sender pairs the Ellipsoid
TDoA method uses linear regression to calculate an approxi-
mation of the distances of three senders Si, Sj and Sk based
on the ellipsoid equation

ax2 + by2 + cxy + dx+ ey = 1 , (7)

given the observed TDoA measures. This equation can be
transformed into a translation-invariant form

â(x− d̂)2 + b̂(y − ê)2 + ĉ(x− d̂)(y − ê) = 1 , (8)

where â, b̂, ĉ are translation-invariant parameters that charac-
terize the ellipse, and (d̂, ê) is the shift of the ellipse center,
which equals the synchronization offset of the senders. One
can calculate an approximation of the distances d1 ≈ ‖Si−Sj‖
and d2 ≈ ‖Si − Sk‖ based on the parameters â, b̂, ĉ from
Eq. (8) by

d1 = 2

√
b̂

4âb̂− ĉ2
d2 = 2

√
â

4âb̂− ĉ2
. (9)

Using the “MinMax” procedure, therefore evaluating the
minimum and maximum occurring TDoA, the time difference
of every measurement point and the first point is calculated by

τsi = Tsi − T0i − kIi . (10)

Tsi describes the timestamp of the signal which has been
received at measurement point s, and T0i describes the times-
tamp for the first point, respectively. Once the time shift has
been determined for all stops and all senders the difference of
these shifts is be calculated for each stop by

∆tsij = τsi − τsj . (11)

This calculation results in sets of time differences for each
sender pair, Kij = {∆t0ij , ...,∆tsij}. The distance between
two of those senders is an approximation of the maximum and
minimum values of the respective set for senders Si and Sj :

‖Si − Sj‖ ≈ dij =
c

2

(
max(Kij)−min(Kij)

)
(12)

After one of the distance approximation procedures has
been applied, where the choice of the algorithm depends on
the flexibility of receiver movements, and the availability of
calibration measurements, the distances are known and the
senders can be placed in a coordinate system by solving a
problem of multi-dimensional scaling [21], [22].

The precision of the Ellipsoid TDoA method depends on the
far-field assumption of the receiver, therefore if the receiver
is too close beneath the senders, an error is induced into
the distance calculation, leading to an under-estimation of
the sender distances. The precision of the MinMax procedure
depends on the availability of measurements on the “long
edges” of the senders, therefore an alignment of each pair
of two senders and the receiver on a line. As only a single
maximum time difference is evaluated, the MinMax procedure
is also prone to measurement errors. Such errors may be
compensated by error mitigation algorithms such as RANSAC
or by estimation of a trustable bound as in PANDAA [23].
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V. PROBABILISTIC STATE ESTIMATION

As discussed in the problem formulation, the equation
system in (5) is under-determined and cannot be calculated
directly, as only one equation is available for every receiver
position, cf. Fig. 1. Instead, we consider the positioning
problem of a continuously moving receiver as a recursive state
estimation problem. The Bayesian filtering scheme [24] has
been successfully applied to TDoA problems previously, yet
for estimation of a moving sender [2].

The Bayesian filtering scheme is a probabilistic approach
to recursive state estimation based on the Markov assumption,
i.e. the assumption that the current state depends only on
the previous state, not on the previous trajectory. We present
an approach based on a stochastic Monte-Carlo simulation,
also known as particle filter, which is robust to motion and
measurement uncertainties, and therefore well suited for TDoA
localization. Furthermore, we present an approach based on the
unscented Kalman filter, which is an efficient algorithm that
is robust even in a non-linear problem setting.

In a recursive Bayesian filter the probability p(xt | z1:t,u1:t)
of state xt at time t is assumed to depend on the obtained
sensor data z1:t and control commands u1:t. The posterior
distribution, or belief, can be described by the recursive update
equation

p(xt | z1:t,u1:t) = ηt p(zt | xt)∫
p(xt | ut,xt−1) p(xt−1 | u1:t−1, z1:t−1) dxt−1 , (13)

where the parameter ηt is a normalizing constant ensuring that∫
p(xt | u1:t,x1:t) dxt = 1. The state transition probability

p(xt | ut,xt−1) and the measurement probability p(zt | xt)
are specified by the motion model and sensor model, re-
spectively. In our approach, we use the particle filter and
the unscented Kalman filter, which are implementations of
the Bayesian filtering model. The particle filter uses a set of
particles to represent a state hypothesis, approximating the
current belief. The unscented Kalman filter uses the knowledge
of the noise factors involved in the system to estimate a
Gaussian probability function of the state. The non-linear
functions, which are characteristical for TDoA, are linearized
in the unscented transform.

For both algorithms we estimate the same state, consisting
of the position vector Mt of the receiver at time t, as well as
the movement velocity of the receiver Vt.

Since the senders are unsynchronized, the time offsets δij
need to be estimated as well. In order to calculate the offset
between Si and Sj with respect to the sending times t0i, t0j
we use the equation

δij = (kiIi + t0i)− (kjIj + t0j) + U(−tdist, tdist) , (14)

where U is uniformly distributed noise in a time range of tdist.
As the offsets are transitive, we settle to estimate m−1 offsets.
Without loss of generality we estimate only the offset relative
to sender j = 1 and define δi = δ1i, where δ1 = 0.

Also the sending time of one sender must be estimated, as in
TDoA only relative distances are measured. To propagate the
estimated sending time of the latest received signal of sender i
we use the last estimated sending time, the interval length and
a uniform distributed noise term as

tkii = t(ki−1)i + Ii + U(−tdist, tdist) . (15)

We add the uniformly distributed noise U to increase the
variance of the estimated offsets. As the send times tkii are all
relative we estimate only tk11. Altogether, the state vector is

xt =
(
MT

t ,V
T
t , tk11, δ1, ..., δm

)T
. (16)

The algorithms use a motion model to propagate the state
hypothesis in the current time step based on the previous be-
lief, as well as a sensor model which determines the likelihood
of observed measurements. The design of the motion model
is crucial for the proper estimation of the state transition,
and therefore for efficiency and accuracy of the localization.
For both algorithms we use the same motion model, which
is based on the model in [2]. In the model, we assume
that no control over the movement of the receiver is given,
hence the control command represents just the time which
has passed since the last computation. For the movement, and
therefore the next estimated position of the receiver, we use a
constant velocity model. This model assumes that the receiver
moves with constant velocity, while changes in the velocity
are undetermined, which is modeled by Gaussian noise with a
covariance matrix ΣV . In this model, the position and velocity
of the receiver are updated according to the Euler integration
scheme by

Mt+1 = Mt + htVt

Vt+1 = Vt + ζt , ζt ∼ N (0,ΣV ) (17)

where ht = Tkii − Tkjj > 0 is the time between the current
signal from sender i and the previous signal from sender j.

A. Particle filtering

The particle filter, also known as Monte Carlo localiza-
tion [25], recursively approximates the current system state
based on the previous system state. For an explanation of
the particle filter, see also [2]. A set of particles of size N
represents the current belief p(xt | z1:t,u1:t). Each particle
(x

[h]
t , w

[h]
t ), (1 ≤ h ≤ N) represents a hypothesis of the

system state at time t and consists of a system state x
[h]
t and

the so-called importance weight w[h]
t . Using the motion model,

the particle filter estimates the values in the current step.
The sensor model computes the probability p(zt | x[h]

t , w
[h]
t−1)

of the measured information zt given the state x
[h]
t and the

previous importance weight w[h]
t−1.

The recursive belief update of the particle filter is done
according to the following three steps:

1. In the prediction step the hypothetical state of a parti-
cle x

[h]
t at time t is estimated by drawing a successor

state based on the proposal distribution p(x[h]
t | ut,x

[h]
t )
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specified by the motion model. The motion uncertainty
and the control command ut are taken into account in
the prediction step.

2. In the correction step a current measurement zt is used
to update the weight, w[h]

t ∝ w
[h]
t−1 p(zt | x

[h]
t ), of each

particle. Therefore the likelihood of the state hypothesis
is computed using the sensor model and zt.

3. In the resampling step a set of N particles is drawn, re-
placing the weighted state hypothesis, i.e. the probability
of drawing a particle is proportional to its weight.

In our proposed implementation, resampling is executed if the
effective number of particles Neff, is smaller than the number
of N

2 particles, as shown in [26], where

Neff =

( N∑
h=1

(
w

[h]
t

)2)−1
. (18)

The particles represent the estimated state as described in
Eq. (16). The sensor model uses the measurement zj = Tkjj ,
which is the timestamp of last received signal originating
from sender j, to compute the probability that the observed
measurement matches the current belief. Here, we assume that
the different measurements are independent, given the current
state xt of the system. Therefore, the probability of the current
measurement, given the system state xt, is the product of all
measurements:

p(zt | xt) =

k∏
j=0

p(zj | xt) (19)

To evaluate the estimated values, each measurement zj is
taken into account. Based on the known sender positions Sj
and the estimated values Mt, tk11, and δj , a hypothesis of the
observation is calculated by

dtj =
1

c
‖Mt − Sj‖+ (tk11 + δj) . (20)

Using this hypothesis dtj the likelihood of a measurement is
calculated by

p(zj | xt) = N
(
zj , dtj , σ

2
sensor

)
, (21)

where σ2
sensor is a variance estimation of the sensor noise,

which is assumed to be Gaussian distributed.

B. Unscented Kalman filtering

The unscented Kalman filter (UKF), which was proposed by
Julier and Uhlman [27], is a recursive state estimator based on
the unscented transform [24], [28], an approach to linearization
of non-linear models. For a random variable with dimension L,
2L + 1 “sigma points” are generated deterministically with
the known covariance matrix of the involved variables and the
tuning parameters of the filter. As the evaluation of the models
is calculated only for the 2L + 1 sigma points, the UKF is
cheaper in computation than the particle filter, which requires
evaluation of a large number of particles, or the extended
Kalman filter, which requires calculation of the Jacobian
matrix. For our implementation of the UKF for tracking of
a moving receiver by unsynchronized TDoA we follow the
description given in [24].

1) Generating sigma points: First, an extended mean vector
and covariance matrix are generated:

µat−1 =
(
µTt−1 µTV µTm µTo

)T
Σat−1 =


Σt−1 0 0 0

0 ΣV 0 0
0 0 σ2

m 0
0 0 0 Σo

 (22)

where Σo is the covariance matrix of the offset noise, σ2
m is the

variance of the measurement noise and µt−1, µV , µm, µo
are the mean of the previous state, the velocity noise, the
measurement noise and the offset noise, respectively. The
velocity and the offset noise are called "process noise".

The augmented mean and variance are used to generate
a set of 2L sigma points, where L is the dimension of the
augmented mean vector:

χat−1 =



µa Tt−1(
µat−1 +

√
(L+ λ)Σat−1,[1]

)T
...(

µat−1 +
√

(L+ λ)Σat−1,[L]

)T
(
µat−1 −

√
(L+ λ)Σat−1,[1]

)T
...(

µat−1 −
√

(L+ λ)Σat−1,[L]

)T



T

, (23)

where Σa•,[`] denotes the `-th column of Σa•. The scaling
parameter

λ = α2(L+ ρ)− L (24)

determines how far the sigma points are from the mean,
where α and ρ are tuning parameters of the filter.

2) Prediction: The sigma points matrix has now a dimen-
sion of L× (2L+1). This matrix has rows in the space of the
previous state, the measurement noise and the process noise:

χat−1 =
[
χxt−1 χmt χot χVt

]T
(25)

Each row has 2L + 1 sigma points. The sigma points of the
previous state and the process noise are passed to a function g,
which is the motion model defined in Eqns. (14) and (17), to
predict the new state:

χxt = g(ut, χ
x
t−1, χ

V
t , χ

o
t ) (26)

After that, the Gaussian statistics of the new points are
computed by

µt =

2L∑
l=0

wm(l)χxl,t , Σt =

2L∑
l=0

wc(l)χ
x
l,t , (27)
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where

wm(0) =
λ

L+ λ

wc(0) =
λ

L+ λ
+ (1− α2 + β)

wm(l) = wc(l) =
1

2(L+ λ)
. (1 ≤ l ≤ 2L)

The parameter β is a tuning parameter of the filter which has
to be set depending on the a priori knowledge of the state
probability distribution. The observations at the sigma points
are calculated in the sensor model by

zt = h(χxt ) + χmt . (28)

In our case, the sensor model follows this equation for every
sigma point:

zt =
1

c
‖Mt − Sj‖+ (tk11 + δj) + χmt (29)

3) Correction: In the final step, the Gaussian statistics of
the observations at the sigma points and the predicted state
are calculated to correct the measurement.

µt,z =

2L∑
l=0

wm(l) zl,t

σ2
z =

2L∑
l=0

wc(l) (zl,t − µt,z)2 (30)

In this step also the cross-covariance between the predicted
state and the predicted measurement is calculated:

Σx,z =

2L∑
l=0

wc(l) (χxl,t − µt) (zl,t − µt,z)T (31)

Finally, the mean and the covariance of the state are updated by

µt = µt +Kt(z − µz)
Σt = Σt −KtK

T
t σ

2
z , (32)

where Kt = 1
σ2
z

Σx,z is the Kalman gain.

VI. EXPERIMENTS

For evaluation of the algorithms we have implemented both
algorithms and analyzed and compared them in extensive nu-
merical simulations. The simulation for the unscented Kalman
filter was implemented in Matlab. On grounds of performance,
we implemented the particle filter in C++ in order to execute
the algorithm with a large number of particles. For both
algorithms we use the same set of random test data, the same
trajectories of the moving receiver, in an experiment area of
15 m× 15 m. The trajectory was implemented as a polygon of
lines with a definite start and end point, where the receiver
moves at a velocity of 0.4 m/s. The reception times of signals
by the moving receiver were computed in advance, which
requires solving an equation system of the reception time and
the receiver position at the time of reception. The senders were
placed arbitrarily in the area. The sender intervals were chosen
arbitrarily between 0.250 s and 0.350 s, with a random offset.

To calculate the mean error and standard deviation of the
error of one simulation, for each measurement the distance
between the true position and the position estimates is calcu-
lated by

µε =
1

n

n∑
t=1

‖Mt −Mt‖

σ2
ε =

1

n− 1

n∑
t=1

(
‖Mt −Mt‖ − µε

)2
,

(33)

where Mt represents the true position and Mt the estimated
position at the arrival of the t-th signal, and n is the total
number of received signals in one simulation.

To simulate an error at the receiver, a Gaussian distributed
error variable ξ ∼ N (0, σ2

ξ ) is added to each timestamp Tki. In
the experiments in [2] an ultrasound system was used, where
a standard deviation of approximately 0.1 ms was a typical
magnitude of error. We decided to use a slightly larger timing
noise of σξ = 0.3 ms in order to consider errors due to adverse
environment settings, ensuring the robustness of the presented
algorithms.

A. Particle filter

For initialization of the particle filter we choose a uniform
distribution, as no information of the receiver position is given.
The initial position of the receiver M′0 of each particle is
initialized uniformly distributed in an area of q = 30 m edge
length by M′0 = U(− q2 ,

q
2 ). We assume that we could find a

rough initialization for the estimated sender time and offset by
the algorithms discussed in Section IV, therefore we use the
true value, adding a uniform error of tr = 1

c m ≈ 0.003 s:

t′01 = t01 + U(−tr, tr)
δ′j = δj + U(−tr, tr) .

(34)

For evaluation of the precision of the particle filter three
experiments were executed. In the first experiment we ana-
lyzed the required number of particles in relation with the
computation time. In the second experiment we added an
artificial measurement error to evaluate the robustness and
ability of the particle filter to compensate for larger errors.
In the third experiment we varied the number of senders and
analyzed impact on the quality of localization.

For every experiment the algorithm was run 100 times
using a random trajectory, and random sender positions and
intervals. For evaluation of the particle filter we consider the
median of errors, which is more reliable than the arithmetic
mean, which for example suffers from very large errors during
the initialization phase. In some rare cases (about 1%) the
algorithm failed to initialize correctly. We eliminated these
failed attempts by hand.

In the first experiment with variation of the number of
particles, the particle filter has been executed with four senders
and no synthetic TDoA error. In Fig. 2 the median error and
the median computation time for different numbers of particles
are shown. Computation time describes the time for algorithm
cycle, i.e. one execution of the prediction and correction
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Fig. 2. Median error (solid line) and computation time of one iteration of the
particle filter (dotted line) with increasing number of particles. The number
of particles is chosen as a tradeoff of localization error and computation time.
In our experiments we use 5000 particles.
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Fig. 3. Median localization error for increasing Gaussian TDoA error of the
reception time. The localization error is proportional to the TDoA error, if the
TDoA error is larger than 0.001 s. Below this magnitude the intrinsic error of
the particle filter dominates the localization error.

steps and a resampling step if necessary. It can clearly be
seen that with increasing number of particles the error in
the localization decreases to a certain degree, where a larger
number of particles does not result in further improvement
of precision. As indicated by the median of the computation
time, the required computation time is linear in the number
of particles. One would choose a particle count where the
result is sufficiently good and the computation time is still in
a reasonable range. The proper tradeoff is of particular impor-
tance when running the algorithm in real-time on embedded
hardware where computational power is scarce.

In the second experiment Gaussian distributed errors were
added to the true reception time. Here, we used 5000 par-
ticles, a tradeoff result from the first experiment, and four
senders located at benign positions. TDoA error values were
increased from 0.3 · 10−5 to 0.3 · 10−1 seconds standard
deviation. Fig. 3 illustrates the resulting position error in
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Fig. 4. Mean of median localization errors for each run, using different
numbers of senders. Three senders is the required minimum. A larger number
of senders compensates for measurement errors. More than six senders do not
further decrease the error due to motion uncertainty of the receiver.

meters for the given measurement errors in the timestamp.
The results indicate that the localization error of the receiver
is proportional to the measurement error, if above a certain
level of approximately 0.001 s standard deviation. Below this
threshold for decreasing errors, the localization error converges
to the intrinsic localization error of the particle filter, which
originates from randomized uncertainty in the receiver motion.
According to these results the particle filter is robust even
for large measurement errors of 0.01 s, which corresponds to
a distance equivalent of 3.5 m, where still plausible tracking
reliability is achieved.

In the third experiment a varying number of senders was
used to evaluate the influence of the number of senders on the
localization error. Fig. 4 shows the localization error and the
standard deviation for four to ten senders. No artificial mea-
surement error was added in this experiment. Three senders
is the theoretical minimum required for the TDoA equation
system to determine a unique trajectory in two dimensions. A
larger number of senders allows for more reliable weighting
in the importance sampling step, therefore compensating and
decreasing localization error of the mobile receiver. In our
settings, more than six well distributed senders do not further
decrease the localization error if no measurement error is
given, as uncertainty in the prediction of the receiver motion
dominates the localization error. Furthermore, the computation
time is increased by processing the signals of many senders,
as the interval of subsequent signals from the senders is
decreased.

B. Unscented Kalman filtering

Employment of the Kalman filter requires good knowledge
of the process noise variance and the measurement noise vari-
ance. The Kalman parameters are dependent on the parameters
of the simulation, which are the velocity and trajectory of the
receiver, the distribution of measurement error, and the senders
positions and signal intervals. We set a fixed Gaussian TDoA
error of the timestamps of σξ = 0.3 ms, as noted previously.
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TABLE I
MEAN ERROR AND STANDARD DEVIATION FOR VARYING NUMBERS OF

SENDERS IN THE UKF EXPERIMENT.

3 senders 4 senders 8 senders

Mean error (m) 0.115 0.104 0.073
Standard deviation (m) 0.064 0.059 0.042

The senders were located at remote positions of the field
(Table III), to reduce the effect of adverse sender positioning.

We ran an experiment of the UKF variating both parameters,
while adding the Gaussian error of to the true measurements.
The results in Fig. 5 indicate that localization precision
decreases slightly if the process noise variance is overesti-
mated, however the UKF becomes unstable if process noise
is underestimated, as the receiver estimate cannot follow the
curvy trajectory. Now, the experiment was repeated 100 times,
fixing the process noise variance to σ2

V = 0.120 m2, for each
magnitude of the measurement noise variance. The result is
shown in Fig. 6. When the parameters are properly adjusted,
the mean error is reduced to 0.115 m with a standard deviation
of 0.064 m. The minimum median error is 0.106 m.

The experiments of the unscented Kalman filter were exe-
cuted assuming that we know the initial position and velocity
of the receiver, and the process noise variance is:

ΣV =

(
σ2
V 0
0 σ2

V

)
(35)

The error can be further reduced either increasing the
number of senders to some extent or reducing the interval.
We have executed two experiments to evaluate these effects,
using the optimum parameters for each scenario, and with the
same measurement error as before. In the first experiment we
have tested the algorithm for a varying number of senders. We
located the senders as described in Table III as far as possible
from each other and we have used with sending intervals Ii for
sender i randomized from 0.250 s to 0.350 s. These intervals
are fixed for every simulation. The results are displayed in
Table I. It can be seen that every additional sender causes a
slight reduction of the error.

In the second experiment the intervals are multiplied by 0.1
and 0.01. As shown in Table II, the error is notably reduced
when the interval is multiplied by 0.1. Yet, multiplying by 0.01
has almost no benefit compared to multiplying with 0.1,
only the standard deviation of the error is slightly reduced.
The risk of a severely decreased interval size is the increase
of computation time, as the Kalman filter iterates for every
received signal, and the increasing difficulty to distinguish
signals of a certain length in practical application.

C. Comparison

To compare the two algorithms and the precision of their
localization, we executed a simulation of the particle filtering
and the unscented Kalman filtering approach in identical
scenarios. We used a fixed trajectory for both algorithms,
traversing the entire experimental field of 15 m × 15 m, with
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Fig. 6. Fixed process noise variance σ2
V = 0.12m2/s2. The measurement

variance is represented on a log scale by log10(σ
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variance is fixed between 10−6 and 10−5 the median localization error is
below 0.134 m.

a fixed number of three well-placed receivers. The positions
and the intervals of the senders are listed in Table III.

For this comparison both algorithms were given measure-
ments with a Gaussian distributed error with standard deviation
of σξ = 0.3 ms, which is added to the reception times. The
initialization for the particle filter and the UKF was chosen
more precise with an uniform error of 1 m added to the true
receiver position. The initialization of the sending time and the
offsets were chosen the same as in the previous experiments.

An algorithm run on the static trajectory was run given
these settings. The resulting trajectory and estimations are
displayed in Fig. 7. According to the results, both algorithms
are clearly capable of localizing the receiver, based on the
incoming signals, even though these are subject to Gaussian
measurement errors, with a moderate advantage of the particle
filter. Apparently, both algorithms show a drag towards the
outside of a turn, which is a result of the constant velocity
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TABLE II
MEAN ERROR AND STANDARD DEVIATION WHEN THE INTERVAL IS
REDUCED IN THE UKF EXPERIMENT. DECREASING THE INTERVALS

TO 0.1 Ii REDUCES LOCALIZATION ERROR NOTABLY, YET AT A HIGHER
COMPUTATIONAL COST. REDUCING THE INTERVAL EVEN FURTHER YIELDS

ALMOST NO BENEFIT.

Ii 0.1Ii 0.01Ii

Mean error (m) 0.115 0.069 0.069
Standard deviation (m) 0.064 0.048 0.042

TABLE III
SENDER POSITIONS AND INTERVAL LENGTHS FOR THE SENDERS USED IN
THE COMPARATIVE RUN OF THE PARTICLE FILTER AND THE UNSCENTED

KALMAN FILTER.

S1 S2 S3

Position x (m) 4 15 0
Position y (m) 0 11 15
Interval (s) 0.255 0.300 0.350

motion model, assuming a straight path. Therefore the esti-
mation exhibits an inertia until the measurements suggest the
changing direction.

Fig. 8 shows the different error sizes of the particle filter
and the unscented Kalman filter according to the received
signals. It shows that the estimation of the particle filter has
a moderately smaller error with a mean of 0.084 m and a
standard deviation of 0.046 m. The estimation of the unscented
Kalman filter has a mean error of 0.117 m and a standard
deviation of 0.063 m. Since Fig. 9 represents the error of the
trajectory in Fig. 7 one can see that the unscented Kalman
filter estimate has a weaker precision of the receiver position.
This reflects the results of Fig. 8 but also reveals that the error
of the UKF is not so much larger than the error of the particle
filter, yet at a much lower computational cost.

VII. CONCLUSIONS

In this paper, we have presented two novel approaches for
the localization of a mobile receiver, using the time differences
of arrival of unsynchronized senders, and where the sender
positions are unknown at the beginning. To address the prob-
lem of the sender localization we propose using adaptions of
two algorithms, the Ellipsoid TDoA method and the MinMax
procedure, for which the receiver has to be brought close to
all senders, or move on an arbitrary path around all senders.

To address the localization problem of the mobile receiver,
which results in an under-determined state estimation problem
with ambiguities in the measurements, we have developed a
probabilistic formulation in a particle filter and the unscented
Kalman filter. We presented a motion model for both algo-
rithms, assuming continuous movement of the receiver, and a
sensor model which estimates the sending timestamp of one
sender and the time offsets of the senders, effectively solving
the synchronization problem.

In the experiments, which have been run for the two
probabilistic algorithms, we have shown that the particle filter

Fig. 7. Comparison of the particle filter (red) and the unscented Kalman
filter (green) in a realistic scenario. Both algorithms are well capable to follow
the true trajectory of the receiver (blue), with a moderate advantage for the
particle filter. A drag towards the outside of a curve is caused by inertia of
the constant velocity model.

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
 

Received signal number

E
rr

or
 (

m
)

 

 
Particle filter error
UKF error

Fig. 8. The localization errors of the trajectory in Fig. 7 for each received
signal displayed for the particle filter (blue) and the unscented Kalman
filter (red) as a function of time.

is capable of precise localization and tracking of the receiver
position, while simultaneously estimating the synchronization
offsets of the senders. While the particle filter shows minor lo-
calization error, it requires high computational effort due to the
large number of samples [29]. We also demonstrated that the
under-determined problem can be addressed by the unscented
Kalman filter with only moderate increase in localization error.

The fact that in our experiments the error of the UKF is
higher than with the particle filter differs from the results
in [29], where the “standard TDoA” case of tracking a moving
sender is considered, and where a smaller error is achieved
by using UKF, compared to the particle filter. However, in
their setting the position of a new signal is uniquely de-
termined by multiple constraints, if a sufficient number of
measurements are received. This makes the problem easier
than ours, where only one constraint is available at any time.
For our scenario, choosing one algorithm or the other would
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Fig. 9. The cumulative distribution function of the receiver error with the
particle filter (solid line) and the unscented Kalman filter (dotted line). The
particle filter has a moderate advantage over the unscented Kalman filter.

depend on the requirements of the scenario and the available
computational time.

For our future work, we plan to apply an optimization based
initialization algorithm for the particle filter and the unscented
Kalman filter. Furthermore, we plan to consider experiments
in three dimensions, for which the implementation is straight-
forward using our proposed algorithms, as all components
require just increase of the state vector size. We also consider
simultaneous localization of the receiver trajectory, the sender
offsets, and of the unknown sender positions in an integrated
approach using the particle filter, similar as demonstrated in [2]
for the standard TDoA setting.
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