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Abstract—Indoor localization based on time difference of
arrival (TDOA) has been recently a promising field of study. We
consider the previously unsolved problem of locating a moving
target receiver by using unsynchronized stationary beacons
without requirement of manual calibration. Thus, the received
signals and their time of arrival (TOA) have to be assigned to a
beacon. Besides, in order to automatically calibrate the system
it is required to estimate the time offsets between the senders,
their positions and the initial receiver position.

We present an approach to estimate all the variables of the sce-
nario using the gradient descent and the Gauss-Newton method,
two local optimization algorithms which use the derivative of
a system of hyperbolic error equations. Besides, we present
an ultrasound transmission system approach which fulfils the
requirements of this scenario, being robust against multipath
and estimating the reception time with high accuracy. In order
to avoid interference by echoes the packet size is reduced by using
two frequencies in Orthogonal Frequency Division Multiplex
(OFDM). Further, the transmission system enables distinction
of the beacons, as the ultrasound signals are used both for
localization and for information transmission.

The simulations show the local optimization algorithms are
capable of estimating the positions of the beacons, receivers and
offsets. They require only a rough knowledge of the sender
positions. Further, real experiments show that the timestamps
are measured with a standard deviation of only 1.19 µs for a
SNR of 10 dB, which corresponds to standard deviation of about
0.4 mm for the distance measurement.

Index Terms—OFDM, Ultrasound, Communication, Localiza-
tion, Piezo, TDOA

I. INTRODUCTION

In our everyday life it is important to know the actual
position of things. The interests in localization services are
growing and there are many possible applications (e.g. as
navigation of shopping carts in super markets). Localization
systems based on ultrasound are very cost effective, have a low
complexity and simple hardware compared to radio frequency
systems. Further, the position can be estimated with very high
accuracy. While the speed of sound is about 106 times slower
than the speed of light, the position can be determined by
time delay of arrival (TDOA) methods with low sampling rates
of the received signal and without an additional intermediate
frequency mixer.

The disadvantage of ultrasound is the absorption and there-
fore the attenuation of the transmitted signal by the air. Fur-
ther the attenuation increases with the frequency [1]. Hence,
we use low frequency for the transmission within 40 kHz.

Moreover, the sound noise from industry and traffic disturb
the ultrasound. Another point that should be kept in mind,
are the good reflections at walls and plane surfaces that cause
additional echoes, which disturb the signal and reduces the
signal-to-noise ratio (SNR) at the receiver.

Absolute localization is important for most applications.
Especially management of goods in warehouses or customer
localization in supermarkets [2]. While in outdoor scenarios
GPS has been playing an important role, it lacks connectivity
in indoor scenarios and its precision is in the order of meters.
Laser localization systems are sensitive to dust and have a
small coverage area [3]. Further, the system is very expensive,
require a central processing unit and the amount of mobile
tracked devices is limited. We present an absolute position-
ing system for indoor localization of goods or autonomous
vehicles. Through the decentralized design, the localization is
independent of the localized objects and of a central control
unit. Further, each robot calculate the position. Hence, we can
use unlimited devices for localization.

In this approach, multiple unsynchronized beacons are used
to track the position of a moving receiver without requirement
of manual calibration. Local optimization algorithms and sta-
tistical approaches are used to estimate the initial parameters
of the scenario (sender positions, intervals...), which are after-
wards used in recursive state estimation (unscented Kalman
filter and particle filter). In order to estimate the initial values
the receiver is required to stop in certain positions receiving
at least one signal burst from every sender. Once the initial
values are estimated the receiver can move continuously. To
distinguish between more than one transmitter, the transmitted
signals need additional information of the signal origin and
therefore the identification of the transmitter. Then the receiver
can determine the origin of the signal and map the time of
arrival to the transmitter. A promising approach for this was
demonstrated in [4]. The calculation of the position is then
augmented from the TDOA problem to data transmission and
TDOA.

Beacons can be distinguished by giving each transmit-
ter a different frequency band for the data communication.
However, broadband receivers are very expensive and the
frequency bands are limited. Another modulation scheme is
the chirp spread spectrum (CSS) [5]. The CSS modulation
avoids destructive interference of the echoes at the receiver
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by linear frequency modulation and therefore the signal cannot
disappear at the receiver. Another advantage of the CSS is the
robustness against the Doppler shift and good detection of the
center of the chirp sequence by correlation. Nevertheless, the
modulated data is very low (1 kBaud) and we require high
bandwidth components at the transmitter and receiver side.
Hence, this increases the transmission duration and the costs
of the system.

Another robust modulation scheme is the phase shift keying
(PSK) [6], which includes the information in the phase. To
reduce fast phase changes, the signal can be modulated by
Gaussian Minimum Shift Keying (GMSK) [7]. Moreover,
the frequency shift keying (FSK) can also be used for data
modulation, though the bit error rate (BER) is higher than for
PSK or π/4-QPSK [8].

II. RELATED WORK

Table I shows the state-of-the-art indoor ultrasound localiza-
tion systems, that use stationary mounted senders and receivers
on mobile devices. All systems use synchronized beacons
and therefore, the beacons have a second communication
channel (backward channel) or they are connected by wire.
The beacons are synchronized by a central unit or triggered
by the mobile robots with a radio frequency (RF) channel (e.g.
Bluetooth, Zigbee). Although our system has no backward
channel and is unsynchronized.

To increase the data rate, modern system use orthogonal
frequency division multiplex (OFDM) to spread the data
stream onto multiple carrier [9]. The carriers are orthogonal
and each can be modulated separately. We use OFDM with
two carrier frequencies to achieve short pulse length.

Villadangos et al. [10] and Urena et al. [11] describe
a localization system for indoor with stationary mounted
senders at the ceiling and mobile receivers. Whereas the
senders are connected by wire to a central control unit. This
synchronizes the transmission of the beacons. Schweinzer et
al. [12] describe a low cost ultrasound system also with central
synchronized beacons at the ceiling. Ruiz et al. [13] and
Medina et al. [14] use RF to synchronize the beacons and to
measure the time-of-flight (TOF). Moreover, Kim et al. [15]
combine the information from ToF with the angle-of-arrival
(AOA) to achieve higher localization accuracy.

However, RF controlled system has the flaw of limited
number of mobile devices, due to the second radio frequency
control channel. Moreover, beacons with wired installation and
central control units cause high installation costs. Indeed, new
research enables localization without synchronized beacons.
Saad et al. [16] shows a localization system with unsynchro-
nized beacons at the ceiling and mobile receivers. However,
they use AOA to compute the position and have to know
the positions of the beacons. This results in relative high
standard deviation of the estimated position, compared to TOF
or T(D)OA based localization systems.

TDOA has been often used to track the position of a
moving sender using stationary receivers. The algorithms used
are squared or maximum likelihood estimators [17], particle

Table I
COMPARISON-OF-ULTRASOUND LOCALIZATION SYSTEM WITH MOBILE

RECEIVERS AND STATIONARY SENDERS. (NOT AVAILABLE DATA IS
DENOTED WITH NA)

Range Methods Beacons Channel for Ref
synchronized synchronization

[m] [Yes|No] [Yes|No] [No|RF|Central]
4 TDOA Yes Central [10]
4 TDOA Yes Central [11]
4 TDOA Yes Central [12]

NA TDOA Yes Central [24]
4 TOF, Odometry Yes RF [13]
3 TOF, AOA Yes RF [15]

Odometry
5 TOF Yes RF [14]
4 TOF, AOA No No [16]
4 TDOA No No this

filters [18], [19] or Kalman filters [20], [21]. We consider
the inverted scenario where a moving receiver is located.
This scenario has been solved in [22] using a weighted
least squares procedure. Though, the receiver is assumed to
have a simple trajectory. Besides, they take advantage of the
receiver odometry measurements. In [23], [24] a least squares
method is used to estimate the position of a moving ultrasound
receiver with maximal velocities of 0.2 m/s. The intervals and
the sender positions are assumed to be known beforehand.
Furthermore, the receiver is assumed to receive signals from
all the senders while remaining in the same position. This
would lead to high positioning errors if the receiver moves at
high velocity.

Wendeberg et al. [25] and Bordoy et al. [26] show the
feasibility of reference and calibration free localization sys-
tems with TDOA. As a result, the mobile receivers have no
information about the positions of the beacons and themself.
Further, the beacons are unsynchronized and send in constant
interval a pulse. Hence, the receiver has to estimate the
positions of the beacons and their own position.

III. SYSTEM COMPONENTS

A. Environment

The localization system consists of installed unsynchro-
nized ultrasound senders on the ceiling and mobile devices
with ultrasound receivers. The senders have only a simplex
ultrasound communication and transmit in constant intervals
short packages. Further, the packages include the identification
number (ID) of the sender and the temperature as data.
Figure 1 shows the principle environment of the localization
system. The decentralized setup of our localization system
works without a central control unit and is easy to install.
The parameters of the system are estimated online in the
application.

B. Line Of Sight Condition

Multipath propagation of the signal causes interference
of the signal in constructive and destructive manner. As a
result, the estimation of TDOA has a higher variance and this
decreases the localization accuracy. To overcome the multipath



Figure 1. Graph of the localization environment. Reprinted by permission
from [3]

case, we design our system to work on the line of sight (LOS)
signal. Hence, we need a very short signal pulse. In addition,
to achieve high data rate and keep the pulse short, we use
OFDM to divide the data stream on two carriers. Further, the
echo free time τef depends on the mounting height of the
sender hMon, the distance dTx,w of the sender Tx to the next
wall w and the distance dRx,w of the receiver Rx to the next
wall w. Figure 2 shows the environment for the echo free
calculation. As a result, the echo free time is calculated as:

τef = vs (dRx,w + dTx,w)

√
1 +

hMon

dRx,w + dTx,w

−vs
√
h2Mon + (dTx,w − dRx,w)

2
.

To receive interference free signal, the echo free time should
be in minimum the size of the transmission packet. The packet
size has a transmission duration of 2.1 ms. Therefore, the
echo free time should be more than 2 ms. Figure 3 shows
the boundary for echo free reception for different mounting
heights. Points below the curve indicate interference of the
signal by an echo. Indeed, points above the curve guarantee
echo free reception.

C. Sender
The sender is designed to be powered by photovoltaic.

Therefore, the signal is generated by a low power micro-
controller. The power consumption is about 10 mW for a
transmission of 1 packet per second. Hence, the senders can
be powered by a indoor photovoltaic cell with 98 cm2 (about
10× 10 cm2) [27].

The data is coded and divided into two data streams.
Further, the data is mapped by π/4-DQPSK on the both
carrier frequencies (f0 = 38.8 kHz and f1 = 40.8 kHz)
and the digital-to-analog-converter (DAC) generates the analog
signal for the piezo-electric transducers. Figure 4 shows the
schematic function and a photo of the sender.

D. Receiver
The receiver includes the analog signal condition and the

signal processing with a microcontroller. Therefore, the piezo-
electric transducer receives the transmitted ultrasound signal
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Figure 2. Graph of the line of sight and the multipath propagation.
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Figure 3. Figure for minimum distance for echo-free reception of 2 ms packet
length.

on both carrier frequencies. Further, the power meters triggers
the microcontroller to digitize the received signal by an analog-
to-digital converter (ADC). Moreover, the signal processing
includes the separation of the two data carrier frequencies, the
estimation of the synchronization (the time of arrival) and the
estimation of the data. Figure 4 shows the schematic function
and a photo of the receiver. The receiver is matched to receive
both carrier frequencies with same amplitude to ensure equal
dynamic range of the ADC for both carrier frequencies [28].

E. Frame Synchronization

We propose two synchronization methods for precise frame
synchronization with multiple carriers. Both methods use the
phase of both carrier signals. Hence, the phase of the signals
is calculated by correlation of the received signal with the
reference signal. For carrier k ∈ 1, 2 with frequency fk the
phase at sample position n with a correlation of N samples
and sampling frequency fsample is

φk (n) = arg
[∑N

x=1rd (x+ n) · ej2π·fk·x/fsample

]
. (1)

Further, the phase difference is calculated between both phases

φD (n) = φ1 (n)− φ2 (n) (2)
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Figure 4. Schematic diagram of the transmission path (top) and photo of the
sender (bottom left) and the receiver (bottom right). The micro-controller (A)
generates the analog signal, which is amplified (B) and transformed by the
piezo-electric transducer (C) to an acoustic signal. On the receiver, the piezo-
electric transducer (D) transforms the acoustic signal into electrical signals.
Further, the signal is amplified (E) and processed in the ARM STM32F407
micro-controller (F). The decoded identification number is transmitted to the
PC (G) for the position calculation.

The first method to estimate the synchronization is to search
the point where the function crosses the abscissa:

nsync = arg min
n

[|φD (n)|] . (3)

This is typically done by taking the absolute and search the
minimum. Figure 5 demonstrate the principle of the synchro-
nization.

The second method searches the maximum for the correla-
tion of the estimated phase difference with a reference phase
φDr (x). Which is equivalent to calculate the variance of the
signal in a given time window with M samples:

n,sync = arg max
n,

M∑
x=1

(
φD (x+ n,)− φ̄D (n,)

)
φDr (x) (4)

with the mean of the measured signal

φ̄D (n,) =
1

N

∑N
m=1φD (n, +m) . (5)

1) Cramér-Rao Lower Bound: We determine the Cramér-
Rao Lower Bound (CRLB) for the frame synchronization with
multiple frequencies [29] to
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Figure 5. Principle of the phase difference synchronization method
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Var (d) ≥ v2

2π2 · SNR · f2sample

(6)

Hence, for a SNR of 10 dB and a sampling frequency of
fsample = 500 kHz the minimum standard deviation for the
distance estimation is

√
Var(d) ≈ 4.7 · 10−5 m. The CRLB is

derived for the Maximum Likelihood Estimator (MLE) from
Equation (4).

2) Simulation: We evaluate the calculation of the lower
bounds for the frame synchronization accuracy. Figure 6
shows the simulation results for a sampling frequency of
fsample = 500 kHz and M = N . The non linear estimator
in Equation (3) outperforms the MLE in Equation (4) for high
SNR. Nevertheless, for low SNR the non linear estimator lacks
of precision and has a bias error.

F. Distance Measurements

To determine the performance of the ultrasound system we
measure the accuracy of the distance measurement between
the receiver and one sender. Therefore, we put the sender
and receiver pair in a straight line and send in a constant
interval the same package. The receiver demodulates the data
and measure the TDOA between the packages. Figure 7 shows
the TDOA measurement error for a SNR of 10 dB. Although,
the measurement error depends on the synchronization of the
frame. Hence, for stationary measurements without moving,
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the TDOA errors are the synchronization errors. Figure 8
shows the histogram of the synchronization errors.

As a result, the variance of the synchronization error is about
1.43 ·10−12 s and the standard deviation about 1.19µs. Which
results in a distance error of 0.4 mm for a signal velocity of
340 m/s. Though, the standard deviation of a 500 kHz sampled
signal is about 5.8 · 10−7 s respectively 0.2 mm [29] . Thus,
the measurement system limits the precision to 0.2 mm.

IV. TDOA LOCALIZATION

A. Introduction

Once the reception times are precisely estimated by the
system described in the previous chapters, the pose of a
moving receiver can be tracked using recursive state estimation
algorithms, as proved in [26]. However, their performance
depends highly upon the knowledge of the initial values of
the state. Consequently, it is mandatory to do the localization
in two phases: the calibration phase, which estimates all the
variables of the scenario and the tracking phase, which tracks
the position of a continuously moving receiver.

The localization scenario consists of B stationary
senders which are placed randomly at unknown posi-
tions Sj (1 ≤ j ≤ B) in a two-dimensional Euclidean space.
Every sender emits discrete signals at regular points in time
at a fixed interval Ij . The interval may differ from sender

to sender. The sending time of the kj-th signal at sender
position Sj is then described by

tkjj = t0j + kjIj , (kj > 0). (7)

The receiver M moves with a random trajectory in the two-
dimensional Euclidean space. Furthermore, we assume that a
kj-th signal of sender Sj propagates in a straight line from
the sender to the receiver and is received at time point

Tkjj =
1

c
‖M− Sj‖+ tkjj , (8)

where c is the signal velocity and ‖ · ‖ denotes the Euclidean
norm.

The senders are assumed to be unsynchronized, i.e the
intervals Ij and the initial send time t0j varies from sender to
sender. Consequently, there is an unknown time offset which
relates to the send time between the senders y and j :

δyj = t0,y − t0,j = (tkyy − kyIy)− (tkjj − kjIj) (9)

Since the offsets are transitive, only B − 1 offsets need to be
estimated relative to one sender.

Considering the case where the receiver is continuously
moving, signals are received at different positions. This results
in the following hyperbolic equation in which two signals,
originating from two different senders Sy and Sj , are received
at the positions Mkyy and Mkjj :

1

c
(‖Mkyy − Sy‖ − ‖Mkjj − Sj‖) = ∆tyj + δyj , (10)

where ∆tyj represents the unsynchronized time difference of
arrival of the two signals originated by Sy and Sj , which may
be calculated based on the reception times and the intervals as

∆tij = (Tkyy − Tkjj)− (kyIy − kjIj) . (11)

B. Tracking phase

During the tracking phase the unscented Kalman filter [30]
and the particle filter [31] are used. They are both recursive
Bayesian estimators [32] based on the Markov assumption.
This means the current state xt is assumed to depend only on
the previous state xt−1. The unscented Kalman filter takes
advantage of the knowledge of the noise factors involved
in the system to estimate a Gaussian probability distribution
of the state. The non-linear functions, like the ones used in
TDOA, are linearized in the unscented transform [32], [33].
The particle filter uses a set of particles to represent a state
hypothesis, approximating the current belief.

In our case the state vector contains the position of the
receiver Mt and the receiver velocity Vt. Besides, in order to
estimate the reception time, the offsets relative to one sender
(δ12, ..., δ1B) and its sending time tk11 are also estimated.
Without loss of generality is defined δj = δ1j where δ1 = 0.
In conclusion, the state vector is formulated as follows:

xt =
(
MT

t ,V
T
t , tk11, δ2, ..., δB

)T
. (12)

The measurement is then estimated by the sensor model, which
relates the predicted measurement zkj and the state vector:
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Figure 9. Schematic of the under-determined equation system. If the receiver
moves continuously, for every new measurement there are two new variables
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position variables.

zkj =
1

c
‖Mt − Sj‖+ (tk11 + δj) . (13)

More information about the tracking phase can be found
in [26].

C. Stop-and-go motion

The continuous movement of the receiver results in a system
of equations of the form of Equation (10). The length of the
intervals Iy , Ij can be easily computed by receiving two or
more successive signals k1, k2, k1 6= k2, emitted by the same
sender while it is temporarily stationary:

Iy =
1

k1 − k2
(Tk1y − Tk2y)

Ij =
1

k1 − k2
(Tk1j − Tk2j) .

(14)

Then, assuming the intervals Iy and Ij are known, there
exist 2P + 2B + (B − 1) unknown variables after P re-
ceived signals. Consequently, the equation system is under-
determined and cannot be solved in closed form without
further information or assumptions on the scenario. Therefore,
it is required either to know the initial values of the variables
and model their changes (tracking phase) or to make special
assumptions on the scenario (calibration phase). When recur-
sive state estimation algorithms lack of information and are
not capable of tracking the pose of a moving receiver, we
assume it stops in q different positions Hi, then we have time
to receive at least one signal from every sender (stop-and-go
motion). Doing this, it is only required to estimate one receiver
position for every B received signals, which reduces notably
the uncertainty and makes possible an uniquely determined
system of equations (cf. Fig. 9).

Being Hi the receiver position when the u-th signal from
the first sender Tu,k1 is received and Hp the receiver position

when the v-th signal Tv,kj from the other senders is received,
we obtain a system of hyperbolic equations of the form:

fu,v = ‖Hi − S1‖ − ‖Hp − Sj‖
−c(Tu,k1 − Tv,kj ) + ∆t1j

(15)

where 2 ≤ j ≤ B and 1 ≤ p, i ≤ q. The unsynchronized
time difference of arrival between two signals, originated by
the sender 1 and the sender j, is represented with ∆t1j :

∆t1j = c(k1I1 − kjIj + δj) . (16)

The system of equations has now qB independent equations,
which has to be higher than the number of variables:

qB ≥ 2q︸︷︷︸
Receiver

+ 2(B − 1)︸ ︷︷ ︸
Senders

+B − 1︸ ︷︷ ︸
Offsets

(17)

Which means the system of equations can be solved in a closed
form if the number of standing still positions q is higher than:

q ≥ 3B − 3

B − 2
(18)

The stop phase is detected by ensuring that the time
difference between two measurements of the same sender is a
multiple of the interval plus a certain error due to the measure-
ment noise. To reduce the effect of noise in the measurements,
which could lead to wrong detections, an unscented Kalman
filter is used. Each component of the estimated state xt is the
time difference minus the elapsed intervals a of every sender:

xt = (ρ1,t, ρ2,t, ..., ρB,t)
T (19)

where
ρj,t = (Tkjj − T(k−a)jj)− aIj . (20)

If the receiver is standing during a intervals ρj is zero plus
a certain error. The motion model assumes the receiver does
not move. Its movement is undetermined, which is modeled
by Gaussian noise with a covariance matrix ΣQ. The equation
which relates the current state with the previous state is then:

ρj,t+1 = ρj,t + ξ ξ ∼ N (0,ΣQ) . (21)

The sensor model with relation to the state and the expected
measurement zkj is:

zkj = ρj,t + T(k−a)jj + aIj + ζ ζ ∼ N (0,ΣN ) (22)

where ΣN is the covariance matrix of the measurement noise.

D. Calibration phase

Assuming the stop-and-go motion and having a number
of standing positions and senders fulfilling Equation (18)
the system of hyperbolic equations can be solved with local
optimization algorithms. We use both the gradient descent and
the Gauss-Newton method, the two are first-order methods that
use the derivative of the system of hyperbolic error equations.

Once the timestamps corresponding with the time when the
receiver is standing are selected, we can extend the approach
in [25] to unsynchronized senders. For simplicity and better
understanding we assume that there are G selected signals



from every sender. Then, the Equation (15) results in a
quadratic objective which can be formulated as follows:

G∑
u=1

G(B−1)∑
v=1

arg min
H1:q,S2:B ,δ2:B

(fu,v)
2 . (23)

Which in vector notation is proportional to w = 1
2bTb

with b = (f1,1, ..., fG,G(B−1))
T . The operator (·)T denotes

the transposition.
We calculate the direction of the steepest ascent:

Ow = O

(
1

2
bTb

)
= QTb (24)

where Q is the Jacobian matrix:

Q =



∂f1,1
∂S2

. . .
∂fG,G(B−1)

∂S2

...
. . .

...
∂f1,1
∂SB

. . .
∂fG,G(B−1)

∂SB
∂f1,1
∂H1

. . .
∂fG,G(B−1)

∂H1

...
. . .

...
∂f1,1
∂Hq

. . .
∂fG,G(B−1)

∂Hq

1
c
∂f1,1
∂δ2

. . . 1
c

∂fG,G(B−1)

∂δ2
...

. . .
...

1
c
∂f1,1
∂δB

. . . 1
c

∂fG,G(B−1)

∂δB



T

(25)

The partial derivative with respect to a vector is defined as
the derivative with respect to each of its components:

∂fu,v
∂Hi

=

(
∂fu,v
∂Hi,x

,
∂fu,v
∂Hi,y

)T
(26)

In our case they are calculated as follows:

∂fu,v
∂δj

= c

∂fu,v
∂Sj

=
Hp − Sj
‖Hp − Sj‖

(27)

When the compared timestamps correspond to the same re-
ceiver position (Hi = Hp) the partial derivative with respect
to the receiver position is:

∂fu,v
∂Hi

=
∂fu,v
∂Hp

=
Hi − S1

‖Hi − S1‖
− Hp − Sj
‖Hp − Sj‖

(28)

In all other cases the partial derivatives are:

∂fu,v
∂Hi

=
Hi − S1

‖Hi − S1‖
∂fu,v
∂Hp

= − Hp − Sj
‖Hp − Sj‖

(29)

All the variables which need to be estimated are components
of the state vector u:

u = (ST2 , ...,S
T
B ,H

T
1 , ...,H

T
q , cδ

T
2 , ..., cδ

T
B)T (30)

Hence, we estimate cδj to have all the variables in the same
units (meters) instead of estimating δj . Every iteration the state
vector is updated using Q and b. The methods used are:

1) The Gradient Descent Method: In every iteration step l
the Gradient Descent method updates the state vector in
direction of the steepest descent. The adaptive factor γ sets
the step width.

û = γOw = γQTb
ul+1 = ul − û

(31)

2) The Gauss-Newton Algorithm: Instead of relying on an
adaptive factor γ it calculates the step size using the inverse
(QTQ)−1 for every iteration:

u = (QTQ)−1(QTb) (32)

We calculate for higher numerical stability the pseudo-inverse
with singular value decomposition instead of calculating the
inverse.

This algorithm is faster, nevertheless it is very prone to
divergence when applied to random initial positions. However,
it can be used when the Gradient Descent error function has
become steady to reduce notably the number of iterations [34].

V. SIMULATION RESULTS

We implement the local optimization algorithms in Scilab
and evaluate them by two different experiments. In both of
them the receiver moves in an experiment area of 10 m ×10 m
with a velocity of 1.5 m/s. The senders are located at remote
positions of a three-dimensional field (Table II), to reduce the
effect of adverse sender locations. A Gaussian distributed error
with standard deviation of σξ = 0.2 ms is added to the reception
times.

The senders have a certain altitude with respect to the
receiver. In order to fulfil the two-dimensional assumption, this
altitude is assumed to be known and it is not estimated with the
local optimization algorithms. Further research will be needed
to avoid the Dilution of precision (DOP) when estimating the
altitude, as a large change in the height of the senders would
lead to only a small change in the TDOA.

Each time a signal is received, it is passed through the
unscented Kalman filter. To detect whether the receiver is
moving or standing still, the sum of squares of the state
vector components is calculated. We assume that the receiver
is standing still if the sum of squares is under a threshold ε:

B∑
j=1

τ2j,t < ε (33)

Figure 10 shows the sum of squares of the signal with and
without filtering. Further, it shows the sum of squares of the
signal without any noise. Thus, the filtered time difference
increases and decreases slower than the others, this is due
to the fact that the UKF is acting as a low pass filter.
Consequently, if we use the threshold with the filtered signal
and the signal is below the threshold, we would suppose that
the receiver is standing still when it is already moving. Hence,
the last signals are rejected for every standing still position.

In the first simulation we assume that the sender positions
are estimated beforehand using statistical methods such as the
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Figure 10. Sum of squares of the time difference with additive noise, the
estimated time difference and the time difference without noise. The measured
time difference is considerably affected by the noise, which could induce to
wrong detections. On the other hand, the UKF estimation is much less affected
by the noise although it is delayed.

the Ellipsoid TDOA method [35]. The receiver stops for 3
seconds in 4 different positions. The offsets are initialized
assuming the mean of these positions is the center of the field
(Hc). Accordingly, the initial offsets are calculated as follows:

∀j : t0,j =
1

G

G∑
u=1

(
Tu,kj − kjIj −

1

c
‖Hc − Sj‖

)
∀j > 1 : δj = t0,1 − t0,j

(34)

The estimated receiver positions are initialized with random
vectors around the center of the experiment area. Figure 11
shows the real standing still positions, the estimated ones in
every iteration, and the positions during the movement of
the receiver. After the last iteration the mean error is 3.5 cm.
Figure 12 shows the estimated offsets in every iteration. The
mean error after the last iteration is 0.07 ms.

The algorithm stucks in a local minima when we estimate all
the variables without any knowledge. However, if the sender
positions are approximately known the algorithm is capable
of correcting them and estimating the other variables.

In the second simulation the sender positions are assumed to
be known with a mean error of 0.60 m. First, assuming these
positions are correct, the receiver positions and the offsets are
estimated, as it is done in the first simulation. Afterwards, the
estimated receiver positions and offsets and the known sender
positions are used to initialize the algorithm, which corrects
them. The result of this correction is shown in Figure 13. In
this experiment the receiver stops 6 times in order to increase
the number of constrains and have a uniquely determined
system of equations.

The mean error of the estimated receiver positions after the
last iteration is 5.3 cm and the mean error of the estimated
sender positions is 5.6 cm. The offsets mean error is 0.11 ms.
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Figure 11. Estimated two-dimensional variables x and y with local optimiza-
tion. The crosses represent the receiver position when signals arrive.The sender
positions (red circles) are assumed to be known. The algorithm estimates the
positions where the receiver is standing H1, H2, H3 and H4. The error
between the estimated (solid lines) and the real value reduces in every step.
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Figure 12. Error between the estimated offsets and the real offsets in every
iteration assuming the sender positions are known. The error between the real
and the estimated offset is highly reduced after 100 iterations.

VI. CONCLUSION AND DISCUSSION

The synchronization enables high precision indoor local-
ization. We show an accuracy of 0.4 mm for direct distance
measurement for 10 dB SNR. Moreover, due to the self-
calibration and the photovoltaic powered senders, the installa-
tion costs are low. Further, we showed the usage of OFDM to
shorten the pulse length and therefore, reduce the interference
by echoes. Consequently, we receive the line of sight signal
without disturbance and achieve higher precision.

The local optimization algorithms have been proved to be
capable of locating with low error the sender positions, their
offsets and the standing still receiver locations. The only
requirement is to have a rough idea of the sender positions. The
period of time when the receiver is not moving is successfully
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Figure 13. Estimated two-dimensional variables x and y with local opti-
mization. The crosses represent the receiver position when signals arrive. The
algorithm corrects the positions where the receiver is standing H1,H2,...,H7

and the sender positions S1,S2,...,S5 . The error between the estimated (solid
lines) and the real value reduces in every step.

Table II
SENDER POSITIONS AND INTERVAL LENGTHS FOR THE SENDERS USED IN

THE LOCAL OPTIMIZATION SIMULATIONS.

S1 S2 S3 S4 S5

Position x (m) 5 5 -5 -5 0
Position y (m) 5 -5 5 -5 -5
Position z (m) 5 5 5 5 5
Interval (s) 0.250 0.275 0.300 0.325 0.350

detected in the presence of Gaussian noise with the aid of an
unscented Kalman filter.

Altogether we have all the components for a self-calibration
localization system. In the next step we will build a measure-
ment setup with a reference system. Thus we compare the
performance of our system with an optical reference system.
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