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Abstract—Indoor localization has become an emergent topic
in the past few years, comprising a large variety of mobile
applications for the end user. Many application scenarios for
mobile phones require a precision of better than one meter,
however, today’s Wi-Fi based smart phones localization lacks
on high precision.

In this paper we present an acoustic indoor localization system
for smart phones. In our system, the commercially available
smart phones generate high pitched acoustic signals beyond the
audible range with an identifier code modulated on the signal.
The acoustic signals from the smart phones are detected by self-
built receivers which are placed at the ceiling or on walls in a
room. The receivers are connected to a Wi-Fi network, such that
they synchronize their clocks and exchange the time differences
of arrival (TDoA) of the received chirps. Further, the location of
the smart phones is calculated with an iterative multilateration
algorithm. In comparison to state of the art systems the user
is localized with high precision in indoor areas. As a result,
the systems enables high-accuracy applications such as finding
products in a supermarket or an exposition in a museum.

We show real-world experiments with our system using differ-
ent algorithm for calibration-free localization and different types
of sound signals. The adaptive GOGO-CFAR threshold enables
a detection of 48 % of the chirp pulses at a distance of 30 m. In
addition, we compared the trajectory of a pedestrian carrying a
smart phone to reference positions of an optic reference system.
Consequently, the localization error is observed to be less than
30 cm.

Index Terms—indoor localization, smart phone tracking, sound
localization, TDoA, calibration-free

I. INTRODUCTION

From the sustained rise and ubiquitous availability of mobile
computers, smart phones and handheld devices in every-day
life, a multitude of exciting new location-dependent applica-
tions has emerged. Context sensitive applications support the
user in everyday life. One of the most important contexts is
user location for navigation. The demand for navigation in
large structures as railway stations, airports, trade fair halls,
or department stores is obvious, since the equipment — the
mobile device of the people — is already available.

This is an extended version of: Fabian Hoflinger, Johannes Wendeberg, Rui
Zhang, Manuel Biihrer, Joachim Hoppe, Amir Bannoura, Leonhard Reindl and
Christian Schindelhauer. Acoustic Self-calibrating System for Indoor smart
phone Tracking (ASSIST). In Proceedings of the 3rd International Conference
on Indoor Positioning and Indoor Navigation (IPIN2012) [1].

The GPS-Module in commercial off-the-shelf (COTS) smart
phones and hand-held devices make navigation systems re-
liable to assist in outdoor areas [2]. The demand of local-
ization systems begins to shift towards closed scenarios. For
indoor environments, there is the need for new localization
approaches, since the reliability of GPS vanishes in densely
built-up urban areas and is completely void inside buildings. In
addition, to effectively navigate people in their environments,
e.g. to specific products in a supermarket or to particular
exhibition booths on trade fairs, a more accurate localization
system as GPS is needed. Hence, for indoor applications
alternative technologies are required to provide the signal
inside buildings with a low cost infrastructure.

II. RELATED WORK

Today several indoor localization systems are available,
based on different methods and technologies. Some of these
systems work with COTS smart phones. In addition, many
participants have already COTS smart phones, which reduces
the costs of the localization system. Fig. 1 shows an overview
of the different technologies and the achievable accuracy of
indoor localization systems based on COTS smart phones
which were developed by scientific research groups.

We use the principles of smart phone localization from our
prior work [1] to apply our new developed algorithm (Cone
Alignment) and particle filter. Further, we show localization
with the integrated inertial measurement unit and compare the
results with a reference motion tracking system. Furthermore,
we showed in [3] an optimized receiver hardware to increase
sensitivity and accuracy of the localization system.

A. Basic Indoor-Localization

I) Many present localization systems use radio frequency
(RF) signals for localization. The RF systems use the
propagation of radio waves for position calculation.
Therefore existing infrastructure can often be used. In
the following, a brief description of indoor localization
systems based on three different RF technologies is
presented. Otsason et al. used the GSM communication
with wide signal-strength fingerprints to locate the user in
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Figure 1. Overview of localization system based on smart phones.

indoor environments [4]. For the localization no infras-
tructure is required, but the accuracy strongly depends
on the environment. Another possibility is using the Wi-
Fi communication. Current smart phones have a Wi-Fi
module implemented to communicate with a network.
RADAR [5] operates with existing multiple Wi-Fi access
points. Further, they use the received signal strength
indicator (RSSI) to calculate the distances between the
Wi-Fi access points and the mobile phone. The accuracy
depends on the number of Wi-Fi access points and the
environment. The third technology is Bluetooth, which
has the shortest range among the three technologies.
However, the technology has some flaws for accurate
positioning application. First of all, Bluetooth adjusts
the signal strength when the signal becomes too strong
or too weak. Moreover, Bluetooth takes a lot of time
to discover new devices. As a result, these restrictions
make Bluetooth positioning impractical and not feasible
for high precision localization.

To sum up, the RF systems are susceptible to errors
in dynamic environments. For example, the RSSI value
depends on the environment and the smart phone. The
RSSI value is distorted by objects in the direct path,
in the vicinity and by environmental influences, like air
humidity etc.. Additionally, the RSSI value also depends
on the orientation of the antenna. The antenna directivity
is influenced by specific smart phone types and the actual
orientation to the anchor nodes. RF localization systems
can localize people with low accuracy (1.5m - 3m).
Through combination with other technologies, this ac-
curacy can be improved. The multi-method approach [6]
uses a combination of built-in sensors of mobile devices
and the capabilities of the end-users, which estimates
positions with a scanner application. Redpin considered
the signal-strength of GSM, Bluetooth and Wi-Fi access
points on a mobile phone to calculate the position [7].
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An alternative technology is pedestrian dead reckoning
(PDR) with inertial sensors. By using the integrated
MEMS sensors (accelerometers, gyroscopes) the current
position can be calculated recursively based on the mea-
sured acceleration and angular rate of the movement.
Inertial sensors based localization works without addition
infrastructure. However, the errors of the sensors are
accumulated during the integration of the measurement
values, which increases the localization error with the
investigation time [8]. Therefore, position calculation
based only on inertial sensors is usually fused with an
absolute location method. Thus Kim et al. presented a
smart phone localization system based on Wi-Fi access
points and inertial sensors. Zhang et al. presented a
smart phone localization system based only on inertial
sensors [9]. Different methods were introduced to provide
an adaptive step lengths detection by analyzing vertical
acceleration data. The experimental results showed that
the obtained trajectory was able to follow the true path
with an error margin of a meter in a walking distance
of 45 m. Mautz compared different approaches based on
inertial sensors which are integrated in smart phones or
in external cases [10]. The localization accuracy varies
greatly between 0.1 % and 20 % of the travelled distance
and depends on the used methodology (algorithm) and
Sensors.

Other existing smart phone localization systems use
information of the surrounding. Further, the magnetic
field fluctuations and anomalies inside buildings [11] can
be used to create landmarks for localization. Another
possibility is using the fluorescent light as a medium to
transmit position information by using a pulse- frequency
modulation technique [12]. Hence, a smart phone can re-
ceive the encoded light information through the integrated
camera and can calculate the position. It is also possible
to use only the visual information of the surrounding [13],
[14] for localization. The integrated camera of the smart



phones is used to create images and compare the images
with a database. Moreover, with a Simultaneous Local-
ization and Mapping (SLAM) algorithm the position can
be estimated. Thus, no additional infrastructure is needed
but these systems are characterized with a high computa-
tional performance. Problems with shaking of the camera
during walk and motion blur leads to failures [15], [16].
Similar or dynamic environments are mostly encountered
in densely populated areas, e.g. shopping malls, where the
localization errors are high.

B. Sound Indoor-localization

Sound is feasible for high accuracy indoor localization.
Smart phones can generate sounds from their built-in speaker
or they can detect sounds with the integrated microphone. In
comparison to other technologies the position accuracy can
be increased. The sound propagation is slow compared to the
speed of light; thereby the time stamp of the received signals
are easier to determine. Precise measurement of the time of ar-
rival (ToA) is very important for exact position determination.
Errors exist from the clock skew and drift between devices
and differences of the propagation speed. In contrast through
the high propagation speed of light, small errors lead to high
position deviations. Furthermore, the received sound signals
can be analyzed in detail and the suppression of multipath
signals is straight forward. A brief description of current
indoor localization systems based on sound is presented in
this section.

Most of the research groups uses the Time of Flight (ToF)
or Round Trip Time (RTT) measurement for smart phone
positioning. However, there are several intrinsic uncertainty
factors of a ToF measurement which lead to the ranging
inaccuracy. For COTS smart phones, there exists a variable
latency, a changeable misalignment between the timestamps of
the command from the transmitted signal and the transmitted
signal from the loudspeaker. Another problem is the synchro-
nization of the smart phones and receivers. These delays can
easily add up to several milliseconds, which imply a ranging
error of several cm.

Borriello et al. presented the WALRUS [17] localization
system, where acoustic sound for PDAs/Laptops at a frequency
of 21kHz was received. The wireless network provides a
synchronizing pulse along with information about the room
to determine the location in a room-level accuracy. Liu et
al. improved the Wi-Fi localization accuracy with an acoustic
ranging [18]. The phones are using nearby peer phones as
reference points and calculate the relative distances with the
acoustic RTT. It means smart phone A transmits the impulses,
smart phone B receives the impulses and transmits a new
impulse to the smart phone A. For the distance measurement
no synchronization is necessary except a time delay. Liu et
al. use this additional distance measurement to increase the
accuracy to 1-2m of the Wi-Fi localizations system. A pure
sound localization system is BeepBeep. Peng et al. showed
that a localization system can use mobile phones which
transmit and receive audible sound impulses between 2 kHz
and 6kHz [19], [20]. Further, the system needs no additional

infrastructure and uses the RTT between the smart phones
to measure the distance between different smart phones in
a resolution of about 1-2cm. For the system the latency is
measured and transmitted to the other smart phone. In this case
a very precise position measurement is possible. Kimber et al.
use the loudspeakers which are installed in shopping malls and
consumer stores to play music for public entertainment [21].
The use of barely audible (low energy) pseudo-random se-
quences in their approach poses very different challenges to
other approaches which use high-energy ultrasound waves.
The approach was tested in a meeting room and reported a
promising initial result with localization accuracy of 50 cm.

In most of the state of the art systems the anchor nodes are
used as transmitters. Those receivers detect the sound signal
emitted by the anchor nodes. However, this method suffers
from certain disadvantages:

I) The sound signals are received at different positions
during a movement (see Fig. 2). Thus, the mobile device
needs the information of the environment, especially the
positions of the beacons, to calculate the own position.

transmitter 2

transmitter 1

receiver

measurement 3

transmitter 3

Figure 2. Principle of moving device position estimation with stationary
transmitters. [22]

II) The microphone of COTS smart phones can only detect
relatively low frequencies (i.e. frequencies in the audible
range) due the limitation of its built in microphone (made
for normal speaking which uses the band between 80 Hz
and 12 kHz). Outside this frequency range the micro-
phone has low sensitivity to receive sound from larger
distances. Additionally there exists a maximum sampling
rate of the analog to digital converter of COTS smart
phones. The corresponding sampling frequency needs to
be greater than twice of the maximum signal frequency.
As a result, the sound emitted by the handheld device lies
in the audible range, detectable by the user. Furthermore,
this frequency band is crowded with natural sounds,
making it more difficult to distinguish the localization
signal from noise.

Due to permanently receiving the sound signals by the
mobile device, an increased power consumption on the
mobile side is necessary for signal identification and
calculation [23], [24].

1)
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Figure 3. Overview of the ASSIST system with smart phone, the network of
receivers and an evaluation unit.

III. SYSTEM OVERVIEW

In the presented work the practical implementation of
the concept acoustic self-calibrating system for indoor smart
phone tracking (ASSIST) as discussed in [1] is considered.
Using this concept the above mentioned disadvantages (Chap-
ter I1I-B) were avoided. The proposed indoor localization is
schematically shown in Fig. 3. The system works with COTS
smart phones and requires no additional equipment from the
user. Following is a brief description of the system.

In ASSIST, the smart phones generate sound impulses
beyond the human audible range. The sound impulses were
received by self-built receivers which can be placed at the ceil-
ing or on the walls of a room. A minimum of three receivers
is required to localize a mobile phone in one localization cell
in two dimensions. The receivers were connected to a Wi-
Fi network to synchronize the timestamps of the incoming
signal. Additionally, the receivers were connected with a
wireless network to an evaluation unit. The evaluation unit
is connected to the smart phones via cellular communication
(GPRS/UMTS/LTE), which serves the ID of the specific sound
and provides the map with the actual position of the user. In
ASSIST the absolute acoustic localization system is supported
by the integrated inertial sensors. In areas where no receivers
are available, the integrated inertial sensors can be used to
localize the user for short periods.

A. Human sense of hearing at high frequencies

In an applicable localization system based on sound signals,
the frequency range of the used signals should be outside of
the audible range. Choosing the correct frequency range is
therefore essential. The following section elaborates different
frequency ranges of human cognition and various hearing
thresholds. Human hearing capability is best at frequencies
where most of speech takes place, which is around 0.5-
6kHz. The absolute hearing threshold defines the minimum
sound pressure level, which a pure tone needs to have in
order to be recognizable for a human being. Sakamoto et
al. have conducted measurements of the absolute hearing
threshold in the frequency range from 8-20 kHz, for different
age groups [25]. In the range from 18-20kHz they reported
average hearing thresholds between 112-148 dB SPL (Sound

Pressure Level). One should note that the hearing threshold
was measured under laboratory conditions. For the case of
background noise (typical environment of a crowded building)
the hearing threshold will be raised through masking.

To evaluate the audibility of high frequency sound signals
emitted by smart phones, we measured the sound pressure
level of different commercial smart phones for different fre-
quencies and distances. The sound pressure level values of
the smart phones were then compared to the lowest values of
average hearing threshold and corresponding standard devia-
tion o. The difference between smart phone sound pressure
and average hearing threshold for a specific frequency was
calculated in units of o (Table I).

Distance to

smart phone  smart phone type 18kHz 20kHz

1 cm iPhone 4S 1.60 5.00
Samsung GT-S5830  0.90 410
iPod Touch 1.00 440

10 cm iPhone 4S 1.90 6.40
Samsung GT-S5830 1.8¢ 410
iPod Touch 1.70 410

5Sm iPhone 4S 3.50 11.70
Samsung GT-S5830 3.4c0 12.00
iPod Touch 3.50 11.30

Table T

DIFFERENCE BETWEEN AVERAGE HEARING THRESHOLD AND SOUND
PRESSURE LEVEL EMITTED BY SMART PHONES IN UNITS OF THE
STANDARD DEVIATION.

As expected, the audibility of the sound signals is worse
when frequency increases and as well the distance to the
measured smart phone. The measurements and calculations
show that with a chance of 0.13 % (3.50) a sound signal with
18 kHz can be heard in a distance of Sm in a quiet room.
Therefore for the least upper bound of the auditory threshold,
a frequency of 18kHz is chosen to guarantee that the signal
is outside of the audible range.

B. Transmitter

In our system the smart phone speakers transmit the sound
signals for the localization. To analyze the maximum fre-
quency limitation and the maximum acoustic bandwidth of
a smart phone speaker, several COTS-smart phones were
tested. Therefore the frequency response and the radiation
characteristic were measured.

For the measurement of the frequency response, sound
with white noise was transmitted from several smart phones
and recorded with a broadband measurement microphone
Earthworks M50.

The frequency response is depicted in Fig. 4, which shows
a damping factor of 20dB in a range of 1kHz to 22.5kHz.
The sound amplitude of frequencies with more than 21 kHz
decreases rapidly with higher sound frequency. In addition,
Filonenko et al. presented in a study the practical limitations of
sound generation with a speaker of a COTS smart phone [26].
Frequencies above 22 kHz are significantly affected by noise.
Also, our results show that the maximum frequency of local-
ization system based on smart phones is 21 kHz. Up to this
limit, the sound signals from the speaker have a high amplitude
which enables them to transmit sound over long distances.
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Figure 4. Frequency response of commercial available smart phones.

For the measurement of the smart phone radiation charac-
teristics, the sound signals were measured within a distance
of 25 cm from a microphone at different positions. Therefore
a smart phone holder is designed to allow a manual rotation
of the smart phone and inclination angle around the holders
axes. The smart phone is placed along the horizontal axis.
The speaker is located on the opposite side of the measuring
microphone. The measurements start at an inclination angle
of 0° and the smart phone rotates around the holders axes
with an angle of 15°. This corresponds to the movement of
the microphone along a circle around the smart phone. The
advantage of this rotation around the holders axes is its simple
implementation. Eventually, the inclination angle of the smart
phone is increased to reach 180°. The 3D measured radiation
characteristics are shown in Fig. 5 and an axis-plot is depicted
in Fig. 6. As expected, the radiation is anisotropic and has a
small directivity into the direction of the ear.
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Figure 5.

3D radiation pattern of iPhone 4S sound speaker.
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Figure 6. Radiation characteristic in dB of iPhone 4S with implemented
loudspeaker in the front side.

The sound pressure is plotted logarithmically. As a refer-
ence, the sound pressure is located within a direct orientation
of the speaker to the microphone. The reference sound pressure
level of 0 dB is assigned to a distance of 35 dB as the origin
of the coordinate system.

Generating audio signals with a smart phone requires ap-
prox 33mW [23]. Moreover, the signal length is 2ms and
hence, the smart phone requires 66 uWs for every transmitted
burst. However, 58 % of the power is consumed by decoder.
Hence, calculating chirps requires less power than decoding
audio from an MP3 file. In addition, the smart phone requires
55 mW for transmission of the calculated position to the smart
phone. Compared to localization systems, where the position
is calculated on the smart phone, the power for listening of the
signals and calculation takes approx 150 mW [23] [24] and the
CPU load is about 80 %. Moreover, the calculation is limited,
due to the low power CPU, to simple localization algorithms
(not enough computation power for a particle filter). As a
result, our localization system benefit of longer battery life
of the smart phone and better position estimation (complex
algorithms can be run on the server).

Using TDOA as the localization principle, the system is
independent of the exact transmission time of the pulse. Hence,
the operation system requires no modification or patch to
ensure deterministic behaviour. On the contrary, localization
systems based on TOF or round trip measurements rely on
precise transmission and receiving time of the signal. Thus, the
operation system is patched to ensure deterministic real-time
behaviour. Consequently, the user does not need root rights to
modify the operating system.

C. Receiver

Ten prototype receivers for receiving the sound signals
from the smart phones were built. Fig. 7 shows the block
diagram of the receiver. The receivers calculate the low level



signal processing (correlation, threshold) and the localization
is calculated on a central server.

Receiver

Microphone | Filter Amplifier Filter
2 1D RS
ADCy
Power
Supply A D
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Network
Synchronisation Signal-
WLAN Timestamp processing

Figure 7. Block diagram of the receiver with signal processing (described in
section IV) and Wi-Fi communication.

The first part in the signal chain of our receivers is a
transducer, which converts acoustical signals into electrical
signals. The designed system uses a small, low cost transducer
powered by a maximum voltage of 5V. Further, MEMS-
microphones from Knowles Acoustics were used and the
sensitivity as a function of frequency was calculated and
compared for different measurements as depicted in Figure. 8.
The MEMS-microphone shows a peak around 20kHz. For
detecting sound signals in the range of 18-22kHz the use of
this MEMS-microphone is preferred.
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Figure 8. Frequency response of electret- and MEMS-microphones in the
range from 500 Hz - 25 kHz.

An 8" order Butterworth low pass filter with a cut-off
frequency of 17.5kHz was used to eliminate ambient noise.

Before digitizing the data, the signal is analog amplified by a
factor of v = 414, which is a trade off between sensitivity and
false detections. Subsequently the sound signals were digitized
using an analog digital converter (ADC) having a resolution
of 15bit per sample and a sampling rate of 88.15kHz. The
digitized signals are correlated and the threshold is applied
to the result. Further, the peaks and the IDs (identification
numbers) of the sound signals are estimated and the time
stamps are transmitted from the receiver (Fig. 9) via Ethernet-
Interface to a central server (e.g. notebook).

Gumstix Overo®
Embedded ARM-

Communication

Wi-Fig02.11blg . .
Communication
Ethernet

MEMS-Mikrofon
Ekulit EMY-63M/P

Adjustable
Amplifier

Power over
Ethernet (PoE)

controller
Atxmega

Figure 9. Photo of the Receiver with analog module (bottom) and Gumstix
Overo Board (top) for the signal processing.

To determine the time of arrival (ToA) of the received sound
impulses, a precise time synchronization is needed, as the
accuracy of the localization system relies on synchronization
precision between the receivers. The receivers are connected
to an Fast-Ethernet network to synchronize their clocks. The
connected receivers (slaves) negotiate a master receiver which
acts as a time reference. Subsequently the other clients (re-
ceivers) adjust their clocks to the master considering time
offset and time drifts. The slaves ping to the master to get
the current time of the master via UDP-protocol. This time is
corrected by round trip time from the slave. Time offset and the
time drift are both considered by an adaption of the Network
Time Protocol algorithm. Both time offset and clock drift
between slave and master are obtained by linear regression
from the set of the time stamps. The implementation of
synchronization can be found in [27]. With a 802.11 b/g Wi-Fi
connection, a synchronization precision of greater than 0.1 ms
can be achieved [28]. As a result, the theoretical localization
synchronization error for the speed of sound (340m/s) is
3.4 cm.

Figure 10 shows the opening angle of the receivers. There-
fore, measurement data from a localization experiment with 10
receivers was used. The positions of the smart phones emitting
the received signals are plotted relatively to the receiver. All
receivers are located in the same position in the center of
Fig. 10 and aligned in the same direction, marked with a
cross. The opening of the microphone is in the positive x-
direction. Thus, the figure shows the positions of the smart
phone, where the corresponding receiver was able to detect
the signal that was sent out by the smart phone. This can
be seen as the opening angle of the receivers. The opening
angle depends mainly on the directivity of the microphone
and on the detection threshold of the receiver. As expected,
the microphone receives the highest number of signals in the
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Figure 10. Opening angle of the receivers.

direction of the microphone. Going towards the back of the
receiver the number of received signals decreases and has a
minimum at 180° from the front.

D. Software application

We have developed an Android software application (app),
which transforms a standard COTS device into a transmit-
ter for ASSIST. Fundamentally our designed app has three
functionalities: (I) Communication with the evaluation unit
(server), (II) Sound control, (IIT) Visualization of the current
position on the map.

Figure 11. The developed Android software application on the screen of a
smart phone.

I) The system works when the user downloads and starts the
app in an area which supports the ASSIST infrastructure.
The user interface is simple as starting the app, which

connects to an evaluation unit and receives an ID using
its internet connection. Every registered hand-held device
in a localization cell is assigned a unique ID. The smart
phone is connected to the internet without a special infras-
tructure, only a mobile network is mandatory. In this work
Long Term Evolution (LTE) is used for wireless data
communication which is the latest standard technology
of mobile data transmission. The smart phones and the
server communicate using the secure communications
protocol HTTPS in JavaScript Object Notation (JSON)
format. Specific parameters were assigned to each user,
such that several devices can be distinguished by the
appearance of the chirps. The necessary parameters con-
ceived from the evaluation unit are frequency, impulse
timpuls, interval duration of the chirp signal and building
map. Based on these data, the smart phone regularly sends
out the chirp signal to guarantee localizing the user.
IT) The app controls the loudspeaker of the smart phone and
generates the specific sound signals (which is described
in chapter 4) inside the smart phones.
The current position and the map are transmitted from
the evaluation unit to the smart phone. The position of
the user is displayed on the screen of the smart phone in
context to the environment, with a map and surrounding
items. Figure 11 shows an example of the software
application on a smart phone screen. The current position
of the user is shown with a dark red point with minimal
transparency. The trajectory of the user is shown with
decreasing transparency of the red points. The previously
calculated data points are more transparent than the actual
points. This allows the user to visualize his walk in a
chronological sequence. Depending on the connection
speed, the positions of the user are provided in real time
from the evaluation unit. Displaying the current position
on the smart phone has a time latency of approx 12 ms
to 410 ms. This is due to the window size of the signal
processing (Nyind € (2ms, 400 ms)), the calculation (1-
2 ms) and the transmission of the data to the smart phone
by WiFi (2-10 ms).

1)

IV. LOCALIZATION WITH TDOA

In our approach we use TDoA-Algorithms to calculate the
position of the smart phones. When using TDoA-Algorithms
for localization, the processing time inside the smart phones
is not relevant. For using other localization algorithms the
position accuracy would be affected in a negative sense if
the processing time is not measured. Only by knowing the
propagation speed of sound and the precise arrival times at
the receivers, the position of the smart phone device can be
calculated. The receivers are connected to a Wi-Fi network,
such that they synchronize their clocks and exchange the time
differences of arrival of the received sound impulses. A smart
phone transmits acoustic signals at a position Sy relative to the
receivers with the positions M; (i=1...,n). Further, the receivers
detect the signals at different timestamps T;, which depend
on the distance R; between the receiver and transmitter.
Moreover, the distance from the smart phone to the receiver
R; can be described by the coordinates as follows:
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The speed of sound depends on the temperature ¥ of the
environment. At a temperature of 25°C the speed of sound
is 346 m/s. The receivers generate timestamps in the time of
arrival T; of the received signal.

In case of using sound waves instead of electromagnetic
waves the influence of the position accuracy from the syn-
chronization of the receiver is decreased. The synchronization
of the receivers is necessary for generating the timestamps for
the TDoA-Algorithms. The receivers are connected together
via wireless network (WLAN) which provides a precise time
synchronization up to an order of 0.1 ms. Hence, the theoret-
ical maximum localization error, caused by synchronization
error, is 3.4cm.

The smart phones generates specific sound signals at time
to. Thus, the distance R; from equation 1 can be calculated
by multiplying the speed of sound Cj;; with the transmit time
T; —to as given below:

R; = Cye(T; — to) 3)

Time 71 2 shows the time difference of the received signal
between receiver 1 and receiver 2.
T2 =(Th —to) — (To —to) = % “4)
air
Equation 4 is the hyperboloid description for 2 receivers.
As a result, iterative TDoA-Algorithm with minimum of 3
receivers can calculate the location of the smart phones in
2D.

A. Envelope Detection and Particle-Filter

Our first approach uses only the amplitude of an incoming
sound signal to detect its presence. Therefore the smart phone
generates short sound impulses with 18 kHz.

The approach of using envelope detection of sound signals
is relatively easy, but suffers from different drawbacks. The
amplitude of sound decreases rapidly with distance. In the
presence of background noise one cannot distinguish between
wanted and unwanted signals. Figure 12 shows the functional
diagram of the signal processing and Figure 13 shows the
threshold detection.

To increase the robustness against measurement outliers and
incorrect initialization we implemented a particle filter for

‘ sample —RMS —threshold —status ¢ time mark

16384

amplitude

time (s)

Figure 13. Threshold detection of the incoming sound signals.

localization of the smart phone. The algorithm is described in
[29]. Our method is robust against measurement outliers and
incorrect initialization. This is achieved through a probabilistic
sensor model for TDOA data which explicitly considers the
measurement uncertainty and takes into account dispropor-
tional errors caused by measurement outliers.

B. Chirp Impulse and Self calibration

In a second approach we use a chirp impulse to increase
the performance of the system by using pulse compression.

1) Chirp-Impulses: We use linear chirp signals to trans-
mit the sound signal. A linear chirp is a signal in which
the frequency increases or decreases linearly with time (up-
and down-chirps). Some of their characteristics make them
applicable for localization. Signals with maximum energy are
essential for receiving short signals over large ranges. The
influence of interfering signals or white and Gaussian noise
can be reduced by increasing the signal energy, where the
signal-to-noise (SNR) ratio is increased. The increase of signal
energy can be done either by increasing the signal amplitude or
the signal length. In radar or sonar applications, chirp signals
are used to increase the SNR for a given bandwidth.

When auto-correlating a linear chirp signal, the resulting
function shows a high and narrow peak. This characteristic
allows high temporal accuracy for detecting signals. Cross-
correlating chirps in different frequency bands or up- and
down-chirps, the resulting function does not show a distinct
peak. This characteristic can be used to have multiple emitters
operating at the same time. [19], [25] show this for detection
of sound and ultrasound signals.

The chirp impulse works between 0 < ¢ < T with a start
frequency of fj and an end frequency of f;. It can be described
according to the following equation:

s(t) = sin (27T < fo+ le_TfOt> t) . (5)

The received signal is cross-correlated with a stored up and
down reference chirp. The mathematical formula for cross-
correlation of two signals z and y is:

2(t) = /.13(7’) y(t+7)dr . (6)

Where z(t) is the received signal and y(¢) is the saved
reference signal. Further, the maximum of the cross-correlation
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Figure 14. Description of the signal processing with the chirp (blue block in
Fig. 7). The signal is multiplied in the Fourier domain to estimate the peaks.

function z(t) is achieved at the perfect matched time. Hence,
we use a matched filter to maximize the SNR. To detect
different smart phones, up and down chirps are used to
transmit the ID of the specific smart phone as a binary data
stream. The cross-correlation is carried out as a convolution,
which in turn equals a multiplication of the two signals in the
frequency domain. The spectra of the input chirp and reference
chirp are calculated with the Fast Fourier Transform (FFT).
After multiplying the spectra of input chirp and reference
chirp, the inverse FFT is used to convert the signal back to
the time domain. When a chirp, equal to the reference chirp is
present in the FFT-window, a peak occurs in the output signal.
The position of the peak can be related to the time, when the
input chirp was arriving at the receiver. Comparing the times
of arrival of multiple receivers, one can realize time difference
of arrival (TDoA) based localization.

Using a constant static threshold limits the transmission
range by a high value to reduce false detections. However,
an adaptive threshold, which detects the presence of the
signal and increases the threshold and decreases the threshold
for lower signal values can improve the sensitivity of the
system. Moreover, an adaptive threshold can also reduces
false detection by echoes due to increasing the threshold
after the receipt of the signal. Therefore, we modified the
constant failure alarm ratio (CFAR) algorithm to calculate
the adaptive threshold [30]. Furthermore, we used only the
maximum values of the windows to take from both windows
the greatest value. Figure 15 shows the principle function of
the cfar algorithm. The algorithm takes two windows, one
before the point and one after the threshold point. Then the
greatest value is taken in each window (greatest of, GO) and
is compared with the minimum noise level o.

Figure 16 shows the GOGO-CFAR threshold for low cor-
relation amplitudes for a distance of 20m. Hence, the peaks
are detected and the threshold is above the noise level. Fur-
thermore, false detections by echoes are reduced by increasing
the window size. This is shown in Figure 16 at the time 0.91 s
to 0.94 s. Where some echoes causes a high correlation value,
however, the threshold is above this disturbance.

2) Calibration phase: Absolute localization systems uses
fixed and installed anchor nodes as infrastructure. Further,
the localization system has to know the position (z;,y;) of
every receiver (anchor node) a priori. A multilateralists TDoA-
Algorithm requires position information of the receivers to
calculate the relative position (z,y) of the mobile object (e.g.
smart phone). Normally, the system customer has to measure
the exact positions of the receivers; which is required for
installation. This measurement increases for large buildings,
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Figure 15. Adaptive threshold calculation by GOGO-CFAR. The greatest
value is taken from both windows.
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Figure 16. Adaptive threshold GOGO-CFAR for real signal with small
correlation amplitude (20 m distance). Echoes and noise is suppressed.

since the number of receivers depends on the size of the
building. The localization system ASSIST uses an Anchor-
free localization algorithm to calibrate the system. During the
calibration phase, the positions of the receivers in the indoor
scenario are calculated automatically. Moreover at least three
measured receiver positions are required for the orientation
of the system on a map. The sending time of signals by
a smart phone are not known to the localization system,
as this would require synchronization of the smart phone
using a very unreliable network, or bi-directional exchange
of sound signals. Only the times of reception of the signals
at the receivers can be measured. However, the receivers are
synchronized and the TDoA values can be calculated. This
forms a system of hyperbolic equations for the signal position
and any pair of receivers. The goal of the calibration phase
is to approximate the relative positions of the receivers, with
respect to the map.

There are several self-calibrating TDoA-Algorithms avail-
able to calculate the positions of the receivers (anchors). In
the far field case the signals originate from the distance, such
that the propagation front of the signals approximates a line,
sweeping over the receivers. Then, the positions of receivers
and subsequently of the signal directions can be calculated
directly [31], [32], [33].

For the general case of arbitrarily distributed signal positions
[34] proposed a solution, which maximizes the likelihood of
receiver and signal positions, given a Gaussian distribution of



measurement errors. For at least eight receivers in the plane
or ten receivers in space [35] showed a direct solution using
matrix factorization.

For the calibration phase of the localization system an
iterative optimization algorithm is used. The “Iterative Cone
Alignment” algorithm [36], [37] solves iteratively a non-linear
optimization problem of TDoA by a physical spring-mass
simulation. The success rate of solving the calculation of
the receiver positions was increased to 99.4 % (with only
six received signals and four receivers). Through using the
algorithm a quick-setup system for smart phone localization
is created. There is no need to measure the positions of the
receivers.

V. EXPERIMENTAL RESULTS

We show measurement results for localization with the
acoustic system and a possibility of using an IMU for lo-
calization.

A. Constant Frequency Sound Pulse

In the first experiment we use pulses with constant fre-
quency and use the envelope to detect the presence of the
signal. Figure 17 shows the real-world indoor scenario with
ten receivers, which were placed around the area of the optical
motion capture system. The absolute accuracy of the motion
capture system is in the range of about 3 mm [38]. Figure 18
shows the smart phone localization by a particle filter. Further,
the particle filter localize the smart phone with an error of o
= 0.26 m. Figure 19 shows the cumulative distribution of the
distance errors.
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Figure 17. Photo of the real world experiment environment.

We analyzed in an additional experiment the receiver range.
Therefore, an iPhone 4S is positioned at a variable distance
between 1 to 12 meters from two receivers. At each distances
of 1 meter, the smart phone transmits 500 acoustic pulses.
The length of each acoustic pulse is 50 ms with a frequency
of 18 kHz. Figure 20 shows the correct received pulses in
percentage over different distances. The accuracy that was
achieved is within an interval of £20.
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Figure 18. Trajectory of the real world experiment with envelope detection
and particle filter. The mean positioning error of the signal estimate is 0.25 m
(o =0.26m).
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Figure 19. Cumulative distribution of distance errors for Fig. 18.

B. Chirp Sound Pulse

The measurement deviation of the system was evaluated in
static experiments. Figure 21 shows the distribution of mea-
surement errors and the normal distribution. ASSIST shows
a standard deviation of 0 = 25cm. Signals with multipath
propagation leads to increased standard deviation.

Further, we verified our system in dynamic real-world
scenario; 2D experiment. For a reference, we defined a walking
track of 14 m which was exactly measured. In our experiment,
we placed seven receiver devices in an oval of 10 m times 10 m
around the walking track in a height of 1 m. A person walked
along the defined track.

We calculated the positions of the smart phone which trans-
mitted acoustic chirp impulses between 19 kHz to 20 kHz with
a length of 50 ms. Figure 22 shows the calculated positions
and the defined walking track. Thus, the data shows a well
matching compared to the track. The trajectory shows a sys-
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Figure 21. Measurement errors of ASSIST with correlation and TDoA-

Algorithms in a static experiment.

tematically error which depends on the localization algorithm
and some measurement errors from the multipath propagation.

The smart phone track shows an average deviation of 0.34 m
(o =0.18 m).

In an additional experiment the receiver range was analyzed.
Figure 23 shows the signal detection rate for arrived chirp
signals as a function of distance which are inside of +-2¢. The
developed receivers (chapter III-C) with a constant threshold
were able to receive more than 70 % of the transmitted signals
up to a distance of 16 m from a smart phone (red curve
with circles). The percentage of received signals drops at
distances above 16 m. Moreover, with the adaptive GOGO-
CFAR threshold, the detection rate is approx 88 % at a distance
of 20m (black curve). Furthermore, at a distance of 30 m we
measured a detection rate of 48 %.

C. Echo Analysis

Reflections at walls or hard surfaces (e.g. cabinet) induce
echoes and disturb the line of sight signal. Furthermore, the
echoes reduces the accuracy of the localization system, which
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Figure 22. Real world experiment of ASSIST. Data set Exp. 2d. Microphone
error mean 1.81m, (o = 1.32m).Signal position error mean: 0.34m (o =
0.18 m).
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Figure 23. Measurement values of ASSIST with chirp correlation depending
on the distance. Black line is with adaptive GOGO-CFAR threshold and red
line with circles shows the results for constant threshold.

assume to work on the line of sight signal. Figure 24 shows the
echo analysis for different signals. The abscissa represents the
distance of the signal and the ordinate the time of the measure-
ment. The brightness indicates the amplitude of the correlation.
Every line is generated by using the modulo operation of
300 ms, which is the time interval of the transmitter. We started
the measurement at approx 5 m and moved to 16 m and back.
Especially at distances above 10 m the echoes become strong
and are visible as shadows of the main signal in Figure 24.
Thus, multiple (up to four at approx 16m) echoes can be
distinguished. To achieve a robust localization, we perform
the adaptive GOGO-CFAR threshold to remove the echoes
and work on the line of sight signal.

D. Localization with Inertial Sensors

In areas where no infrastructure is available, the integrated
inertial sensors can be used to localize the user for a short
period.

Currently, many different sensor types are integrated in
the smart phones. For example the commercial smart phone
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Figure 25. Measurement values of the acceleration sensor in z-axis during a
walk with the two threshold values.

Samsung Galaxy S2 provides the data of the integrated inertial
sensors like gyroscope, accelerometer and a magnetic field
Sensor.

User localization based on the inertial sensors leads to
measurement errors with increased observation time. The
inertial sensor unit additionally supports a method to perform
acoustic localization.

Since the smart phone is usually held by hands, meth-
ods as zero velocity update [39] can not be implemented.
In order to deliver correct position information, step length
and orientation information must be determined. For normal
walking, each step is set roughly as 0.70 m. The step detection
is accomplished by analyzing the accelerations. New step
is detected only when the acceleration signal crosses two
predefined thresholds with a rising edge. Figure 25 shows the
acceleration in z-axis during a walk with the two threshold
values. The orientation information is obtained by Kalman
Filter based sensor data fusion, as discussed in [40].

In an experiment the data from inertial sensors of the
smart phone without the ASSIST localization system was
used for detecting a walk of 45 m distance in a building. The
trajectory of the walk is shown in Fig.26. The red dashed
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Figure 26. Trajectory of data from an experiment. Data from the inertial
sensors of a smart phone (blue line) and a reference inertial measurement
unit (red dashed line).

line shows a reference path which was measured with an
inertial measurement unit from Xsens. The blue line shows
the calculated path with the data from inertial sensors of
smartphone Samsung Galaxy S2. The calculated maximum
deviation from the 45 m real track was 1 m.

VI. CONCLUSIONS

In this paper we presented a smart phone indoor localization
system based on sound. The user of the system needs no
additional hardware except a COTS smart phone. Through our
self-build receivers, which were synchronized with a Wi-Fi
network, the arrived signal can be correlated and the position
is calculated with a TDoA-Algorithm. The first experiments
showed, that it is possible to use the system in a real envi-
ronment to localize a user in an indoor environment with less
effort.

The system does not require a special knowledge to be
installed by the provider, hence the installation effort is
minimized. Through an anchor-free-algorithm, the receivers
work as a plug-and-play-system and there is no need for
additional information, since the positions of the receivers can
be calculated.

In our paper, two different approaches were tested. The
envelope detection shows an easy implementation but a limited
transmission range of 11 m. The particle filter showed a robust
localization of the smart phone with an error of o = 0.26 m.
In a second approach chirp impulses were used and correlated
in the receivers, which increased the range to 16 m. Moreover,
the adaptive GOGO-CFAR threshold extend the detection rate
to 48 % at a distance of 30 m. Additionally, a self-calibration
algorithm is used, which localizes the anchor nodes in a range
of 0 = 1.32m and the smart phone in a range of ¢ = 0.18 m.

In areas with a poor receiver coverage, the localization with
built-in inertial sensors in smart phone was tested. The inte-
grated inertial sensors can be used as an additional localization



method to support ASSIST for a short time. The maximum
deviation from the reference track of 45m was 1 m.

VII. OUTLOOK

In our future investigations we will improve the acoustic
localization in situations where there is no line of sight
between the smart phone and the receivers. Error minimization
can be achieved, through fusion of the data from the inertial
sensors and the data from the acoustic localization. Additional,
we will use the self-calibration algorithms in combination of
the particle filter to increase the robustness

We will modulate an identifier onto the signal to distin-
guish between different senders and enable multi-user applica-
tions. Another possibility is to use Time-division multiplexing
(TDM) to identify different smart phones. The time domain is
divided into time slots which can be used from the respective
of smart phones to generate the sound.

In some applications (e.g. in a supermarket) the receivers
should be installed in the ceiling. In this case, the position of
the user should be localized in a 2D area with defined height.
The algorithm must be modified for 2.5D applications.

In addition, we will improve ASSIST through reducing mea-
surement errors from multipath propagation. The experimental
results should be evaluated with a reference system to measure
the systematic error precisely.
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