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Abstract. We present two novel approaches for the problem of self-
calibration of network nodes using only TDOA when both receivers and
transmitters are unsynchronized. We consider the previously unsolved
minimum problem of far field localization in three dimensions, which is to
locate four receivers by the signals of nine unknown transmitters, for which
we assume that they originate from far away. The first approach uses
that the time differences between four receivers characterize an ellipsoid.
The second approach uses linear algebra techniques on the matrix of
unsynchronized TDOA measurements. This approach is easily extended to
more than four receivers and nine transmitters. In extensive experiments,
the algorithms are shown to be robust to moderate Gaussian measurement
noise and the far field assumption is reasonable if the distance between
transmitters and receivers is at least four times the distance between
the receivers. In an indoor experiment using sound we reconstruct the
microphone positions up to a mean error of 5 cm.

1 Introduction

In this paper we study the problem of node localization using only Unsynchronized
Time difference Of Arrival (UTOA) measurements between nodes, where either
receivers or transmitters are far away from the other group. The problem arises
naturally in microphone arrays for audio sensing. Is it possible to calculate both
multiple microphone positions as well as the timings and directions of the sound
sources, if the microphones are unsynchronized, i.e. do not use the same clock,
just from sounds emanating from far away at unknown locations and times? An
example application could be to locate several cell phones just by environmental
sounds, where cell phone positions and sound directions are to be recovered
without synchronizing the phones first.

1.1 Related Work

Although time of arrival (TOA) and time difference of arrival (TDOA) problems
have been studied extensively in the literature in the form of localization of e.g. a



sound source using a calibrated array, see e.g. [4, 6–8], the problem of calibration
of a sensor array from only measurements, i.e. the node localization problem, has
received less attention.

In [21] and refined in [12] a far field approximation was utilized to solve
the TOA and TDOA case, with the minimal number of four receivers and six
unsynchronized far field transmitters in 3D. Under the assumption that signals
and receivers are distributed in the unit disk, the distance between receivers
can be approximated by evaluation of the range of time differences [3, 16,18] or
by statistical analysis of their distribution [10, 20], although these approaches
depend on the availability of a large number of signals. Calibration of TOA
networks using only measurements has been studied in [14,19], where solutions
to the minimal cases of three transmitters and three receivers in the plane, or six
transmitters and four receivers in 3D are given. Calibration of TDOA networks
is studied in [17] and further improved upon in [13], where the non-minimal case
of eight transmitters and five receivers is solved. In [2, 23] a TDOA setup is used
for indoor navigation based on non-linear optimization, but the methods can get
stuck in local minima and are dependent on initialization.

The problem of node localization using only UTOA measurements from
unsynchronized receivers and transmitters in a far field setting has been considered
in [5], however the approach requires at least five receivers, which is more
than the minimum case. Minimal algorithms are of importance in RANSAC
schemes [9] to weed out outliers in noisy data which is a common problem in
TOA/TDOA/UTOA applications. The problem has been addressed in a different
manner estimating ellipse coefficients in [22], but no analysis of degenerate cases
has been done and the algorithm is only described for the planar case.

In this paper we expand on previous work and propose two novel algorithms
for parameter estimation of a receiver array, the Ellipsoid method in 3D and the
Matrix Factorization method for UTOA measurements, that both consider the
minimum case of four receivers and nine transmitters in three dimensions. We
compare the methods on simulated and real data where we demonstrate their
numerical stability. The methods are also evaluated on overdetermined cases
using more than four receivers and nine transmitters.

2 Problem Setting

In the following treatment, we make no difference between real and virtual
transmitters. Assume that the transmitters are stationary at position bj ∈ R3,
j = 1, . . . , k and that the receivers are at positions ri ∈ R3, i = 1, . . . ,m. By
measuring how long time the signals take to reach the receiver and knowing the
speed of the signals, distances δij = ‖ri − bj‖ can be measured, ‖ · ‖ denoting
the Euclidean norm. These are TOA measurements.

When neither receivers or transmitters are synchronized, for instance external
sound sources recorded on different computers, the measurements will be of the
form δij = ‖ri − bj‖+ fi + g̃j where fi, g̃j are unknown offsets for receivers and
transmitters respectively. We denote measurements of this kind Unsynchronized



Time difference Of Arrival (UTOA) measurements. Furthermore, if the transmit-
ters are so far from the receivers that a transmitter can be considered to have a
common direction to the receivers, the measurements can be approximated by

δij = ‖ri−bj‖+fi+g̃j ≈ ‖r1−bj‖+(ri−r1)Tnj+fi+g̃j = rTi nj+ḡj+fi+g̃j (1)

where ḡj = ‖r1−bj‖−rT1 nj and nj is the direction of unit length from transmitter
j to the receivers. By setting gj = ḡj + g̃j we get the far field approximation

δij ≈ rTi nj + fi + gj .

When the approximation is good, we will call δij Far Field UTOA (FFUTOA)
measurements.

2.1 The FFUTOA calibration problem

We assume that (i) the speed of signals v is known, and thus all time measure-
ments are transformed to distances by multiplication by v and (ii) receivers can
distinguish which TOA signal comes from which sender. This can be done in
practice by e.g. separating the signals temporally or by frequency.

Problem 1. Givenmk FFUTOAmeasurements δij ∈ R, i = 1, . . . ,m, j = 1, . . . , k,
taken from m receivers and k transmitters, estimate receiver positions ri ∈ R3,
directions nj ∈ R3 from transmitter j to receivers, receiver and transmitter
offsets fi ∈ R, gj ∈ R such that

δij = rTi nj + fi + gj , and ‖nj‖ = 1 . (2)

Note that the problem is symmetric in receivers and transmitters, i.e. if
each receiver instead could be viewed as having a common direction to all
transmitters, the same problem can be solved for transmitter positions and
receiver directions. We denote f = [f1, . . . , fm]T , g = [g1, . . . , gk], r = [r1, . . . , rm]
and n = [n1, . . . ,nk].

The problem of determining full transmitter positions bj instead of directions
nj , see (1), seems harder than using the far field approximation as in Problem 1.
The measurements are now bilinearly dependent on ri and nj . Algorithms that
explicitly consider the far field assumption are also required, as the problem of
determining general positions of transmitters when the far field approximation is
in effect, is an ill-conditioned problem.

We denote the problem as minimal if the number of solutions for generic
distance measurements δij is finite and positive, disregarding solutions that are
the same up to gauge freedom.

2.2 Gauge freedom

The unknown parameters (r,n, f ,g) have certain degrees of freedom that does
not change the measurements, called gauge freedom. Any translation t, rotation
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Fig. 1. Scheme of the Ellipsoid method. Three distances d2, d3, d4, and three angles ϕ3,
ϕ4, and θ define a tetrahedron of four receivers r1, r2, r3, r4. Transmitter b is assumed
to be far away from the receivers. Its signal arrives from the angles ϕb, λb.

matrix R and offset change K can be applied to the solution according to

ri,trans = ri + t, gj,trans = gj − tTnj
ri,rot = Rri, nj,rot = Rnj

fi,offs = fi +K, gj,offs = gj −K

without changing the measurements δij . Thus, we can only hope to reconstruct
the unknowns up to these seven degrees of freedom.

3 The Ellipsoid Method in Three-Dimensional Space

We propose the Ellipsoid TDOA method which solves the FFUTOA calibration
problem for four receivers using at least nine transmitters. The time differences of
signals from distant emitters form an ellipsoid which characterizes the distances
and angles between four receivers. An elegant representation can be derived from
the knowledge that an ellipsoid corresponds to a covariance matrix. Once this
covariance matrix is known, one can extract the parameters that generate the
ellipsoid from the matrix, i.e. the configuration of four receivers.

3.1 Definition of the Covariance Ellipsoid

A rigid tetrahedron of four receivers is defined by three distances d2 = ‖r1− r2‖,
d3 = ‖r1 − r3‖, d4 = ‖r1−r4‖, two height angles ϕ3 = ∠r2r1r3 , ϕ4 = ∠r2r1r4 , and
the azimuth angle λ4 = ∠a3r1a4 , see Fig. 1. Furthermore we define θ = ∠r3r1r4 .

A signal arrives from the angles ϕb = ∠r2r1b and λb = ∠a3r1ab , uniquely
determining the direction. The signal angles with respect to two receivers are



γ2 = ∠r2r1b, γ3 = ∠r3r1b, and γ4 = ∠r4r1b. Omitting the signal index, these
angles are defined by the UTOA measures according to the cosine law as

x = δ1 − δ2 = d2 cos(γ2) , y = δ1 − δ3 = d3 cos(γ3) ,
and z = δ1 − δ4 = d4 cos(γ4) .

(3)

The auxiliary points a3, a4, and ab are projections of r3, r4, and b respectively,
onto the plane orthogonal to r1 − r2 through r1.

In the following we derive the covariance matrix for time differences in the
Eqns. (3) assuming uniform signal source positions. This matrix characterizes
a covariance ellipsoid, [15], describing the ellipsoid which the time differences
reside on. If this matrix is known, the distances and angles between the receivers
can be directly read from the matrix. We state the following definition.

Definition 1. The Σ-ellipsoid for covariance matrix Σ is the ellipsoid with
center µ where for all points x holds

dMah(x,µ,Σ) =
√

(x− µ)TΣ−1(x− µ) = 1 .

The metric dMah(x,µ,Σ) is the Mahalanobis distance. For Σ-ellipsoids the
following holds.

Lemma 1. The covariance of points uniformly distributed over a Σ-ellipsoid
in R3 is Σ̂ = 1

3Σ. In the two-dimensional case the covariance is Σ̂ = 1
2Σ.

Lemma 1 can be verified by integration over all points of the Σ-ellipsoid and
calculating the covariance. Given the definition of the covariance ellipsoid we
propose the following theorem.

Theorem 1. The time differences (x, y, z) of distant signals arriving at four
receivers r1, r2, r3, r4 in space R3 form a 3Σ̂-ellipsoid with covariance matrix

Σ̂ = 1
3

 d2
2 d2d3 cos(ϕ3) d2d4 cos(ϕ4)

d2d3 cos(ϕ3) d2
3 d3d4 cos(θ)

d2d4 cos(ϕ4) d3d4 cos(θ) d2
4

 .

Proof: The proof is directly based on the definition of a covariance ellipsoid.
The first thing to show is that the matrix Σ̂ is actually a covariance matrix,
therefore is positive semi-definite. For simplicity we assume that the receivers
are synchronized, therefore the mean µ is zero. In case they are not, synchronize
the receivers by regression as described in the next Section 3.2.

Now, consider the continuous distribution of synchronized time differences
over uniformly distributed directions of origin. Such a uniform distribution of
signal origins b̂ in space R3 can be created by points

b̂ = R ·
(
r cos(λ), r sin(λ), `

)T
,

where λ ∈ [0, 2π] and ` ∈ [−1, 1] are uniformly independently distributed random
variables, and r =

√
1− `2. The density function of the distribution is h(λ, `) =



g(λ)f(`) = 1
4π . Without loss of generality, the tetrahedron is aligned such that r1

is the origin, r2 is parallel to the ẑ-axis, and r3 resides on the x̂/ẑ-plane. Assuming
that the sphere is large, i.e. the signals b̂ originate from far away, the angles of
the signals are

λb = λ and cos(ϕb) = ` . (4)

By using spherical trigonometry and the Eqns. (3) we calculate the time differences
x̂ = [x, y, z]T with respect to the tetrahedron angles as follows

x = d2 cos(γ2) = d2

(
cos(ϕb)

)
y = d3 cos(γ3) = d3

(
cos(ϕ3) cos(ϕb) + sin(ϕ3) sin(ϕb) cos(λb)

)
(5)

z = d4 cos(γ4) = d4

(
cos(ϕ4) cos(ϕb) + sin(ϕ4) sin(ϕb) cos(λb − λ4)

)
.

Note that the angles γ2, γ3, γ4, are not uniformly distributed in the three-
dimensional case, in contrast to the planar case. We express θ as

cos(θ) = sin(ϕ3) sin(ϕ4) cos(λ4) + cos(ϕ3) cos(ϕ4) . (6)

Using the uniform distribution of signals (4) and the time differences x̂ from
Eqns. (5) that follow, we show by integration that the time differences characterize
a covariance matrix as stated in Theorem 1:

Σ̂ =
2π∫

0

1∫
−1

x̂ x̂T h(γ, `) d` dλ = h(γ, `)
2π∫

0

1∫
−1

x2 xy xz
xy y2 yz
xz yz z2

 d` dλ

(4)−(6)= 1
3

 d2
2 d2d3 cos(ϕ3) d2d4 cos(ϕ4)

d2d3 cos(ϕ3) d2
3 d3d4 cos(θ)

d2d4 cos(ϕ4) d3d4 cos(θ) d2
4

 . (7)

Due to the quadratic form is Σ̂ positive semidefinite. Furthermore, the matrix is
definite, which follows from the fact that the time differences are bounded.

The next step is to verify that the time differences are actually characterized
by the matrix. The distribution of signal directions (λb, ϕb) is irrelevant for this
step, and for application of the algorithm. However, as the points b̂ in Eq. (4)
cover the complete sphere, all signal directions are considered. Calculating the
Mahalanobis distance by inserting x̂ and Σ̂ yields

dMah
(
x̂,~0, 3Σ̂

)
=
√

x̂T
(
3Σ̂
)−1 x̂ = 1 ,

revealing that all time difference points have constant Mahalanobis distance from
the origin, therefore reside on an ellipsoid, which is according to Lemma 1 the
3Σ̂-ellipsoid. �



3.2 Transformation of the Covariance Matrix

We now describe the transformation of parameters from a regression polynomial
to the parameters of the covariance matrix. Under the assumption of a zero-
mean ellipsoid, i.e. the receivers are synchronized, an ellipsoid is described by a
polynomial equation

ax2 + by2 + cz2 + dxy + exz + fyz = 1 . (8)

Regression of at least m ≥ 6 signals in the equation systemx2
1 y2

1 z2
1 x1y1 x1z1 y1z1

...
...

...
...

...
...

x2
m y2

m z2
m xmym xmzm ymzm


︸ ︷︷ ︸

Q

(a, b, c, d, e, f)T

︸ ︷︷ ︸
u

= ~1

and solving a least squares scheme for u =
(
QTQ

)−1(QT~1
)
yields ellipsoid

parameters a to f .
An ellipsoid in space R3 can be represented by the matrix form xTΣ−1x = 1 ,

where x = [x, y, z]T is a vector and Σ is a symmetric positive definite matrix

Σ =

σ2
1 ω1 ω2
ω1 σ

2
2 ω3

ω2 ω3 σ
2
3

 .

Substitution and conversion of the parameter set yields the parameters of the
covariance matrix

σ2
1 = (f2 − 4bc) / Z ω1 = (2cd− ef) / Z
σ2

2 = (e2 − 4ac) / Z ω2 = (2be− df) / Z
σ2

3 = (d2 − 4ab) / Z ω3 = (2af − de) / Z
(9)

where Z = be2 + cd2 + af2 − 4abc− def .
In case the receivers are not synchronized, the ellipsoid is shifted to zero-mean

by converting the general ellipsoid polynomial equation to a translation-invariant
form. In three dimensions the general form is

ax2 + by2 + cz2 + dxy + exz + fyz + gx+ hy + jz = 1 , (10)

for which the parameters a to j are calculated by regression of at least nine
signals. The parameters are converted to the following translation-invariant form

â(x− û)2 + b̂(y − v̂)2 + ĉ(z − ŵ)2

+ d̂(x− û)(y − v̂) + ê(x− û)(z − ŵ) + f̂(y − v̂)(z − ŵ) = 1.
(11)

Calculation of â to f̂ and û, v̂, ŵ from the coefficients of Eq. (10) can be done in
a computer algebra software by expansion of Eq. (11) and substitution of the



constant term. The coefficients â to f̂ are converted for the covariance matrix
using Eqns. (9). The coefficient vector (û, v̂, ŵ)T equals the center point of the
ellipse and the synchronization offset of the receivers.

According to Theorem 1, the distances and angles in the tetrahedron of
receivers are now directly characterized by the coefficients of the covariance
matrix. The distances and angles are calculated by

d2 =
√

3σ1 , cos(ϕ3) = ω1
σ1σ2

,

d3 =
√

3σ2 , cos(ϕ4) = ω2
σ1σ3

,

d4 =
√

3σ3 , cos(θ) = ω3
σ2σ3

.

3.3 Degenerate cases

When measurements δij are corrupted by noise, or the far field assumption is
violated, the solution of parameters in (10) might not yield an ellipsoid, but
another type of quadric surface. For four receivers and nine transmitters, this
constitutes a case of given measurements where there is no exact real solution to
(2), as such time differences must lie on an ellipsoid by Theorem 1. Instead of
using the regression scheme, one can obtain an approximation based on Theorem 1
by covariance estimation of the given time differences (x, y, z), denoted Σ∗. Using
Σ̂ = 1

3Σ∗, distance and angle parameters can be estimated as in Section 3.2.
Other degenerate cases are when the ellipsoid is collapsed to a ellipse surface,

or when transformed time differences in (11) lie on two intersecting quadric
surfaces, thus giving infinite number of solutions.

4 Matrix factorization method

The matrix factorization method uses linear techniques to solve Problem 1 for
receiver positions, transmitter directions and offsets. At least four receivers and
nine transmitters are needed. Without loss of generality we assume that the
solution is partially normalized for gauge freedom as the first receiver r1 = 0 and
f1 = 0, see Section 2.2.

Using the FFUTOA measurements δij , collected in the matrix D̃ = [δij ]m×k
we immediately obtain the unknowns gj since δ1j = rT1 nj + f1 + gj = gj , since
r1 = 0 and f1 = 0. We then subtract the first row containing gj from all other
rows of D̃ and remove the first row of zeros to obtain a new matrix that fulfill

D2 =
[
rT f

] [n
~1

]
(12)

where ~1 is a vector of ones. D2 is a product of two matrices of rank ≤ 4 and is
thus itself of rank ≤ 4. This is used in [5]. Here we further reduce the rank of the
factorization by subtracting the first column of D2 from all the other columns



and remove the first row of columns. Both steps manipulating D̃ can be done
using the compaction matrices Cm of size (m− 1)×m and Ck of size k× (k− 1):

Cm =


−1 1 0 . . . 0
−1 0 1 . . . 0
...

...
...
. . .

...
−1 0 0 . . . 1

 , Ck =


−1 −1 . . . −1
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 . (13)

Then we have

D = CmD̃Ck =
[
r̃T f

] [ñ
~0

]
= r̃T ñ, (14)

where r̃ equals r with the first receiver removed as r1 = 0, and ñ is a 3× (k − 1)
matrix with the jth column ñj = nj+1 − n1. Now we have a rank-3 factorization,
thus requiring at least four receivers and four transmitters. After applying SVD
to D = USVT we obtain the rank-3 factorization such that D = r̄T n̄ where
r̄ = U3S3 and n̄ = VT

3 . U3, S3 and V3 are the truncated parts of the SVD
corresponding to the three largest singular values. This factorization of D is
unique up to an unknown transformation H i.e. D = r̄TH−1Hn̄. We will find
ñj = Hn̄ i.e. nj+1 − n1 = Hn̄j by using the constraints that

ñTj ñj = (nj+1 − n1)T (nj+1 − n1) = 2− 2nTj+1n1 = 2− 2(Hn̄j + n1)Tn1

= −2n̄Tj HTn1 = n̄Tj HTHn̄j .
(15)

We apply a change of variables with a 3× 3 symmetric C = HTH and a 3× 1
vector v = HTn1. From (15), we have the following equation for transmitter j:

n̄Tj Cn̄j + 2n̄Tj v = 0. (16)

These equations are linear in the elements of C and v which have in total 9
variables. In general, with 8 such equations (thus 9 transmitters), we can solve
this homogeneous linear equation system uniquely up to scale.

We can extract the solutions for C and v from the solution to the linear equa-
tion which is valid up to an unknown scaling factor and sign. We can determine
the sign by using that C is positive definite and compute H by applying Cholesky
factorization C = HTH. As HTH = HTRTRH for a rotation/mirroring matrix
R, this will give H uniquely up to R. But as R corresponds to rotating/mirroring
the coordinate system, R is a gauge freedom according to Section 2.2 and can be
set to the identity matrix.

We can find the scale by using the constraint ‖n1‖ = ‖H−Tv‖ = 1. Note that
fixing the scale in this way will also guarantee that nTj nj = (HT n̄j+n1)T (HT n̄j+
n1) = n̄Tj HTHn̄j + 2n̄Tj HTn1︸ ︷︷ ︸

=0 by (15)

+nT1 n1 = nT1 n1 = 1. Summarizing these steps

yields Algorithm 1.



Algorithm 1. Input: FFUTOA measurement matrix D̃ of size (m = 4) × (k = 9).
Output: Receiver positions r, transmitter directions n, receiver offsets f and transmitter
offsets g. Conditions: (i) D must have rank 3, (ii) the linear equations (16) must only
have a null space of dimension one, (iii) C must be positive definite.

1. Set gj := D̃1j and D := CmD̃Ck where Cl,Cm is the compaction matrices in (13)
2. Calculate the SVD D = USVT and set r̄ to first three columns of US and n̄ to

first three rows of VT

3. For the unknowns in the symmetric matrix C and vector v, get the solution space
for the equations n̄T

j Cn̄j + 2n̄T
j v = 0 where n̄j is the jth column of n̄

4. Set the sign of the solution C,v such that C11 > 0
5. Calculate the Cholesky decomposition C = HT H
6. Lock the scale of the solutions H,v so that ‖H−T v‖ = 1
7. Set n1 := H−T v, nj+1 := Hn̄j + n1 and r := H−T r̂

4.1 Degenerate cases

Theorem 2. Degenerate cases for the minimal algorithm are when i) The trans-
formed measurement matrix D has Rank(D) ≤ 2 or ii) The difference of the
transmitter directions nj − n1 lie on the intersection of two or more quadric
surfaces with constant term 0.

Case i) happens iff receivers or transmitter directions lie in a plane. For ii),
the case when the transmitter directions nj lie on the intersection of two or more
a quadric surfaces is a special case.

Proof: The only time the algorithm fails is when the prerequisites are not fulfilled.
This happens iff i) Rank(D) ≤ 2 or ii) the linear equations (16) have a null space
of dimension two or more.

For case i), step 2 will extract data from the SVD that are not uniquely
determined from the measurements, but has several degrees of freedom. This will
result in a reconstruction of r,n that fulfills the measurements, but is not unique,
as there are an infinite number of solutions.

Rank(D) ≤ 2 iff either receivers r or difference of transmitter directions
nj − n1 in (14) are embedded in a lower dimensional subspace than assumed.
Remembering that receiver positions can be translated as in Section 2.2, this is
equivalent to receivers or transmitter directions being embedded in a plane.

For case (ii), there are at least two non linearly dependent solutions to (16).
The solutions can be seen as constants for a quadric surface with radius 0 that
n̄j should lie on, i.e.

n̄Tj C1n̄j + n̄Tj D1 = 0, n̄Tj C2n̄j + n̄Tj D2 = 0,

where [C1 D1] 6= λ[C2 D2] for all λ ∈ R\{0} and Ci symmetric. As nj+1−n1 =
Hn̄j , this is equivalent to

(nj − n1)T H−TC1H−1 (nj − n1) + (nj − n1)T H−TD1 = 0,

(nj − n1)T H−TC2H−1 (nj − n1) + (nj − n1)T H−TD2 = 0,
(17)



which is equivalent of the difference of the receiver directions nj − n1 lying on
two or more quadric surfaces with constant term 0. As a special case, if the
transmitter directions nj lie on two or more different quadric surfaces, then the
differences nj − n1 will fulfill (17). �

Note that the degenerate cases characterized in i) is inherent to the problem,
not the algorithm. There are fewer degrees of freedom to estimate than assumed,
and thus there is not a unique solution. If both receivers and transmitter directions
lie in the same plane, a similar algorithm for 2D based on the same factorization
steps and equations can readily be constructed.

A special case is when C is not positive definite. Then there exists no real
factorization C = HTH. There exists complex factorizations, e.g. obtained using
eigenvalue decomposition C = QTDQ = QT

√
DT√DQ = HTH, which results

in complex solutions. These cases equate exactly to the cases where the ellipsoid
method does not get an ellipsoid from solving (10), as these are the cases where
there are no exact real solutions to the given measurements.

5 Extension to overdetermined cases and noise

Both algorithms solve a minimal case, meaning that there are only a finite
positive number of solutions to (2) given arbitrary measurements in general
enough position. This can be seen from the fact that the matrix factorization
algorithm does not lose any solutions from the solution space by any particular
choice in any of the steps. Thus there one solution discounting gauge freedom.
Another way of seeing it is by counting degrees of freedom. When using m = 4
receivers and k = 9 transmitters, the number of measurements mk = 36 equals
to the number of unknowns, 4m+ 3k − 7 = 36 accounting for gauge freedom.

When having more than four receivers, more than nine transmitters and
the measurements dij are not true FFUTOA measurements, due to noise or
that the far field assumption does not hold, both methods can be extended in a
straightforward manner.

For the ellipsoid method, two modifications are made. (i) When having more
than nine receivers, the least squares solution to (11) can be calculated. (ii)
When having more than four receivers, subproblems using only four receivers at
a time are solved. With overlap of receivers used in the different subproblems, all
distances between receivers can be calculated and multidimensional scaling [1]
can be used to get the full coordinates of all receivers.

For the matrix factorization method, the three following modifications are
made. (i) In step 2, the best rank 3 approximation can still be obtained by SVD,
although D is not necessarily rank 3 . (ii) The system of equations in step 3
will in general only have the trivial solution, but is approximated to rank 8 by
SVD to still attain the expected one dimensional solution set. (iii) ‖nj‖ is only
approximately 1, so nj is normalized to be of length 1.

From here on, the extended methods will be used. Note that when only minimal
number of measurements are available, the extended methods are equivalent to
the minimal ones.
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(b) Far field test, 5 receivers, 15
transmitters.

Fig. 2. Mean relative error of reconstructed receiver positions for 100 runs, plotted
against the approximate distance from receivers to transmitters. (a) Bars are ±1
standard deviation for the different transmitter distances.

6 Experimental validation

To be able to evaluate the quality of a solution, receivers positions ri are com-
pared to ground truth receiver positions ri,gt. Receivers are rotated, mirrored and
translated so that

∑
i ‖R(ri − t)− ri,gt‖2 is minimized, where R and t is a rota-

tion/mirroring and translation respectively. Finding R and t is done by using [11].
For all experiments, relative errors are then defined as ‖r − rgt‖Fro/‖rgt‖Fro
where ‖ · ‖Fro is the Frobenius norm. All algorithms were implemented and run
on a standard desktop computer in Scilab.

6.1 Simulations

For all simulations, offsets fi and gj are drawn from i.i.d. uniform distributions
over [0, 10]. To evaluate the assumption that transmitters have a common direction
to the receivers, transmitter positions bj were uniformly distributed over a sphere
of radius d. To be able to control how much further away transmitters were from
receivers than the inter distance between receivers, four receivers were placed at
a tetrahedron around the origin with side length 1m. As signal sources are often
easily obtained in applications, 15 transmitters were used. UTOA Measurements
were constructed as δij = ‖ri − bj‖+ fi + gj . The mean relative error for 100
runs each plotted against the transmitter distance d to the origin can be seen for
different radii d in Fig. 2a for the minimal four receivers and in Fig. 2b for five
receivers. The extra receiver was uniformly distributed in the cube of which the
tetrahedron of the four first receivers were inscribed to.

Figure 2a shows that using only four receivers, both algorithms can get under
5% relative error with having transmitter approximately four times further away
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(b) 5 receivers, 15 transmitters.

Fig. 3. Measurements with additive Gaussian white noise. The standard deviation is
plotted against the mean relative error of reconstructed receiver positions for 100 runs.

than the inter distance between receivers. For the experiment in Fig. 2b, we
compare the results to the method in [5] as we now have the five receivers for
the method to be applicable. The results indicate the ellipsoid method being
slightly worse on short distances and the matrix factorization method being
generally more accurate. Mean execution time was 8.0 ms, 2.1 ms and 30 ms for
the ellipsoid method, matrix factorization method and the method in [5] each.

To test the robustness of the methods, white Gaussian noise was added to
the measurements. The same setup as for the far field experiments was used,
with transmitter distance of 107 from the receivers. In Fig. 3 relative error of
reconstructed receiver positions are plotted against the standard deviation of the
noise. The results indicate the ellipsoid method being slightly better with higher
noise level when using the minimum four receivers, and the matrix factorization
outperforming both the ellipsoid and the method in [5] using five receivers.

The numerical performance of the minimal algorithms were evaluated by gen-
erating problems where the measurement matrix D̃ are FFUTOA (2). Receivers
are drawn from i.i.d. uniform distributions in a cube of unit volume centered
around the origin. Nine transmitter directions and four receivers were simulated.
The error distribution for 1000 such experiments can be seen in Fig. 4a. Mean
execution time for the ellipsoid method and the matrix factorization method was
3.2 and 1.9 ms respectively.

6.2 Real Data

The same data as in [5] was used, where the measurements dij were obtained
from an experimental setup using eight SHURE SV100 microphones as receivers
and random distinct manually made sounds as transmitters. The microphones
were connected to a M-Audio Fast Track Ultra 8R audio interface. The 19 sound
sources were approximately 30m away from the receivers. Microphones were
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Fig. 4. (a) Numerical performance of minimal solver in 1000 simulated experiments.
(b) Setup for indoor experiment using microphones and distinct manually made sounds.

set in the corners of a cuboid of roughly 100 × 105 × 60 cm3. A picture of the
experiment setup can be seen in Fig. 4b. The microphone offsets were created
by adding uniformly i.i.d. silences between 0-1 s long to the beginning of each
sound track, effectively starting the recordings at different unknown times. The
beginning of each sound were matched by a heuristic cross correlation algorithm
to create TDOA measurements.

As we have more than five microphones, the algorithms were also compared
using the method in [5]. The mean reconstruction error on the microphone
positions were 15 cm, 5 cm and 14 cm for the ellipsoid method, matrix factorization
method and the method in [5] respectively. Most of the error are in the floor-
to-roof direction. This can be explained by the sounds all being made close to
ground level and thus the transmitter directions will be close to being in a plane,
giving poor resolution in floor-to-roof direction.

7 Conclusions

We have presented two methods for solving the previously unsolved problem
of sensor network calibration using only a minimal number of unsynchronized
TDOA measurements in a far field setting. The assumption of far field signals is
important, as the problem of trying to determine exact positions for transmitters
is ill conditioned when the far field assumption is close to true.

Simulated experiments support the feasibility of the methods, and show that
the minimal algorithms are numerically stable and fast, making them suitable in
RANSAC schemes to weed out outliers. They also handle additive Gaussian noise
well. The far field assumption gives good results as long as transmitter-receiver
distances are four times larger than inter-receiver distances.

A comparison between the two methods, running on the minimal case of four
receivers and nine transmitters, indicates the matrix factorization method being



slightly faster and having better worst case precision than the ellipsoid method.
The ellipsoid method however has a more plausible way of handling the case when
the measurements are such that no exact real solutions exist, as per Section 3.3
and 4.1. The ellipsoid method estimates the covariance of the time differences for
parameter estimation, whereas the matrix factorization finds a complex solution.

When having more than the minimum amount of four receivers and nine
transmitters, the matrix factorization is easily extended to handle more than
the minimal number of receivers and transmitters, and usually exhibit better
average case performance than both the ellipsoid method and the method in [5],
applicable when five or more receivers are available. The ellipsoid method is
easily extended to handle more than the minimal nine transmitters, but not
easily extended to handle more than the minimal four receivers. Although none
of the methods are formally optimal in any sense, they are in closed form, fast,
and can serve as initializations for further nonlinear optimization if need be.
Both methods are significantly faster than the method in [5], and the matrix
factorization method performs better in reconstructing the receiver positions.

In a real world experiment in an indoor environment, both methods perform
well and the matrix factorization method reconstructs microphone positions with
an average of 5 cm error from the previous 14 cm in [5].

Future work of interest is developing a method for calibration of UTOA
networks not using the far field assumption, thus being able to solve problems
when the far field assumption is far from true.
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