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We present two approaches for the localization of passive nodes in a com-
munication network using ambient radio or sound signals. In our settings the
communication nodes have unknown positions. They are synchronized but do
not emit signals for localization and exchange only the time points when environ-
mental signals are received. The signals occur at unknown positions and times,
but can be distinguished. Since no anchors are available, the goal is to determine
the relative positions of all communication nodes and the environmental signals.
The first approach, Iterative Cone Alignment, deals with arbitrary positions of

signals. It solves iteratively a non-linear optimization problem of time differences
of arrival (TDOA) by a physical spring-mass simulation. Given a sufficient
number of signals the approach converges towards a unique solution.
The second approach, Ellipsoid TDOA, demonstrates a closed form solution

assuming the signals originate from far distances. The TDOA characterize an
ellipse from which the distances and angles between three network nodes can be
inferred.
Both approaches are tested in numerous simulations and in a real world setting

where the relative positions of notebooks are determined utilizing only the sound
produced by a girl with a glass bottle and a toy gun.
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1 Introduction

The increasing mobility of computing devices, like smart phones, PDAs, laptops, and tablet
computers is a motivation to revisit the localization problem from a fresh perspective.

1.1 Motivation

The usual approach is to include special hardware like GPS receivers, which adds extra
monetary cost and power consumption. However, in shielded areas and for small distances
such location hardware cannot solve the problem. This is in particular the case for sensor
networks in houses or tunnels. Then, the standard approach is to use anchor points in
the communication network and calculate the positions by the time of arrival (TOA), time
difference of arrival (TDOA) or by the received signal strength indication (RSSI) of radio
signals.

Our approach starts with the following idea. Suppose we have a number of devices with
microphones in a room which are connected by a communication network, e.g. mobile
phones or laptop computers. Now, somebody walks through the room snapping fingers.
Solely based on the time when these sound signals are received, all distances and angles
betweeen network nodes are computed. Or in a different scenario consider a sensor network
installed by biologists to record bird tweeting in a forest. From the recorded tweeting it
is possible to compute the relative positions of sensors, and when and where a bird has
tweeted.

Of course an approach, that computes the positions of network nodes from random environ-
mental sound signals, can also be used to calculate positions from received radio signals from
TV satellites, closed WLANs, or signals from any other mobile devices. So, any ambient
radio signal pollution enables localization.

1.2 Related Work

Localization with known receiver or sender positions is a broad and intensive research topic
with a variety of approaches. A popular application is GSM localization of mobile phones.
Various techniques exist, including angle/direction of arrival (AOA/DOA), time of arrival
(TOA, “time of flight”) and time difference of arrival (TDOA) [1]. U-TDOA is a provider-
side GSM multilateration technique that needs at least three synchronized base stations.
Denoising techniques improve accuracy [2]. As a client side implementation needs special
hardware, it is hardly prevalent in common mobile phones. Instead, many approaches
introduce a distance function based on the received signal strength indication (RSSI). Stable
results in the range of meters can be achieved by fingerprinting using a map of base stations
[3].
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Similar is localization using the RSSI function of WiFi signals. Methods include Bayesian
inference [4], semidefinite programming for convex constraint functions [5, 6] a combination
of WiFi and ultra sound for TOA measurements like the Cricket system [7] or combinations
of methods [8]. TOA distance functions can be used [9, 10]. WiFi Beamforming uses sensor
arrays to determine signal directions [11, 12].

RSSI evaluation usually comes with difficulties for indoor localization due to the unpre-
dictability of signal propagation [13]. We focus on TDOA analysis in our approach. For
TDOA localization of sound and RF signals there is a basic scheme of four or more known
sensors locating one signal source. This is solved in closed form [14, 15] or with iterative
methods [16, 17, 18]. TDOA determination can be done by cross correlation of pairs of
signals. An optimal shift between signals is calculated, corresponding to the angle of the
signal [19, 20, 21]. However, we use signals with a characteristic peak.

Moses et al. [22] use DOA and TDOA information to solve the problem of unknown sender
and receiver positions. Though sounding similar to our problem, both problem settings
differ fundamentally. The additional DOA information enables the authors to apply some
sort of “bootstrapping”: Initial starting points can be found to solve the problem incremen-
tally. However, the DOA acquisition requires expensive equipment like directed receivers
or receiver arrays. To our knowledge our problem setting of unknown sender and receiver
positions without any further information but TDOA has never been addressed so far.

1.3 Problem setting

Given a communication network of n synchronized nodes M1, . . . ,Mn, where Mi ∈ Rp
denotes the unknown position in two- or three-dimensional Euclidean space Rp (p ∈ {2, 3}).
Now m sound (or radio) signals are produced at unknown time points tS1 , . . . , tSm and
at unknown locations S1, . . . ,Sm ∈ Rp. We assume that each signal can be received and
identified at the receiver and we assume that it travels with a fixed speed c, which is the
speed of sound or light depending on the signal type. So, each signal Sj arrives at receiver
Mi at time tMi,Sj which is the only input given in this problem setting. Since we assume
synchronized clocks we can measure this time up to an error margin which we assume to be
Gaussian distributed.

The problem is to compute all locations of receivers and signal origins, solely from the time
when an environmental signal is received at the receivers. Of course then the signal times
can be computed from this information. Although all our experimental work concentrates
on sound and thus the speed of sound, all our findings also refer to electromagnetic waves
or sound signals in other environments, e.g. water.

The mathematical constraints can be described using the signal velocity c, the time tSj of
signal creation and the time tMi,Sj when the signal is received at receiver Mi:

c(tSj − tMi,Sj ) = |Sj −Mi|2 (1)
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where
|S−M|2 =

√
(xS − xM)2 + (yS − yM)2 + (zS − zM)2

denotes the Euclidean distance in three-dimensional space.

By squaring the equations of form (1) we yield a quadratic equation system which can be
written in quadratic form. Depending on the number of signals and receivers this system is
under-defined, well-defined or even over-defined, as we will discuss later on.

It can be rewritten as an optimization problem where a polynomial function of degree four
needs to be minimized. There is only small hope for an efficient solution for such problems
in general.

We will present two solutions for this problem. First we consider the general case and present
the Iterative Cone Alignment, an iterative numeric solution based on an energy minimization
approach. In our simulations and experiments the algorithm finds a solution if the number
of received signals is large enough. Since one can assume that environmental signals are not
a scarce resource, this algorithm leads to an accurate measurement of receivers and signals
in real-world scenarios.

Then we move on to the case where the signal sources are so far from the receivers that the
time difference at two receivers depends only on the angle between the signal beam and the
line between the two receivers. We present the Ellipsoid TDOA method, an elegant closed
form solution for the two- and three-dimensional case – for three receivers in two dimensions
and four receivers in three dimensions. We extend the solution to the case of realistically
distributed large numbers of signals.

Finally, we show how our algorithms perform in a real-world experiment. Here, a girl walks
through a PC pool clanking a bottle and shooting a toy gun at some random locations,
which is the sole information our software needs to compute the relative locations of the
computers.

1.4 Solvability

Before we describe our solutions we discuss the degrees of freedom and the theoretical bounds
on how many receivers n and signal origins m are necessary to find a unique solution.

We start the discussion for the three-dimensional case. Since the locations of all receivers
and origins are unknown we face 3n+ 3m variables. Furthermore, we do not know when a
signal has been created which adds m variables. Since we have no anchor points the number
of variables reduces by three variables for translation (e.g. setting one node as origin) and
three variables for rotation (e.g. setting another node on the x-axis and a third one on the
plane defined by x- and y-axis).
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signal receivers
sources 1 2 3 4 5 6 7 8 9 10 11 12

1 0 2 4 6 8 10 12 14 16 18 20 22
2 3 4 5 6 7 8 9 10 11 12 13 14
3 6 6 6 6 6 6 6 6 6 6 6 6
4 9 8 7 6 5 4 3 2 1 0 -1 -2
5 12 10 8 6 4 2 0 -2 -4 -6 -8 -10
6 15 12 9 6 3 0 -3 -6 -9 -12 -15 -18
7 18 14 10 6 2 -2 -6 -10 -14 -18 -22 -26
8 21 16 11 6 1 -4 -9 -14 -19 -24 -29 -34
9 24 18 12 6 0 -6 -12 -18 -24 -30 -36 -42
10 27 20 13 6 -1 -8 -15 -22 -29 -36 -43 -50
11 30 22 14 6 -2 -10 -18 -26 -34 -42 -50 -58
12 33 24 15 6 -3 -12 -21 -30 -39 -48 -57 -66

signal receivers
sources 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12
2 3 3 3 3 3 3 3 3 3 3 3 3
3 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6
4 7 5 3 1 -1 -3 -5 -7 -9 -11 -13 -15
5 9 6 3 0 -3 -6 -9 -12 -15 -18 -21 -24
6 11 7 3 -1 -5 -9 -13 -17 -21 -25 -29 -33
7 13 8 3 -2 -7 -12 -17 -22 -27 -32 -37 -42
8 15 9 3 -3 -9 -15 -21 -27 -33 -39 -45 -51
9 17 10 3 -4 -11 -18 -25 -32 -39 -46 -53 -60
10 19 11 3 -5 -13 -21 -29 -37 -45 -53 -61 -69
11 21 12 3 -6 -15 -24 -33 -42 -51 -60 -69 -78
12 23 13 3 -7 -17 -27 -37 -47 -57 -67 -77 -87

Figure 1: Degrees of freedom for the three-dimensional case. Non-positive values indicate
potentially solvable problem instances.

We assume that all m signals are received at all n receivers which results in the following
equation for the degrees of freedom G3 presented by the problem size:

G3(n,m) = 3n+ 4m− nm− 6 (2)

If G3(n,m) > 0 then there is no unique solution for the problem, i.e. it is under-defined.
There is a chance of a unique solution if it equals zero. For negative values the problem is
over-defined, which might allow the compensation of inaccuracies, see Fig. 1.

For the two-dimensional case the number of location variables is reduced by n + m. Here,
two variables can be set to a constant for the symmetry induced by translation and one
variable for the rotation symmetry which leads to the following degrees of freedom, see
Fig. 2:

G2(n,m) = 2n+ 3m− nm− 3 (3)

Note that point and mirror symmetry is not covered by this discussion. Since we assume
that there is abundant supply of ambient signals we can summarize that at least five re-
ceivers might allow the solution in the three-dimensional case when at least nine signals are
available. For the two-dimensional case of the problem four receivers for at least five signals
might be sufficient.

Now we present an approximative solution, the Iterative Cone Alignment, which is based
on an iterative approach.
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signal receivers
sources 1 2 3 4 5 6 7 8 9 10 11 12

1 0 2 4 6 8 10 12 14 16 18 20 22
2 3 4 5 6 7 8 9 10 11 12 13 14
3 6 6 6 6 6 6 6 6 6 6 6 6
4 9 8 7 6 5 4 3 2 1 0 -1 -2
5 12 10 8 6 4 2 0 -2 -4 -6 -8 -10
6 15 12 9 6 3 0 -3 -6 -9 -12 -15 -18
7 18 14 10 6 2 -2 -6 -10 -14 -18 -22 -26
8 21 16 11 6 1 -4 -9 -14 -19 -24 -29 -34
9 24 18 12 6 0 -6 -12 -18 -24 -30 -36 -42
10 27 20 13 6 -1 -8 -15 -22 -29 -36 -43 -50
11 30 22 14 6 -2 -10 -18 -26 -34 -42 -50 -58
12 33 24 15 6 -3 -12 -21 -30 -39 -48 -57 -66

signal receivers
sources 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12
2 3 3 3 3 3 3 3 3 3 3 3 3
3 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6
4 7 5 3 1 -1 -3 -5 -7 -9 -11 -13 -15
5 9 6 3 0 -3 -6 -9 -12 -15 -18 -21 -24
6 11 7 3 -1 -5 -9 -13 -17 -21 -25 -29 -33
7 13 8 3 -2 -7 -12 -17 -22 -27 -32 -37 -42
8 15 9 3 -3 -9 -15 -21 -27 -33 -39 -45 -51
9 17 10 3 -4 -11 -18 -25 -32 -39 -46 -53 -60
10 19 11 3 -5 -13 -21 -29 -37 -45 -53 -61 -69
11 21 12 3 -6 -15 -24 -33 -42 -51 -60 -69 -78
12 23 13 3 -7 -17 -27 -37 -47 -57 -67 -77 -87

Figure 2: Degrees of freedom for the two-dimensional case. Non-positive values indicate
potentially solvable problem instances.

2 Iterative Cone Alignment

Consider a receiver M, a signal origin S in p ∈ {2, 3} dimensional space. From the problem
setting we know that

tM,S = tS + |S−M|2
c

(4)

This equation describes a cone in the p+1-dimensional space where time tS is added as an
extra variable, see Fig. 3. If for all receivers M1, . . . ,Mn and signal sources S1, . . . ,Sm
these equations are satisfied we receive a valid solution of the given problem. Recall that
there is no unique solution since we obtain only a relative localization.

2.1 Error function

Starting from an initial setting for all positions and time points we use an iterative approach
which greedily decreases an error function. The error function is then used to minimize the
potential energy of springs.

The difference vector (D, tD) = (S, tS)− (M, tS,M) describes (S, tS) in relation to (M, tM).
(Dij , tDij ) denotes a certain pair of (Sj , tSj ) and (Mi, tMi) (1 ≤ i ≤ n, 1 ≤ j ≤ m). We
define the error function:

Φ((D, tD)) := ctD − |D|2 (5)
= c(tS − tM,S)− |S−M|2
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Figure 3: Cone representation of equation (4). Top: Signal source S resides offside the cone
surface of receiver M and therefore it is not valid and Φ 6= 0. Bottom: Direction
vector N0 restores validity.
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If the error function gives a non-zero value, which we call an invalid location, one can change
both the position and time vector (S, tS) of the signal source and the position vector M
of the receiver by moving it in p+1-dimensional space in order to recover a valid position.
Receiver time tM,S is fixed by definition. We define:

N0 :=
(

S−M
|S−M|2

,
1
c

)
(6)

The normalized direction vector N0 describes the shortest path from S to the cone surface
of M in respect of signal velocity c.

For the case that tS > tM + |S−M|2
c and thus N0 does not intersect the cone, we choose

N0 := (~0,−1) pointing along the time axis ensuring an intersection.

By construction there is a scalar d ∈ R such that Φ((S, tS) − (M, tM,S) + dN0) = 0 which
can be computed by

d((D, tD)) = Φ((D, tD) + N0)
Φ((D, tD)) + Φ((D, tD) + N0) (7)

d is also the distance between S and the cone surface along N0. If receiver Mi missed out
a signal Sj we set d((Dij , tDij )) = 0.

Our iterative approach changes the locations and time points to minimize

Esum =
n∑
i=1

m∑
j=1

d((Dij , tDij ))2 (8)

which is proportional to the sum of the potential energy of springs. In the best case all
relations become valid which is the only way to yield a value Esum = 0.

2.2 Particle simulation

We compute the source and receiver positions by a simulation based on a physical spring-
mass system inspired by the spring relaxation method of Vivaldi [23]. It is based on particles
representing a node in the p+1-dimensional space, which have physical properties of mass
m0 and velocity obeying the Newton’s law of inertia. Velocity changes result from the influ-
ence of forces. In our setup this is achieved by springs, the tension of which is proportional
to the error function Φ, along the direction N0. In addition we introduce a quadratic damp-
ing, which is comparable to aerodynamic drag, stabilizing the simulation. The temporal
integration is realized by a simple Euler-Cromer scheme with a timestep of h = 1ms:

xt+h = xt + hvt+h

vt+h = vt + h

m0
Ft
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The simulation is initialized with all particles set to one spot in the p+1-dimensional space,
jittered by randomization to avoid singularities. The initial signal source time is set to the
minimum of all associated receiver timestamps. This is the closest position guess we can do
by now, as no positions are given.

After the start, forces are calculated. Position and velocity updates are made accordingly
to the Euler-Cromer scheme. The simulation runs until a termination condition has been
met. Then, either the overall energy function Esum falls below a fixed threshold or a certain
number of steps has been exceeded. In the latter case no solution has been found and the
approximation has failed.

2.3 Evaluation of the algorithm

Since we have no anchor points we cannot directly compare our found positions to real
world positions (“ground truth”). As no positions are known to the algorithm, the final
translation and rotation of the signal source and receiver network are not determined. For
an evaluation of the quality of the algorithm we use the singular value decomposition (SVD)
to generate a rotation R and align our found positions with the real world positions.

Let G = {g} and H = {h} be a set of points in Rp (p ∈ {2, 3}), where G is the ground
truth and H is our experimental data. We calculate the cross correlation W by summing
up the dyadic products of G and H. By subtracting the arithmetic centers µg and µh we
eliminate the translation.

W =
m+n∑
i=1

(
(gi − µg)(hi − µh)T

)
(9)

Let the SVD of W be

W = UDVT = U


σ1 0 · · · 0
0 σ2 · · · 0
...

... . . . ...
0 0 · · · σp

VT (10)

where D is the diagonal matrix of singular values σi (1 ≤ i ≤ p) of W. U and V are unitary
matrices. R = UVT creates a rotation R with an optimal mapping of H to G:

H ′ = {h′} = {R(h− µh) + µg} ≈ {g} = G (11)

The remaining localization error is retrieved by calculating the root mean square (RMS)
distance between G and H ′.
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2.4 Simulation

We have implemented this algorithm in C++. For an intuitive graphical representation we
implemented an interactive OpenGL frontend. It displays receiver and signal source items
in a three-dimensional space and allows the user to rotate and zoom in and out. For the
choice of parameters we concentrate on sound signals. All our findings also apply for radio
signals.

For any number of microphones and sound sources n,m ≤ 14 we created 100 random
scenarios. Microphones and sound sources were placed in a two-dimensional, resp. three-
dimensional space of 1000 meters edge length and timestamps at the microphones were
calculated. For given randomly distributed sound sources in space we calculated the times-
tamps at every microphone. Then, the timestamp information was given to our algorithm
and finally we evaluated the quality of the result by applying the SVD.

Remaining errors were calculated by summing all root mean square (RMS) errors between
each real and experimentally found object.

In our setup of 1000m edge length a threshold of 100m for the sum of all RMS distance errors
can be set to tell successful from unsuccessful position reconstructions. In our simulations
eventually the RMS distances for the successful case lie clearly below this threshold.

In some cases the localization algorithm failed and got stuck in a local minimum of the er-
ror function. This opposes reconstruction errors due to under-determined scenarios, where
constraints contain too little information and degrees of freedom remain. Local minima oc-
cured only in uniquely determined or over-determined scenarios. The failure rate converges
to zero with increasing number of signals, depicted in Fig. 4 for the three dimensional case
and in Fig. 5 for the two dimensional case. Comparing this observation with Table 1 and
2 shows that high failure rates correspond to small absolute degrees of freedom.

In a visual representation we saw items blocked on the wrong side of a line or a plane.
We implemented an algorithm that mirrored them on the other side by way of trial. This
successfully resolved local minima in some, but not in all cases. Experiments with different
initial positions had no improvement. In the end we could not finally work out the conditions
causing the issue which seems to be complex and requires further investigation.

The runtime of this algorithm is O(mn) and it converges after 2,000 to 9,000 iterations for
non-failing instances for n,m ≤ 14 which gives an absolute runtime of 0.01 to 0.68 seconds
on a standard PC (Athlon XP 2600+). Most interestingly, the iteration count decreases to
4,000 iterations with increasing numbers of sound sources and microphones due to over-de-
termination (large negative degree of freedom).

For the three-dimensional case at least five microphones are necessary and sufficient to
calculate the relative positions of all microphone and sound locations. For increasing number
of sound sources the approximation error (RMS distance sum) converges to zero. If the
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3D case, failing localizations
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Figure 4: Failing runs in percent for three dimensions.

2D case, failing localizations
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Figure 5: Failing runs in percent for two dimensions.
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3D case, objects needed for localization
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Figure 6: Series of 100 random runs in three dimensions for any object count combination,

filtered for successful runs. Given at least 4 sound sources, resp. 5 microphones,
RMS errors decrease.

number of sound sources is fixed to four, deploying an increasing number of microphones
lets the localization error decrease to zero (Fig. 6).

The two-dimensional case showed similar results, with convergence for four microphones,
resp. three sound sources (Fig. 7). These observations correspond to our considerations
from Section 1.4 where we predicted the reconstructability of all unknownpositions for such
numbers of sound sources and microphones.

3 Ellipsoid TDOA method for distant sources

Now we consider the case where the signal origins are very far from the receivers. Under this
assumption we develop an approximative approach to reveal distances and angles between
a fixed number of receivers, i.e. three receivers for the plane and four receivers for the
three-dimensional space. In this special case a smaller number of sound signals is sufficient
to compute the relative locations than in the general case. Furthermore, the solution of the
problem can be expressed in a closed form.

Once the receiver triangle ABC, resp. tetrahedron ABCD for three dimensions, has been
reconstructed we determine the direction of the signal origins. We will now present the
two-dimensional case.
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2D case, objects needed for localization
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Figure 7: Series of 100 random runs in two dimensions for any object count combination,

filtered for successful runs. Given at least 3 sound sources, resp. 4 microphones,
RMS errors decrease.
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Figure 8: Three receivers A,B,C and a signal on the horizon with direction ~s.
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3.1 TDOA ellipse

For three receivers A,B,C in the plane and a distant source S the discrete signal is received
by the receivers at time points tA, tB and tC , see Fig. 8. Define

∆t1 = tB − tA (12)
∆t2 = tC − tA (13)

where ∆t1 and ∆t2 are the time differences of arrival (TDOA) between A and B, resp. A
and C. For α = ∠CAB and using the assumption of infinite distant signal origins we state:

x := ∆t1 = d1 cos
(
γ − α

2

)
(14)

y := ∆t2 = d2 cos
(
γ + α

2

)
(15)

where γ denotes the direction of ~s with respect to the bisection of α. Combining the
equations we derive the following ellipse equation:

x2 1
d2

1
+ y2 1

d2
2

+ xy
−2 cosα
d1d2

= 1
2 −

1
2 cos 2α︸ ︷︷ ︸

sin2 α

(16)

Normalization by division by sin2 α (under the assumption α 6∈ {0, π}, i.e. A,B,C are
collinear) leads to the ellipse parameters

a = 1
d2

1 sin2 α
(17)

b = 1
d2

2 sin2 α
(18)

c = −2 cosα
d1d2 sin2 α

(19)

for ax2 + by2 + cxy = 1.

For the localization we measure at least three pairs of time differences (∆t1,∆t2) of different
distant signal origins. From these points we compute the ellipse equation with parameters
a, b, c, see Fig. 9. Then, we use the above equations to compute d1, d2, α which can be done
by the following equations:

d1 = 2
√

b

4ab− c2 (20)

d2 = 2
√

a

4ab− c2 (21)

α = arccos −c
2
√
ab

(22)
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Figure 9: Multiple distant signal sources with time difference pairs (∆t1,∆t2) in two dimen-
sions form an ellipse.

3.2 Linear regression

Three ambient signals are sufficient to find the ellipse for two dimensions. Since ambient
radio or sound signals are no scarce resource the additional signals can be used to overcome
the inaccuracies caused by imprecise time measurements and other error sources. Given a
sufficient number of m signal sources which form a set of (x, y)-tuples we obtain a system
of linear equations which is:

ax2
i + by2

i + cxiyi = 1 (23)

where 1 ≤ i ≤ m. We use linear regression to reconstruct the parameters of this ellipse. In
matrix notation this is: x

2
1 y2

1 x1y1
...

...
...

x2
m y2

m xmym


︸ ︷︷ ︸

Q

ab
c


︸ ︷︷ ︸

x

= ~1 (24)

If m > 3 we use the least squares method and solve:(
QTQ

)
x = QT~1 (25)

16



The ellipse parameters x are derived as follows:

x =

 Q−1 ·~1, if m = 3(
QTQ

)−1
·
(
QT~1

)
, else

(26)

Then, we use the equations of the previous subsection to compute the geometry of the
triangle ABC. Since the assumption of infinitely far senders is not realistic this approach
results in an approximative solution of the problem.

However, this is the best one can offer if only three signal sources are available, since the
problem for three general signal positions is under-defined as we pointed out in the last
section. Later on, we present simulations which indicate that the approximation behaves
well if the signals are a small constant factor farer than the longest edge of the receiver
triangle.

3.3 Three dimensional case

The three dimensional case is similar. For a source S and receivers A,B,C let x, y, z be
the time differences of B, C and D with respect to A. The source angles are γB = ∠BAS ,
γC = ∠CAS , γD = ∠DAS which lead to the equations:

x = dB cos γB
y = dC cos γC
z = dD cos γD

For angles φC , φD and λD defined as shown in Fig. 10 one can derive the following ellipsoid
equation: (

x

dB

)2
+
(
− cosφC
dB sinφC

x+ y

dC sinφC

)2
+(

−cosφD sinφC + cosφC sinφD cosλD
dB sinφC sinφD sinλD

x + cosλD
dC sinφC sinλD

y + z

dD sinφD sinλD

)2
= 1

(ax)2 + (bx+ cy)2 + (dx+ ey + fz)2 = 1
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Figure 10: Given 4 microphones A, B, C and D and a distant sound source S in three
dimensions. Distances are dA, dB, dC and dD, angles are φC , φD and λD, which
uniquely determine a tetrahedron.
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where

a = 1
dB

b = − cosφC
dB sinφC

c = 1
dC sinφC

d = − cosφD
dB sinφD sinλD

− cosφC cosλD
dB sinφC sinλD

e = cosλD
dC sinφC sinλD

f = 1
dD sinφD sinλD

Given a, b, c, d, e, f one can compute the angles and distances by:

dB = 1
a

tanλD = c

e

tanφC = −a
b

dC = 1
c sinφC

1
tanφD

= −d dB sinλD −
cosλD
tanφC

dD = 1
f sinφD sinλD

The ellipsoid parameters can be computed by regression analogous as in the two-dimensional
case. For three dimensions a minimum of m = 6 signal sources is needed to be uniquely
solved. If m > 6 the least squares method is used as described above.

Remark: This solution leads to a duplicate answer for φD. It can be avoided by calculating
φC and afterwards swap the y- and z-axis. Now recalculate the parameters a – f and use
the formula for φC again, which now equals (unique) φD.

3.4 Simulation

We have tested the accuracy of this approximation algorithm with a computer algebra
system. To simulate measurement errors a probabilistic Gaussian error model has been
added to each time stamp.
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Figure 11: Increasing sound source distance above 4m results in distance approximation
errors below 0.1m for two dimensions.

A simulation run consists of a number of sound sources arbitrarily arranged on a circle
for two dimensions and a sphere for three dimensions with a fixed radius around A. The
three microphones in the two-dimensional case are positioned on a circle with fixed radius
of 2.3m forming a triangle of about 4m of edge length. In the three-dimensional case the
four microphones are placed on a sphere hull of the same radius forming a tetrahedron.

For each radius of 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 7.0, 10, 13, 16 and 20
meters a series of 1,000 tests with 8 sound sources has been run. The distance results d1 and
d2 and the angle α between A and B are subtracted from the real values, which are read
from the triangle properties. For the three-dimensional case these are distances dB, dC and
dD and angles φC , φD and λD. Failing runs are produced if the approximated quadratic
equation does not describe an ellipse or ellipsoid. For successful runs we calculated the
average and the standard deviation of the distance and angle differences.

The results show a systematic under-estimation of the distances between microphones for
short ranges which improves after the perimeter of the microphones has been left at about
5m. The angle errors show high variance within the perimeter of the microphones which
stabilizes quickly upon leaving it, at a range of 5m. Failing localizations occur especially
if the sound source radius equals the microphone radius with up to 4%, but the rate drops
quickly to below 1%, see Fig. 11 – 13 for two dimensions and Fig. 14 – 16 for three
dimensions.
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Figure 12: Increasing sound source distance above 4m results in angle approximation errors
below 2° for two dimensions.
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Figure 13: After reaching a maximum at a sound source distance of 2.5m the failure rate
drops below 1% for greater distances.
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Figure 14: Increasing sound source distance above 4m results in distance approximation
errors below 0.2m for three dimensions.
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Figure 15: Increasing sound source distance above 4m results in angle approximation errors
below 2° for three dimensions.
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Figure 16: After reaching a maximum of 25% at a sound source distance of 2.5m the failure
rate drops below 5% for greater distances.

A stress test was run to observe the behavior of the approximation in case of runtime
variances (Fig. 17 – 19). Distant sound sources were assumed (radius of 1,000m) and the
gaussian runtime error was increased to a standard deviation of 0.2, 0.4, 0.7, 1.0, 1.3, 1.6
and 2.0ms.

Results show a slight over-estimation of the microphone distances and a moderate increase
in angular variance. Failures increase to about 5%. However, in that narrow setup of 4m
edge length an error of 2ms equals about 70 cm spatial error. The time difference measures
in this magnitude drawn as x/y-plot are hardly recognizable as an ellipse any more (Fig.
20). In our real world experiments we observed runtime errors of about 0.2ms of standard
deviation, which is way below the errors we induced here.

3.5 Summary

Our considerations about the degrees of freedom pointed out that position reconstruction
without any given anchors cannot be done with less than four receivers in two dimensions
and with less than five receivers in three dimensions. However, the approximation scheme
enables us to state some propositions about the receiver positions and the direction of the
signal sources even with three, resp. four receivers.
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Figure 17: Increasing TDOA error leads to higher variance in distance approximation and
a systematic over-estimation of distances for two dimensions. In reality values of
about 0.2ms were observed.
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Figure 18: Increasing TDOA error leads to higher variance in angle approximation for two
dimensions.
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Figure 19: Increasing TDOA error leads to an increased failure rate for two dimensions.
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Figure 20: Eight signals with Gaussian error of σ = 2ms received in two-dimensional space.
The elliptical form is hardly recognizable due to this high error.

The technique directly benefits from an increased number of signal events. These are cheaply
available in many environments. Then our technique becomes very robust, even for noisy
data.

Simulation and real world tests suggest that our assumption of infinitely remote signal
sources is not far-fetched. The parallax decreases quickly, as soon as we are outside the
receiver perimeter. It allows to use the approximation even for close-ranged scenarios.

The approximation scheme fails if receiver positions collapse on a line or a plane. In this
case, the time differences form a line of which no ellipse can be extracted. However, this
singular case can be detected and treated particularly.

In some cases of noisy data we found a slight, systematic over-estimation of receiver distances
and of angles. For the stress test runs this resulted in higher variance. Visual analysis of
the time differences showed that the resulting ellipse does not fit the corpus of the noisy
data. This seems to be a result of deficient ellipse regression.

4 Real world experiments

We have tested this theoretical approach in several real world experiments. For this we use a
network with laptops as network nodes. Our software establishes a TCP/IP-communication
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via local area network (LAN) between several laptops and assures precise time synchoni-
sation. With the built-in laptop microphones we record sound signals. The audio track is
filtered for sharp sound events, like clapping or finger snapping and their points in time are
determined. As a peculiar mark for a sound event we use the moment when the signal rises
above a environment noise dependant threshold for the first time.

Threshold comparisons showed to be the robustest approach with only little drawbacks in
precision. Maximum searches, either directly or derivative (edge detection) showed to be
slightly more precise but prove to be ambiguous with devastating results in cases when hosts
chose different maxima.

In a client server model these signals are collected at the server which computes the relative
locations using the algorithms described before. Based on priority IDs this server is elected
in the beginning and is re-elected every time a node enters or leaves the network.

4.1 Time synchronisation

Common TDOA localization features precise synchronisation among receivers. While un-
synchronized localization is generally possible, time synchronization reduces the number
of required sound events. Using the assigned master host as a time reference, all clients
synchronize to its clock. This is done by a series of pinging the master which answers with
its current time. This timestamp is corrected by 1/2 RTT (round trip time), assuming the
network packet took the same runtime in both directions. The obtained timestamps are
filtered for high RTT (outliers), which result from network jitter.

Our experiments showed that clock drift correction is essential even with the utilized high
precision event timer (HPET). Although running with accurately constant speed, drift rates
between HPET clocks of 0.03% were observed, which is very high. We obtain both time
offset and clock drift between client and master by linear regression of the timestamp set.

4.2 Experiments

Our real world tests took place in a large lecture hall. We used a scenario of 6 laptops
positioned in an ellipse like formation of dimensions of 17m × 13m. They all were connected
over an ethernet based LAN with one switch, so the timestamping software running on each
laptop could communicate with each other and provide precise time synchronization among
all devices. With their built-in microphones they were to record any incoming sound event
and assign precise timestamps to prominent signals using audio processing.

A little girl kindly agreed to act as a noisemaker utilizing a toy gun and a metal spoon on
a glass bottle. She was free to choose positions making noise, but was advised not to make
the noise signals from identical locations.
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Figure 21: Girl with toy gun and two of the five notebook computers to be located from 12
shots at unknown positions.

The positions of the microphones of the laptops were charted up to a precision of 2 cm.
The positions of the sound signals were marked with plastic caps on the floor, where we
had drawn a grid to facilitate position mapping. Since the girl was free to move we could
chart the girl’s sound signals only to a precision of 10 cm. We performed several tests with
variations of noise types and sound event numbers. The sound events recorded during the
tests were assigned a timestamp. The Cone Alignment algorithm got these timestamps as
the only input and computed the relative locations of microphones and sound signals.

4.2.1 Position reconstruction

We start with the toy gun scenario, see Fig. 21. Here only five computers were used. We
obtained 12 sound signals at 11 positions where only 11 sound signals have been toy gun
shots. One was accidentally produced by the placement of a plastic cap.

All real position marks were plotted with the obtained positions, see Fig. 22. The mean
distance error of all microphones and sound sources after SVD alignment is 0.270m with a
standard deviation of 0.165m – less than a laptop width.

In a subsequent test, we were checking for systematic errors by producing many signals at
one position. Series of 10 signals of a metal spoon on a glass bottle were made at seven
positions and marked on the floor. Again, we removed timestamps which were not recorded
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Figure 22: Five notebook computers located by receiving 12 sound signals produced by a
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Figure 23: Timestamps of the toy gun experiment relative to network node C5.
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Figure 25: Glass bottle experiment, timestamps of 5 laptops relative to laptop C5. C7 shows
a few obvious outliers.
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Figure 26: Distance errors of d1 and d2 for the Ellipsoid method experiment.

at all receivers. Timestamps for one position were averaged and fed into the localization
software. We received a mean distance between microphones and sound sources of 0.223m
and a standard deviation of 0.097m.

On analyzing the recorded timestamp set, we found some extreme outliers. After manually
removing them this improved the mean error to 0.098m with a standard deviation of 0.052m
– which is the precision we used to position the marker caps. We are planning to automatize
this filtering for future versions.

In our real world experiments we did not encounter the local minima issue as we had strictly
overdetermined scenarios.

4.2.2 Ellipsoid TDOA method

One experiment aimed at testing the Ellipsoid TDOA method. We positioned three laptops
A, B and C in a corner of the lecture room, residing on a circle with radius 2.3m, as in
the simulations. The distances between them were dAB = 4.30m, dAC = 4.14m and dBC =
3.47m, which results in ∠CAB = 48.6°. Now we covered the lecture hall generating sound
signals with fixed distances to the circle center, which were 0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0,
7.0, 8.0, 9.0, 11, 13 and 16m.

31



0 5 10 15 20
-60

-40

-20

0

20

40

60

2D, 8 sources, varying radius

source distance (meters)

m
ic

ro
ph

on
e 

al
ph

a 
er

ro
r (

de
gr

ee
)

 

Figure 27: Angle error of α for the Ellipsoid method experiment.
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Figure 28: Time differences as a x/y-plot for the approximation experiment for two dimen-
sions. Sound signals from a distance of 13m arrive from only one direction.
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The obtained data was grouped by center distances and timestamps were filtered for outliers.
Those with differences of more than 20ms, which cannot occur in that small triangle, were
removed.

Evaluation showed a good convergence of the microphone distance approximations d1 and
d2 at a circle radius of 4m and above (Fig. 26). Errors fall below 0.5m. Angle α resides at
about 58°, which is an over-estimation of 10° (Fig. 28).

With increasing sound signal distance results degrade, which we attribute to the narrowing
sector of sound origins that come from only one direction, thus making it harder to describe
an ellipse, see Fig. 28. This seems to be a drawback of the technique. Obviously it needs
signals from different angles to reconstruct the ellipse.

5 Conclusions

To our knowledge we have considered for the first time the problem of relative localization
of nodes in a computer network solely based on ambient signals. There is absolutely no
knowledge available about the received signals except that they are received by all nodes
of the network and they can be distinguished from each other. For the network no anchor
nodes are given. It uses the fact that the network nodes are synchronized and that the
ambient signals originate from punctual origins. Furthermore, we assume that they travel
with a constant speed on a direct line. To our knowledge this problem has never been
addressed before.

For this novel problem we present two solutions. The first, Iterative Cone Alignment, solves
the general case if the number of signals or the number of receivers is large enough. It is
based on a physical spring-mass particle simulation to find an approximate solution of a
series of equations of polynomial order four. Simulations show that there is a chance of
running into local minima but this probability decreases when more ambient signals are
collected.

The second, the Ellipsoid TDOAmethod, presents a closed form solution if the signals are far
away. Then, a smaller number of receivers and signals suffices to find appropriate positions.
From the simulations we know that the approximation error behaves very benign.

For a real-world experiment we have implemented our algorithms and designed a networking
protocol. Then, a small girl produced some sound signals from positions of her choice using
a toy gun or a glass bottle. With the built-in microphones the notebooks in this room were
able to compute their relative distances within an error less than the size of the notebook
computers.

All of our findings are based on the existence of a communication network of at least five
nodes which can be reduced to four nodes when the ambient signals are from a distant, or
three nodes if the nodes and the far-distant signals are in the plane.
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It is a well-known technique that antenna arrays can compute the direction of signals using
the phase differences at the antennas. However, in our settings we use an antenna array
where the relative positions are not known in the beginning. One might claim that we have
generalized the localization problem known from antenna arrays.

Since we addressed the approach of the relative localization from ambient signals for the first
time there is a lot of potential for improvements and applications. The results presented here
show that using the ubiquitous resources of ambient signals gives us an easy and accurate
way to locate network nodes.

5.1 Applications

We will shortly point out a small number of applications of this novel approach.

First of all the sound localization method is the method of choice to compute the location
of computers in a room. The computers do not need to emit sound signals and the noises
produced by users are sufficient to compute locations. Of course, also the position of users
can be detected. Since most modern PCs have built-in microphones and are connected to
a LAN this method can be applied.

Another straight-forward application is its use in sensor networks. Microphones are very
cheap sensors and localization of sensor nodes is a time consuming task. Using our scheme
it is sufficient to produce sharp sound signals at the beginning or the end of a field test to
determine the locations of the sensors. The combination of the results can be done on-line
by transferring the timestamps or off-line after recollection of the sensor nodes.

Future applications involve the use of radio signals instead of sound signals. As a precondi-
tion special hardware is needed to determine the exact time points of radio signals because
of the much larger speed of light. Given such hardware it is possible to compute the relative
positions of network nodes like notebook computers, mobile phones, tablet computers or
PDAs by using ambient radio signals coming from WLAN base stations, radio or TV broad-
cast, TV satellites or lightnings. Of course such a localization method must be combined
with anchors which give absolute locations. Such anchors could be the positions of some
senders (e.g. encrypted WLAN stations) or receivers (e.g. special infrastructure devised for
such a system).

We want to point out that our method does not use the information when or where a
signal is produced. The only information needed is when it is received at a sender and
that this signal cannot be mixed up with other signals. Therefore, in our approach the
participants of the location system do not need to understand the signals. For example
an encrypted GPS signal from a satellite of unknown positions may also be a useful input
for our algorithm, likewise a TV satellite or the mobile phone of a passer-by. This clearly
separates our approach from the prevalent approach which uses the information of time of
flight, i.e. time of arrival (TOA).
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5.2 Future work

It is very obvious that both approximation methods can be combined. In future work we
will use the Ellipsoid TDOA method to construct a triangulation of the network which
might decrease the chance that the Iterative Cone Alignment runs into a local minimum.
Besides, other methods to recover from such local minima will be considered. In another
combination the Ellipsoid TDOA method might serve as a filter for the timestamps used in
the Cone Alignment since the Ellipsoid scheme is more robust against outliers.

We have also seen some room for improvement in the approximation of the TDOA ellipse.
While our regression minimizes the error “in some least squares sense” [24], there are more
sophisticated techniques available like geometric fit proposed by Gander et al. [24].

Further research will involve the use of non-discrete continuous signals, e.g. voices, traffic
noise or analogous radio signals. By testing for best overlaps of such signals it should be
possible to compute a time difference analogously to sharp signals. This would dramatically
increase the information basis of the algorithms. Another interesting research topic is to
consider the mobility of continuous signal sources and receivers.

In the future we will implement this sound based approach on sensor networks and mobile
phones. Furthermore, we will design and test special hardware devices which will facilitate
relative localization from ambient signals.
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6 Appendix

6.1 Reformulation as Optimization Problem with Polynomials of Degree 4

Given ti,j = tMi,Sj we have the constraints

c2(ti − ti,j)2 = (xi − x′j)2 + (yi − y′j)2 + (zi − z′j)2

for unknown variables ti, xi, yi, zi, x′j , y′j , z′j for i ∈ {1, . . . n} and j ∈ {1, . . . ,m}. We
consider the case where the system is over-restraint. Then, finding a good solution is to
minimize the polynomial of degree 4∑

i,j

(
c2(ti − ti,j)2 − (xi − x′j)2 + (yi − y′j)2 + (zi − z′j)2

)2
.

Since even the quadratic optimization problem where the function f(x) = 1
2x

TQx + cT

should be minimized is known to be NP-hard for general Q there is even less hope for
solving optimization problems of degree 4.

6.2 Newton approximation

A standard technique of solving a system of differentiable nonlinear equations is Newton’s
method. A well-known approach retrieves one signal source with four given receivers. For
every receiver i = 1..4 the equation is stated:

fi(x, y, z, t) = c(t− ti)−
√

(x− xi)2 + . . .+ (z − zi)2 (27)

At a starting position (x0, y0, z0, t0) a Taylor approximation is used and solved for:

~b = A~x


−f1(x0, y0, z0, t0)
−f2(x0, y0, z0, t0)
−f3(x0, y0, z0, t0)
−f4(x0, y0, z0, t0)

 =


df1
dx

df1
dy

df1
dz

df1
dt

df2
dx

df2
dy

df2
dz

df2
dt

df3
dx

df3
dy

df3
dz

df3
dt

df4
dx

df4
dy

df4
dz

df4
dt



x
y
z
t
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for the update vector ~x by inverting the Jacobian matrix A that contains the derivations
for 4 equations and dimensions x, y, z and t:

dfn
dx = x− xn√

(x− xn)2 + (y − yn)2 + (z − zn)2

dfn
dy = y − yn√

(x− xn)2 + (y − yn)2 + (z − zn)2

dfn
dz = z − zn√

(x− xn)2 + (y − yn)2 + (z − zn)2

dfn
dt = c

~x = A−1~b (28)

We extend this approach for n receivers and m signal sources and derive for mn equations
and 3n+ 4m dimensions:

A =



df11
dxS1

· · · df11
dtSm

df11
dxM1

· · · df11
dzMn

df12
dxS1

· · · df12
dtSm

df12
dxM1

· · · df12
dzMn

... . . . ...
... . . . ...

dfnm

dxS1
· · · dfnm

dtSm

dfnm

dxM1
· · · dfnm

dzMn

 (29)

Update vector ~x contains all (3n+ 4m) unknown variables, function vector ~b consists of mn
functions:

~x = (xS1 , . . . , tSm , xM1 , . . . , zMn)T

~b =



c(tM1,S1 − tS1) − |M1 − S1|
...

...
c(tM1,Sm − tSm) − |M1 − Sm|
c(tM2,S1 − tS1) − |M2 − S1|

...
...

c(tMn,Sm − tSm) − |Mn − Sm|


The resulting equation system can be overdetermined for a sufficient number of sources and
microphones, so we use the least squares method:

AT~b = ATA~x (30)

Instead of computing the pseudo-inverse of ATA we solve for ~x directly using LU decompo-
sition, which shows better numerical stability.
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