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Zusammenfassung (deutsch)

Die zunehmende Verbreitung mobiler Technologie im Alltag hat zu einer wachsenden
Nachfrage nach Lokalisierungsdiensten bei Handheld-Anwendungen und nach Tech-
nologien zur Positionsbestimmung autonomer Systeme geführt. In jüngster Zeit ist
eine Verschiebung des Interesses in Richtung Lokalisierung innerhalb von Gebäuden
zu beobachten. Desweiteren schafft die zunehmende Verbreitung autonomer intelligen-
ter Systeme in Bereichen, die lange Zeit eine Domäne manueller Arbeitsabläufe waren,
Nachfrage nach präzisen Ortsinformationen auch im Innenbereich. Globale Naviga-
tionssatellitensysteme wie zum Beispiel GPS sind in diesen Szenarien zumeist nicht
verfügbar. Alternativen wie WLAN-Lokalisierung konnten sich bisher aufgrund man-
gelnder Präzision nicht durchsetzen, und optische Systeme auf Basis von Laserscannern
oder Kamerasystemen sind präzise, aber auch sehr teuer, und umständlich einzurichten.
Dagegen ist die Hardware für Navigation mittels Schall und Ultraschall kostengünstig,
und kann präzise Ortsinformation im Bereich von Zentimetern bieten.
Lokalisierung mittels Time Differences of Arrival (TDoA) beruht auf der Ausbrei-

tungszeit solch eines Signals. Bei herkömmlicher hyperbolischer TDoA-Lokalisierung
sind die Referenzpositionen im Voraus bekannt, also entweder Sender oder Empfänger,
und die Position eines Ziels ist zu bestimmen. Manuelle Vermessung der Referenzen
erreicht man durch ein Maßband, Laser-Distanzmessung, mittels geodätischer Metho-
den oder durch externe Infrastruktur, beispielsweise GPS. In einigen Fällen ist ein
Ortungssystem wünschenswert, das unabhängig von manueller Installation und exter-
nen Systemen ist. Gründe hierfür sind die eingeschränkte Flexibilität eines externen
Systems, und erhöhte Kosten und Energieverbrauch durch eine externe Lösung.
In der kalibrierungsfreien TDoA-Lokalisierung werden Referenzpositionen direkt

während des Lokalisierungsprozesses berechnet, wodurch die quälende Notwendigkeit
wegfällt, die Positionen der Referenzen im Voraus zu kennen. In dieser Arbeit stellen
wir mehrere neue Ansätze zur kalibrierungsfreien TDoA-Lokalisierung vor. Wir be-
trachten das Problem aus mehrerlei Gesichtspunkten, wofür wir Algorithmen in vier
Bereichen entwickelt haben – die Fernfeldannahme, lokale Optimierung, Branch-and-
Bound-Algorithmen und probabilistische Zustandsschätzung.
Die Annahme, dass Signale von weit entfernten Orten stammen, die sogenannte

Fernfeldannahme, vereinfacht das Gleichungssystem und ermöglicht schnelle und sta-
bile Algorithmen in geschlossener Form. Wir stellen die Ellipsoid-TDoA-Methode vor,
die darauf beruht, dass TDoA-Messungen von drei Empfängern in der Ebene eine
Ellipse bilden. Die Parameter der Ellipsengleichung lassen sich fehlertolerant durch
Regression bestimmen, woraus sich Abstände und Winkel zwischen den Empfängern
ableiten lassen. Die Ellipsoid-TDoA-Methode ist der erste Algorithmus, der das mi-
nimale Problem in der TDoA-Fernfeldannahme ohne Erfordernis von Synchronisation
zwischen Empfängern löst. Wir demonstrieren die Robustheit in Simulation und Ex-
perimenten und zeigen, dass die Ellipsenmethode auch dann noch stabil ist, wenn die
Fernfeldannahme teilweise verletzt wird.
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Approximative Algorithmen unter der Fernfeldannahme sind in der Allgemeingül-
tigkeit begrenzt, vor allem dann, wenn die Zahl der Messungen gering ist. Wir betrach-
ten den Bereich der lokalen nichtlinearen Optimierung als Herangehensweise an den
allgemeinen Fall der TDoA-Lokalisierung, wobei wir den Fokus auf die Fehlerfälle set-
zen. Aufgrund der hohen Dimensionalität der kalibrierungsfreien TDoA-Lokalisierung
tendieren iterative Optimierungsalgorithmen dazu, das globale Optimum der Fehler-
funktion nicht zu finden, welches die einzige richtige Lösung darstellt. Wir stellen den
Cone-Alignment-Algorithmus vor, einen iterativen Algorithmus auf Basis einer Masse-
Feder-Simulation, in der Sender- und Empfängerpositionen durch physikalische Parti-
kel repräsentiert werden. Eine TDoA-Fehlerfunktion wird durch physikalische Federn
zwischen den Partikeln modelliert. Mittels Relaxierung der Federn wird die Fehlerfunk-
tion minimiert, wobei die Partikel an Schwung gewinnen und so lokale Minima überwin-
den. In umfangreichen Simulationen analysieren wir den Algorithmus und vergleichen
ihn mit den Standardalgorithmen Gradientenabstieg, dem Gauss-Newton-Verfahren
und dem Levenberg-Marquardt-Algorithmus. Wir zeigen, dass der Cone-Alignment-
Algorithmus die richtige Lösung häufiger findet als die Standardalgorithmen.
Um das Problem der Vollständigkeit in der Optimierung zu lösen, stellen wir einen

Branch-and-Bound-Algorithmus in Polynomialzeit vor, der beweisbar alle Lösungen für
kalibrierungsfreie TDoA-Probleme bis zu einer Fehlerschranke ε approximiert. Der Al-
gorithmus basiert auf der Unterteilung eines fünfdimensionalen Suchraumes, mit dem
der Minimalfall von vier Empfängern in der Ebene dargestellt wird, in Teilräume, und
Prüfung jedes einzelnen Teilraums darauf, ob er eine mögliche Erklärung der TDoA-
Messungen mit Unsicherheit ε darstellt. In der praktischen Umsetzung zeigen wir, dass
der Algorithmus asymptotisch schneller als die Aufzählung aller Zellen der Größe ε ist.
Der Branch-and-Bound-Algorithmus ist unseres Wissens die erste theoretische Lösung
des allgemeinen Minimalfalls der TDoA-Selbstlokalisierung.
Wir präsentieren außerdem das kalibrierungsfreie Ultraschall-Ortungssystem, das

im Rahmen dieser Dissertation entwickelt wurde. In dem System emittiert ein mobi-
ler Ultraschallsender kurze diskrete Impulse, die von mehreren Ultraschallempfängern
empfangen werden, wodurch der Sender lokalisiert wird. Die Lokalisierung im System
ist kalibrierungsfrei, wofür wir einen Algorithmus zur probabilistischen Zustandsschät-
zung entwickelt haben. Dieser basiert auf einem Partikelfilter, der sowohl den mobilen
Sender, als auch die Positionen der Empfänger schätzt. Der Algorithmus verwendet
ein probabilistisches Sensormodell für TDoA-Daten, das explizit die Messunsicherheit
berücksichtigt, wodurch er robust gegen Mess-Ausreißer wird, welche eine typische Ge-
fahr in der TDoA-Lokalisierung darstellen. Wir haben die Robustheit des Ultraschall-
Ortungssystems in umfangreichen Experimenten überprüft, wo wir zeigen, dass der
probabilistische Ansatz genaue Positionsschätzungen für den Sender und die Empfän-
ger selbst bei Mess-Ausreißern gewährleistet, wobei das System mittlere Positionsfehler
von unter 5 Zentimetern erreicht.
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Abstract

The continuous rise of mobile technology in everyday life has led to an increasing de-
mand for location-based services for handheld applications and autonomous systems.
In recent time, a shift of interest towards indoor localization can be observed where
global navigation satellite systems, such as the Global Positioning System, are mostly
not available. The hardware for positioning and navigation based on sound or ultra-
sound is affordable and precise in the range of centimeters. Localization based on the
time differences of arrival (TDoA) relies on the propagation time of such a signal. In
conventional hyperbolic TDoA localization the reference positions, i.e. the positions of
either receivers or senders of a signal, are known a priori, and the position of a target
is subject to locate.
In calibration-free TDoA localization, reference positions are calculated during the

process of locating the target – or just the references are calculated from unknown
signals, eliminating the agonizing need to determine the positions of references by hand.
In this thesis, we propose several novel approaches to the domain of calibration-free
TDoA localization. Addressing the problem from several points of view, we propose
algorithms in four fields – the far-field assumption, local optimization, branch-and-
bound algorithms, and probabilistic state estimation.
The assumption that signals originate from remote locations, the so-called far-field

assumption, simplifies the equation system and allows for fast and robust closed-form
algorithms. We propose the Ellipsoid TDoA method, which relies on the fact that
TDoA measurements from three receivers in the plane form an ellipse. This ellipse is
robustly determined by regression, and the distances and angles between the receivers
are calculated from the parameters of the ellipse. The Ellipsoid TDoA method is the
first algorithm that solves the minimum problem of the TDoA far-field assumption,
requiring no synchronization between receivers. We demonstrate the robustness of the
algorithm in simulation and in experiments, where we show that the Ellipsoid method
is still reliable when the far-field assumption is violated to some extent.
Far-field algorithms are limited in generality, especially when measurements are rare.

We consider the field of non-linear local optimization where we set focus to the failure
cases. Due to the high dimensionality of the calibration-free TDoA problem, iterative
optimization tends to not find the global optimum, which is the only acceptable solu-
tion. We propose the Cone Alignment algorithm, an iterative mass-spring simulation
where signal and receiver positions are represented by physical particles which gather
momentum to overcome local minima. In numerical simulations we compare the algo-
rithm to standard optimization approaches, where we demonstrate the superiority of
Cone Alignment in finding the solution.
To address this intrinsic problem of local optimization, also denoted as the problem

of completeness, we propose a polynomial time branch-and-bound algorithm that is a
proof to enumerate all solutions of calibration-free TDoA up to an error bound ε. The
algorithm is based on subdivision of a five-dimensional search space into subspaces, by
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which the minimum problem of four receivers in the plane is represented, and test of
each subspace for being a possible explanation of the observed TDoA measurements,
given uncertainty ε. In practical implementation we demonstrate that the algorithm
is asymptotically faster than enumerating all cells of size ε, which is the brute-force
approach. The branch-and-bound algorithm is to our knowledge the first theoretical
solution to the general minimum case of calibration-free TDoA.
Furthermore, we present the calibration-free ultrasound localization system, where a

mobile ultrasound sender is located by emitting short pulses that are received by several
ultrasound receivers. We have created a probabilistic state estimation algorithm based
on a particle filter that estimates both the mobile sender and the positions of receivers.
The algorithm is robust against measurement outliers, which is a common pitfall in
TDoA localization. We have verified the robustness of the ultrasound localization
system in extensive experiments, where we demonstrate that our approach provides
accurate position estimates with errors below 5 cm even in case of measurement outliers
of large magnitude.
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1 Introduction

The continuous rise and ubiquitous availability of mobile technology in everyday life
has led to an increasing demand for location-based services for handheld applications
and location-awareness of autonomous systems. Modern mobile applications amalga-
mate database information, locality information, and user feedback, making end-user
handheld devices a context-sensitive multi-purpose assistant. Location information for
these applications is usually generated by global navigation satellite systems, in par-
ticular the Global Positioning System (GPS). Together with fingerprinting techniques
that rely on a database of known Wi-Fi access points, location precision in the range
of 10meters is achieved, even in urban areas.
In recent time, a shift of interest towards indoor localization can be observed. In-

creasing automatization with autonomous intelligent systems in fields, that had been
the domain of manual operation for a long time, have created a demand for precise
locality information in indoor areas. GPS is mostly not available in these scenarios.
Alternatives such as Wi-Fi ranging could not prevail to date, probably due to the low
precision, which is not adequate for many applications. Optical systems based on laser
scanners or on camera systems are very precise, but also very expensive. In contrast,
the hardware for positioning and navigation based on sound or ultrasound is afford-
able, and due to the low signal velocity, time-of-arrival based localization can provide
precise locality information in the range of centimeters.

1.1 Multilateration based on the Runtime of Signals

Localization based on the time-of-arrival (ToA) uses the propagation time of a signal
to calculate the absolute or relative distance between a sender and a receiver of a
signal. The approach relies on the characteristics of wave propagation, where the
velocity is assumed constant. Examples are the speed of sound, which is approximately
csound = 343m/s at room temperature, or the speed of light.
If the sender and the receiver share a common time base, therefore their clocks

are synchronized, the sender just records the time when a signal is emitted, and the
receiver records the time when the emitted signal arrives. The absolute distance can be
calculated according to the signal velocity and the time the signal needs to travel from
the sender to the receiver. Alternatively, signals of different velocities are sent to a
target simultaneously, for instance a radio signal and a sound, which arrive in sequence
at different times. The distance is calculated by the time delay, given both velocities
are known. Assuming that one signal velocity is very large, as in the case of radio
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1 Introduction

signals, the equation may be simplified to using the time differences of both signals
multiplied by the slower velocity. In an implementation of this technique, a mobile
unit is equipped with an additional radio transceiver, receiving an acoustic signal, as
for example in the Cricket system which uses Wi-Fi and ultrasound [1].
In another example, one signal is sent by a transceiver to a second transceiver,

which responds immediately, so the answer arrives at the first transceiver. The first
transceiver can calculate the distance, which is half the round trip time, multiplied by
the signal velocity. When the transceivers also listen to their own signals, hardware
delays can be eliminated, as in BeepBeep [2], an acoustic localization system for smart
phones. The ToA multilateration problem is then a problem of intersecting circles,
or spheres in three dimensions, which may be solved in closed form or with iterative
methods [3]. Multidimensional scaling, a formal representation of the multilateration
problem, is described in Section 3.4.
In contrast, in hyperbolic multilateration no cooperative action between the sender

and the receiver of a signal is taken. The signal is not sent back and forth, and the
receiver cannot acknowledge the reception to the sender, neither are their clocks syn-
chronized. However, clock synchronization is allowed between receivers. By sending a
signal to multiple receivers, where the times of arrival are detected, the time differences
of arrival (TDoA) can be calculated. For example, in case of a microphone array that
is connected to a multi-channel audio interface, synchronization of receivers is implicit.
Instead of absolute distances, only relative distance differences are measured, forming
hyperbolic equations, therefore the name, hyperbolic multilateration.
In common literature the term time of arrival (ToA) occurs as a generic term for

positioning using the propagation time of signals, and specifically to denote the “time
of flight”, i.e. the measurement of absolute distance from a sender to a receiver. We use
the term time differences of arrival (TDoA) as a subset of ToA to denote hyperbolic
localization given only relative distance measures.
While our focus in this thesis is algorithms for TDoA localization, the problem of

TDoA localization is multi-layered. It may be structured by horizontal and vertical
criteria. Horizontal are the assumptions and prerequisites on the scenarios to localize,
for example the assumption of distant signal origins, and the different algorithms to
calculate Cartesian coordinates of sensors and signals from TDoA measurements, which
differ in versatility and complexity of calculation.
Vertical are the different levels of TDoA localization. At a lower level are the cal-

culation of time differences from a recorded audio, ultrasound, or radio signal, either
simple amplitude detection, by pattern recognition, or by cross-correlation. In case of
detection of discrete timestamps, this includes the assembly of time points to signal
entities. The next level is calculation of positions from the time differences, which may
be split into calculation of distances and generating coordinates from these. On a high
level may be filtering algorithms and plausibility checking of positions.
The problem of TDoA is more difficult than the problem of absolute distances (ToA),

as the absolute send time is added as a variable. The higher number of variables
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1.1 Multilateration based on the Runtime of Signals

signal source

receivers (microphones)

intersection of 
hyperbolas

T3

T2

T1

τ3 = T3 − T1

τ2 = T2 − T1

Figure 1.1: Left: A signal is emitted at an unknown time, arriving at three receivers at
times Ti that can be measured. Right: The measurements describe a hyperbola of equal
time differences between pairs of receivers. The intersection of two hyperbolas is the
actual origin of the signal.

increases the number of required measurements to obtain a finite number of solutions,
and it complicates the process of finding these solutions. For instance, given two
different receivers in the plane, a distance measurement to each of the receivers is
sufficient to narrow down the possible signal origins to two positions. From there, the
correct position may be found by plausibility considerations. In contrast, if the time
of signal emission is not known, and therefore only relative distances can be observed,
the minimum number of receivers increases to three, which results in two intersecting
hyperbolas, as illustrated in Fig. 1.1. The minimum number of required measurements
for TDoA is analyzed in [4, 5] and in Section 2.4.
In a variant of the TDoA problem, multiple synchronized senders emit signals that

are obtained by a receiver which is not synchronized with the senders. If the emission
time of the signal is known, the receiver can calculate the time differences, yielding a
system of hyperbolic equations. In case of the Global Positioning System the satel-
lites are synchronized by means of high precision clocks. They send the current time
encoded into the signal to GPS receivers, which calculate TDoA of the signals by cor-
relation. If the GPS receivers are equipped with a high precision clock then absolute
distances to at least three satellites can be measured, however in practice this is a
rare case. They measure “pseudoranges” to the satellites, which leads to a hyperbolic
system of distance differences. A fourth satellite is required to calculate three position
coordinates and the time. Additional satellites increase the reliability and precision of
positioning, as over-determined measurements compensate for error. Note that GPS
positioning is by far more complicated in real implementation, as high velocity of the
satellites, atmospheric disturbances of the signal velocity, and multipath propagation
of the signal need to be incorporated into the measurement process [6].
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1.2 Calibration-Free TDoA

In classic hyperbolic TDoA localization the reference positions, i.e. the positions of
either the receivers or the senders are known a priori, and the positions of senders are
subject to locate, or the receiver, respectively. In some publications is suggested to
compensate for given erroneous reference positions [7, 8], but in general the positions
of reference receivers or signal emitters are precisely determined by external means
in an external coordinate system. Manual measurement of receiver positions may
be done by a measuring tape, a laser range finder, a grid arrangement or specifically
structured sensor array, or by geodetic methods. Alternatively, references are generated
by automatic measurements of an external localization infrastructure, such as optical
motion tracking, or the Global Positioning System. In case of the Global Positioning
System, still the ephemerides of the satellites, i.e. the lookup tables of position, are
calculated in advance and transmitted to the GPS receiver during the measurement
process [6].
In some cases, none of these external means of calibration are feasible, and a lo-

calization system is desired where a target can be localized independently of manual
effort and of external infrastructures. Reasons may be included by the following:

• Precision. External measurement might not be sufficiently accurate. For
example, measurement by hand is limited to a precision of several centimeters,
GPS is usually limited to meters.

• Availability. Some external measurement systems may not be available in cer-
tain environments. For instance, GPS cannot be used indoors or under water.
Infrastructural reference systems may be damaged or destroyed in a crisis or a
natural disaster.

• Costs. External reference systems may increase the cost of a localization system
in terms of money or energy consumption.

• Dependence. For a localization system the independence from an external
infrastructure might be desirable for economical or political reasons, or from the
perspective of mobility.

On grounds of these reasons, efforts are required to enable hyperbolic localization where
the reference positions are not essential to know in advance. Instead, in calibration-
free, or anchor-free TDoA localization, the reference positions are calculated during
the process of locating the target – or just the references are calculated from unknown
signals – eliminating the need to manually determine the positions of references by
external means.
The problem of calibration-free TDoA is challenging. First, the number of unknown

variables to be determined is even higher than in conventional TDoA, as also the
reference positions need to be calculated. Second, the signal and receiver positions
depend on each other, which is adverse to the robustness of the calculation. For
instance, one failed time measurement, a large outlier, affects the calculation of receiver
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positions, which again affect the calculation of other signal positions. In contrast, in
conventional TDoA a failed measurement has only influence on a single signal position.
Third, due to the high dimensionality of the problem, many strategies to linearize the
problem [9, 10] cannot be applied in general, so iterative approaches are required,
which are time-consuming and require careful initialization. However, we believe that
the benefits of calibration-free TDoA are worth the challenge.
We contribute in this thesis to the field of calibration-free TDoA localization.

Based on the fundament of different assumptions, and for the purpose of different ap-
plications, we have developed several approaches addressing the problem of calibration-
free TDoA. In general, the approaches described in the following are applied for cal-
ibration of unknown receiver positions by using signals from unknown origins. Yet,
the algorithms can be adapted to calibrate the positions of signal beacons instead.
The difference is rather a technical one, where the underlying mathematical problem
is similar. When actually the opposite case is considered, we will specifically point it
out in the text.

1.3 Related Work

We present a short digest of selected publications in the field of localization and im-
portant contributions in the field of calibration-free TDoA localization.
Popular infrastructure-based approaches for indoor and outdoor applications are

GSM localization [11, 12, 13] and Wi-Fi network fingerprinting [14]. The interpre-
tation of the received signal strength indication (RSSI) is a usual approach [15, 16].
When RSSI or ToA/ToF (“time of flight”) data is available the problem is reduced
to distance vectors, which is solved by linear estimators [3], by multi-dimensional
scaling [17, 18, 19], by the iterative Gauss-Newton method [20], by iterative construc-
tion [21], or by semidefinite programming [22, 23]. Force-directed approaches are an
alternative for relaxing distance constraints in large-scale networks [24, 25] and in the
Vivaldi network coordinate system [26].
In most “conventional” TDoA localization approaches the positions of receivers are

given a priori. Then, estimating a sender’s position using TDoA can be addressed in
closed form equations [7, 9, 10, 27, 28, 29, 30] or by iterative approaches [31, 32, 33].
A survey of closed-form TDoA estimators is given in [34]. Sometimes the positions of
senders are given, and the positions of receivers are located instead [35]. Calculation
of TDoA usually relies on the correlation of signals [36, 37, 38].
Moses et al. were among the first to mention TDoA self-localization in a sensor

array. In [39] they describe an approach to use TDoA with additional directivity infor-
mation, the Angles of Arrival (AOA), to locate unknown sender and receiver positions
in a planar world. This would require expensive receiver arrays or directed receivers,
especially for an extension to three dimensions. In [40] the authors describe an experi-
ment of self-localization of an array of sensors by TDoA from unknown signal positions.
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However, no further description of how the signals and receivers are calculated is given,
nor of the failure cases of the experiment. Without new algorithms, but a valuable
theoretical contribution, is the PhD thesis of Henrik Stewénius [4], who analyzes the
minimum cases of the calibration-free localization problem for absolute and relative
travel times.
One of the first approaches regarding specifically the problem of calibration-free

TDoA calibration was presented by Biswas and Thrun. In [41] they describe a prob-
abilistic model based on a Bayesian network to calculate sensor and signal positions
simultaneously without prior knowledge or assumptions on the positions from nothing
but TDoA measurements. The constraints in the Bayesian network are optimized by
gradient descent. Although the results in the paper are adequate in terms of feasibility
with real hardware, the mathematical pitfalls of the problem are not followed up. The
approach appears to fail in some cases due to an “ill-conditioned” setting, or remain
stuck in a local minimum of the error function. Besides, the approach is computation-
ally expensive because of the iterative gradient descent algorithm.
Some time later an elegant approach was presented by Pollefeys and Nister [42].

By factorization of a constraint matrix the signal emission times can be calculated in
closed form, effectively reducing the TDoA problem to a problem of absolute distances
in a bipartite graph, cf. Section 3.4. In our opinion, they are closest to a direct solution
of calibration-free TDoA. However, their approach is still remote from the minimum
case, as twice as many receivers are required. Furthermore, the algorithm is very prone
to measurement errors of the signal runtime. Recently, Kuang and Åström presented a
factorization approach [43] that reduces the required number of senders and receivers
to only one higher than the minimum case.
Furthermore, several approaches have been published that state assumptions about

positions of signals to calculate the positions of receivers. In an early approach pre-
sented by Thrun [44], the signals were assumed to originate from a large distance. Then
the positions of synchronized receivers can be calculated in closed form. Simultane-
ously to our work on the far-field problem, Burgess and Kuang presented an elegant
factorization approach [45, 46], however their solution does not consider the minimum
problem. In a weaker assumption, the distance between receivers can be determined
by statistical analysis of the signal distribution, from which the coordinates of receivers
can be calculated, which was presented by Pertila et al. [38], Biswas and Thrun [47]
and in the PANDAA system [48]. In some recent approaches the receivers are assumed
to reside on a line [49, 50], allowing for a solution in closed form.

1.4 Applications of Calibration-Free TDoA

As the receivers do not need to interact with the sound source, a large variety of types of
signals can be used. These signals can be natural, such as clicking noises or finger snaps,
coughing, or footstep sounds from the heel of a shoe. Such peaked sounds are easily
detectable by receiver devices by the edge of their amplitude, either by signal processing
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of a recorded audio stream, as described in Section 7.1, or by a simple hardware tone
detector circuit as in the Crossbow MICA2/MICAz sensor nodes1. Signal sources
can be continuous, such as the human voice, or music. Then, the time difference is
calculated by cross-correlation of the signal of different receivers. As the signal must
be available to every sensor for such a direct comparison, a typical scenario might be
an array of microphones connected to an audio interface.
Applications of anchor-free TDoA are manifold. First, TDoA algorithms that do

not require prior references are capable to localize nodes in a sensor network – just
by unknown signals from the environment. In this way, calibration-free TDoA self-
localization is completely passive, requiring no active signaling, except for probably
the communication for synchronization and exchange of time points. By this means,
wireless sensor nodes may be localized, to improve efficiency of network routing, or to
provide location support for experiments. Or a microphone array for concert record-
ings could be calibrated – just from the recorded music. As soon as the array is
calibrated, individual instruments can be located if they can be distinguished by their
characteristics.
One application may be teacher’s support in a computer lab. In a programming

course students use their laptops to log into an interactive teaching assistance system,
which provides support for task assignment and feedback between students and their
teacher. Configuration-free self-localization might provide a benefit by enabling the
teacher to see the positions of the students’ laptops on his screen. By recording just
the noises of the people of the class, with the built-in microphones of the laptops the
students’ positions may be calculated, even though they are randomly seated at the
beginning of every lesson.
Another practical use is a calibration-free tracking system. Using TDoA localiza-

tion a synthetic signal beacon could be tracked. As no control over the sender is
required, the sender can be simple, inexpensive, and lightweight. In case of a sound or
ultrasound emitter, no additional radio connection is required. By using calibration-
free TDoA algorithms, the need for initial calibration of the receiver positions, which
is a cumbersome task, can be avoided. In this way, using calibration-free TDoA, a
“plug-and-play” localization system may be created. We have created such a system
using an ultrasound emitter and receivers, where we can track the ultrasound target
at a precision of centimeters. See Section 7.3 for an introduction of the ultrasound
localization system.
The “reverse” problem of calibration-free TDoA is considered in Chapter 9. Here,

the application of an calibration-free ultrasound tracking system is discussed, where
a moving receiver is tracked by means of stationary senders, with the benefit of no
limitation of the number of tracked devices. An industrial project for development of
such a system for application in industrial intralogistics has begun in the fall of 2012
with the Chair for Computer Networks and Telematics participating.

1Moog Crossbow: http://www.xbow.com
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1.5 Publications

Parts of this thesis have been published in peer-reviewed journals and in proceedings
of peer-reviewed conferences. In the following find a list of relevant publications of the
author, listed in reverse chronological order.

• Joan Bordoy, Patrick Hornecker, Fabian Höflinger, Johannes Wendeberg, Rui
Zhang, Christian Schindelhauer, and Leonhard Reindl. Robust Tracking of a
Mobile Receiver using Unsynchronized Time Differences of Arrival. In Proceed-
ings of 2013 International Conference on Indoor Positioning and Indoor Naviga-
tion (IPIN), 2013.

• Simon Burgess, Yubin Kuang, Johannes Wendeberg, Kalle Åström, and Chris-
tian Schindelhauer. Minimal Solvers for Unsynchronized TDOA Sensor Network
Calibration using Far-Field Approximation. In Proceedings of 9th International
Symposium on Algorithms and Experiments for Sensor Systems, Wireless Net-
works and Distributed Robotics (ALGOSENSORS), 2013.

• Johannes Wendeberg, Fabian Höflinger, Christian Schindelhauer, and Leonhard
Reindl. Calibration-Free TDOA Self-Localization. Journal of Location Based
Services, 2013.

• Johannes Wendeberg, Jörg Müller, Christian Schindelhauer, and Wolfram Bur-
gard. Robust Tracking of a Mobile Beacon using Time Differences of Arrival with
Simultaneous Calibration of Receiver Positions. In Proceedings of 2012 Interna-
tional Conference on Indoor Positioning and Indoor Navigation (IPIN), 2012.

• Fabian Höflinger, Johannes Wendeberg, Rui Zhang, Manuel Bührer, Joachim
Hoppe, Amir Bannoura, Leonhard Reindl, and Christian Schindelhauer. Acous-
tic Self-calibrating System for Indoor Smartphone Tracking (ASSIST). In Pro-
ceedings of 2012 International Conference on Indoor Positioning and Indoor Nav-
igation (IPIN), 2012.

• Johannes Wendeberg and Christian Schindelhauer. Polynomial Time Approxi-
mation Algorithms for Localization based on Unknown Signals. In Proceedings
of 8th International Symposium on Algorithms for Sensor Systems, Wireless Ad
Hoc Networks and Autonomous Mobile Entities (ALGOSENSORS), 2012.

• Johannes Wendeberg, Thomas Janson, and Christian Schindelhauer. Self-Local-
ization based on Ambient Signals. Journal of Theoretical Computer Science, vol.
453, pp. 98–109, 2012.

• Johannes Wendeberg, Fabian Höflinger, Christian Schindelhauer, and Leonhard
Reindl. Anchor-free TDOA Self-Localization. In Proceedings of 2011 Interna-
tional Conference on Indoor Positioning and Indoor Navigation (IPIN), 2011.
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• Christian Schindelhauer, Zvi Lotker, and Johannes Wendeberg. Network Syn-
chronization and Localization Based on Stolen Signals. In Proceedings of 18th
International Colloquium on Structural Information and Communication Com-
plexity (SIROCCO), 2011.

• Christian Schindelhauer, Zvi Lotker, and Johannes Wendeberg. Brief Announce-
ment: Network Synchronization and Localization Based on Stolen Signals. In
Proceedings of 30th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC), 2011.

• Thomas Janson, Christian Schindelhauer, and Johannes Wendeberg. Self-Local-
ization Application for iPhone using only Ambient Sound Signals. In Proceed-
ings of 2010 International Conference on Indoor Positioning and Indoor Naviga-
tion (IPIN), 2010.

• Thomas Janson, Christian Schindelhauer, and Johannes Wendeberg. Self-Local-
ization Based on Ambient Signals. In Proceedings of 6th International Workshop
on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous
Mobile Entities (ALGOSENSORS), 2010.

The relevant publications for a specific topic are referenced in the respective chapters
and listed in the main bibliography. The publications and achievements in this thesis
have been created in scientific cooperation with others. The important collaborations
are listed in the following.

1.6 Collaborations

Parts of this thesis have been developed in cooperation with others. The probabilistic
state estimation approach described in Chapter 6 was created in cooperation with Jörg
Müller, who contributed significantly to the mathematical formulation of the motion
and sensor model.
The localization framework was created with valuable assistance of Thomas Janson,

who contributed by developing the aggregation algorithm and porting the software to
Apple iPhone. The software framework is described in Section 7.1, the experiments
with the iPhone devices in Section 7.2.
The ultrasound tracking system, which has been developed during this thesis and is

presented in Section 7.3, was created in very close collaboration with Fabian Höflinger,
who contributed substantially by developing the hardware foundation of the localiza-
tion system. This includes the development of USB-connected ultrasound receivers, the
hardware integration of stand-alone embedded receiver devices, and the development
of a portable ultrasound sender.
Furthermore, Wolfram Burgard provided helpful comments about the theoretical

aspects of TDoA localization. The initiation of the industrial eCULTS project, which
is presented in Chapter 9, benefited from valuable support and suggestions of Heinrich
Hippenmeyer, Fabian Höflinger, and Leonhard Reindl.
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1.7 Notation

The following table summarizes the notation used throughout this thesis.

Symbol Denotation
a, b, A, B scalar variables, sets
a, b column vectors
A, B matrices
(·)T transpose of a vector or matrix
| · | absolute value of a scalar, the complex magni-

tude, the determinant of a matrix
‖ · ‖ the Euclidean norm
{. . .} a set of elements
(. . .) a tuple of elements, a vector
[. . .] a matrix of elements
[a, b], (a, b) a closed/open interval
p(x) a probability density function
p(x | y) a conditional probability density function
N (x, µ, σ2) the Gaussian density function
O(·) asymptotic upper bound of complexity of an

algorithm (Landau notation)

The following table summarizes important variables used throughout this thesis.

Variable Meaning
c the velocity of a signal
p the dimensionality of space
s a signal emitter position (sender)
m a receiver position
n the number of receivers
m the number of signal sources
t the emission time of a signal
T the reception time of a signal
τ a time difference (TDoA)
δ a synchronization offset
x a state vector, the position of a physical particle
v the velocity of a physical particle
f the force of a physical particle
z an observation
µ,µ the mean of a distribution
σ2,Σ the (co-)variance of a distribution
R a rotation matrix
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1.8 Outline of the Thesis

This thesis is organized as follows. Up to now we have seen some incentives and
motivational aspects to use and develop calibration-free TDoA technology. Also a
short overview of relevant publications in the field was given, and some applications
of hyperbolic localization were suggested.
In the now following Chapter 2 we give a formal introduction to the calibration-free

TDoA problem. This includes the discussion of the hyperbolic properties and analysis
of calibration-free TDoA from the aspect of uniqueness of solutions. Furthermore, we
discuss topological and environmental considerations with respect to TDoA. After-
wards, we propose four fundamental approaches to calibration-free TDoA that have
been developed during this thesis, in the domains of far-field approximation, iterative
optimization, recursive search space exploration, and probabilistic localization.
We begin with the contributions to the far-field approximation problem, consisting

of two statistical estimators of receiver distances, and the Ellipsoid TDoA method
that uses ellipsoid characteristics of time differences to find the edges in a triangle,
respectively in a tetrahedron, of receivers. Also, we discuss the coordinates-from-
distances problem, which follows from far-field approximation.
In Chapter 4 we propose local optimization as a versatile approach to TDoA. First,

we give a survey of the gradient descent method and the Gauss-Newton algorithm,
for which we have derived the first order derivative for hyperbolic TDoA. Then, we
propose the Iterative Cone Alignment method, an optimization approach based on
relaxation of spring constraints in a physical mass-spring simulation. In extensive
numerical evaluations we discuss the issue of incomplete convergence of local search
algorithms, resulting in local minima, where we show that Cone Alignment is superior
to gradient descent and Levenberg-Marquardt, finding the correct solution in more
than 99% of random scenarios.
We discuss the problem of convergence in Chapter 5 and present a complete branch-

and-bound algorithm that uses hyperbolic constraints to pose an upper bound to the
TDoA error function. In a second step, the positions of receivers are approximated
by recursive refinement of the search space. We show that the algorithm converges
towards the true positions of receivers if the measurement error is limited by ε.
In Chapter 6 we turn towards tracking of a continuously moving signal beacon. We

present an approach to probabilistic state estimation in a particle filter to create a self-
calibrating TDoA algorithm that ensures reliable initialization and robust tracking of
the beacon.
Our experiments in the real world are presented in Chapter 7, where we evaluate

the algorithmic foundation of calibration-free TDoA in indoor and outdoor settings.
We introduce the software platform, capable to run on laptops, the Apple iPhone and
on embedded computers, providing a framework for TDoA localization. We demon-
strate the feasibility of this framework and of the algorithms to localize a network of
computers by environmental clap sounds. Then, we propose our calibration-free TDoA
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ultrasound tracking system, where a model train and a RC model car is localized up to
the precision of 5 cm. Furthermore, we demonstrate the high robustness of the prob-
abilistic algorithm to measurement outliers. In Chapter 8 we present two advanced
algorithms for TDoA calculation by cross correlation, were we show promising results
for tracking a human speaker and data transmission by sound.
Then, we introduce the industrial project eCULTS, which is an offspring of the

work in this thesis. We summarize in the Conclusions chapter, discussing the range
of proposed approaches to the calibration-free TDoA problem and giving an outlook
towards future research.
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2 Gaining Insight into TDoA

In the previous chapter we have seen an informal introduction to the problem of time
differences of arrival and a discussion of imaginable applications. We will now establish
the formal definition of the problem and discuss the characteristics of the underlying
equation system.
The notation introduced in the following section is maintained throughout this doc-

ument. However, depending on the application scenario of the algorithm, specific
assumptions on positions of signals or receivers are appended, which are described in
the respective chapters. We will now start with the basic TDoA setting.

2.1 The Calibration-Free TDoA Problem

Consider a network of n receivers at unknown positions mi (1 ≤ i ≤ n) in p-dimensional
Euclidean space Rp, where p ∈ {2, 3}. We assume that the clocks of the receivers are
synchronized. Now m signals are created at unknown positions sj ∈ Rp (1 ≤ j ≤ m) at
unknown time points tj . The signal wavefront propagates spherically from the signal
origins sj with constant signal velocity c. The signals arrive at the receivers at time
points Tij , which can be measured. We assume that the signals are discrete and that
they can be distinguished by their time points. Furthermore, we assume that echoes
from surrounding walls and from obstacles can be identified and eliminated, such that
the receivers obtain the signal in direct line of sight.
Now the problem is to calculate the positions of the receivers mi, the positions of

the signal origins sj , and the times tj when the signals were created – only from the
times Tij when the signals arrived. The mathematical constraints between the receivers
and signals are described by the signal propagation equation

1
c‖mi − sj‖ = Tij − tj , (2.1)

where only the arrival times Tij and the velocity c are known. All signal times tj ,
receiver positions mi, and signal origins sj are unknown in our setting. ‖ · ‖ denotes
the vector norm in Euclidean space.
An equation system is formed by the equations of n receivers and m signals. De-

pending on these numbers the equation system may be under-determined, uniquely
determined, or over-determined, except for degrees of freedom for translation, rota-
tion, and mirror symmetry, as we will discuss in the next section.
For the cases of at least three receivers in the plane, and four receivers in three-

dimensional space, and under the assumption that the signals originate from a distance,
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the problem can be solved in closed form. Also, for a minimum number of eight
receivers in the plane, respectively ten receivers in 3D space, the equation system can
be solved directly [42]. To solve the equation system in general, we have to square
the equations. When we distribute the equations we get squared and mixed terms of
degree four. According to [4, 42, 51] it does not seem likely that algebraic solutions to
the problem in general can be found.

2.2 Hyperbolic Localization

Subtraction of two distance constraint equations of the form (2.1) results in a hyper-
bolic distance difference equation. For equations i, k ≤ n we obtain n − 1 hyperbolic
equations for every signal j:

1
c‖mi − sj‖ − 1

c‖mk − sj‖ = (Tij − tj)− (Tkj − tj)
= Tij − Tkj
= τikj . (2.2)

Without loss of generality we choose k = 1 and 2 ≤ i ≤ n, and denote the delay τij
between the i-th and the first receiver as the time difference of arrival (TDoA).
In case the receivers are not synchronized by a common clock or by technical means,

the reception time of receiver i is shifted by a constant offset δi, which is added to
the reception time, so the unsynchronized time of arrival is T̂ij = tj + 1

c‖mi − sj‖+ δi
compared to the reference time of receiver 1. The time difference of arrival is therefore
τij = T̂ij−T1j−δi. For the synchronized case that we consider, unless stated otherwise,
the synchronization offset can be omitted.
If signals occur periodically at a known interval aj then time differences of subsequent

signals, which are emitted at times tj1 , tj2 and arrive at a receiver at times Tij1 , Tij2 ,
form hyperbolic equations:

1
c‖mi − sj1‖ − 1

c‖mi − sj2‖ = (Tij1 − tj1)− (Tij2 − tj2)
= (Tij1 − Tij2)− (j1 − j2) aj . (2.3)

As different receivers do not appear in the same equation, the need for synchronization
of receivers is eliminated by this form. Knowing the interval is close to the ToA
problem, as only one send time offset between the sender and the receivers needs to be
estimated to determine the absolute send times, which yields absolute distances to the
sender. Using given transmission intervals is a discrete form of the frequency difference
of arrival approach (FDoA), which is also known as the Doppler shift.
The hyperbolic localization problem also applies to the inverse setting, where syn-

chronized senders emit signals at known times, and a receiver calculates the time
differences of arrival, and the receiver is not synchronized with the senders, nor with
other receivers. This scenario is well-known from the operation principle of GPS, where
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Figure 2.1: Association ambiguity of two simultaneous signals sj arriving at two receivers mi

at times Tij . The closest timestamps in the synchronized time lines suggest the wrong
association (red), though the crossed-over association (green) is the correct one.

satellites are synchronized by their high precision clocks, whereas the receivers do not
have a precise clock in most cases. They measure pseudoranges to the satellites, which
leads to a hyperbolic equation system [6].
As can be seen from the hyperbolic Equation (2.2), the send time tj is eliminated

and the number of equations is reduced by one. This fact is used in optimization,
simplifying the equation system and reducing the number of false solutions. On the
other hand, the first receiver, as a reference, appears n − 1 times instead of only one
time which induces a specific impact of measurement errors of this receiver. This may
create an adverse effect on some algorithms that estimate the uncertainty of a receiver.
Even if alternating references are used, or if the complete graph of n(n− 1) hyperbolic
equations is considered, which increases computational cost, the case of missing signals
is difficult to handle in hyperbolic equations. We use hyperbolic equations in the
gradient-based optimization approaches described in Chapter 4 and in the recursive
search in Chapter 5. We refrain from using hyperbolic equations in the Cone Alignment
algorithm and in the probabilistic approach in Chapter 6, and estimate the send times
instead.

2.3 Combinatorial Problem of Timestamp Association

In practical application, the relation of a signal obtained by a receiver to signals ob-
tained by other receivers is inherently not known. This relation of received signals to
a “signal event” of an emitter, however, are fundamental to TDoA localization. The
lack of knowledge of the correct association results in a combinatorial problem, see the
example in Fig. 2.1.
Consider m signals which are emitted by various senders, and which are received

partly, or all of them, by n receivers. The mi ≤ m signals that are obtained by every
receiver i are a subset of the emitted signals, as some signals may be lost due to range
limits, or environmental disturbances, or by the detection algorithm that misses signals
or detects signals multiple times.
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2 Gaining Insight into TDoA

Definition 1 The association problem of TDoA is the combinatorial problem of con-
necting the sets of timestamps I = (I1, . . . , Im1) and J = (J1, . . . , Jm2) of two receivers,
where m1,m2 ≤ m, by injective mappings π : I → J and ρ : J → I.

The injective mappings π, ρ are not surjective, as not necessarily all timestamps of
the target set are covered due to signal loss. For the number of associations we state
the following lemma.

Lemma 1 In the general TDoA association problem under assumption of missing
timestamps, therefore the association is not surjective, exist

min(m1,m2)∑
k=0

(
m1
k

)(
m2
k

)
k!

different configurations associating two sets of timestamps of two receivers.

Proof: Without loss of generality we choose two receivers that obtain the sets of
timestamps I = (I1, . . . , Im1) and J = (J1, . . . , Jm2), where m1,m2 ≤ m. Due to the
injectivity the inverse exists:

Ii = ρ(π(Ii)) and Jl = π(ρ(Jl)) , (2.4)

where 1 ≤ i ≤ m1 and 1 ≤ l ≤ m2. If a timestamp is not associated, assume that
the mappings π or ρ are not defined for this timestamp. The combinatorial problem
is now to enumerate all mappings between the sets I and J that satisfy the injectivity
condition (2.4). We begin with all mappings where k ≤ min(m1,m2) timestamps are
associated. Choose k timestamps from set I and k timestamps from J . There exist(m1
k

)(m2
k

)
ways to do this. These selections of k timestamps from I and J can be

connected in k! permutations. At last, sum up for all possible k, which yields the
proposed sum in Lemma 1. �

Another representation of the previously demonstrated enumeration is a binary ma-
trix of size (m1 ×m2), where an association is marked by “1”, and “0” otherwise. In
every row and in every column can be at most one association mark, due to injectivity,
so there can be a maximum of k ≤ min(m1,m2) marks, as in the set representation
above. In fact, one may not just create as many associations as possible between I
and J . One needs to decide instead if two timestamps even belong together.
In a special case, we assume that all receivers receive all m signals, so the mapping

is bijective with k = m. Then m! ways exist to associate two receivers. This may be
extended to n receivers, resulting in (m!)n−1 associations. This is a problem of expo-
nential complexity, which grows large even for small numbers of signals and receivers,
see Table 2.1 for a numerical example.

Lemma 2 For a TDoA algorithm, assuming that the problem is uniquely determined,
the bijective association problem can be solved in polynomial time complexity by testing
constant subsets of receivers and signals.
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2.3 Combinatorial Problem of Timestamp Association

receivers
signals 1 2 3 4 5 6

1 1 1 1 1 1 1
2 1 2 4 8 16 32
3 1 6 36 216 1296 7776
4 1 24 576 13824 331776 7962624
5 1 120 14400 1728000 2.07 · 108 2.49 · 1010

6 1 720 518400 3.73 · 108 2.69 · 1011 1.93 · 1014

Table 2.1: The number of possibilities to associate m signals between n receivers is (m!)n−1.
Even with only three receivers a test of all possible associations is time consuming and
hardly feasible.

Proof: For the test of a constant subset of cm signals we have cm! possible ways
of association. From the total set of m signals we can choose

(m
cm

)
different subsets.

These tests are repeated for each of cn + 1 receivers, a constant subset of n receivers,
which raises a power of cn. We obtain

((
m
cm

)
cm!
)cn

=
(

m!
cm!(m− cm)! cm!

)cn

=
(
m · (m− 1) · . . . · (m− cm + 1)

)cn

<
(
mcm

)cn = mcmcn

associations to test, which is a polynomial search space with the constant expo-
nent cmcn. If a TDoA algorithm yields a plausible solution with an association subset,
then the association is possibly the correct one. �

As discussed in the next section, the required constants cm and cn are rather large,
so the feasibility of an algorithm with such a runtime is questionable. However, there
is hope that a smaller exponent can be found, for instance by testing incremental sets
of signals.
In practice, a windowing technique may be used, where one assumes that a received

signal can not belong to another received signal, if the time difference is larger than
the distance equivalent of the receivers. Therefore, if |Ti − Tk| > 1

c‖mi − mk‖ no
association of timestamps Ti and Tk is possible. As the receiver range is usually not
known in calibration-free TDoA, a generous constant is chosen as a threshold. In any
case, the number of timestamps to compare is reduced to a constant by windowing, if a
finite number of timestamps is produced per time unit. For our practical experiments
we choose a signal rate so that the interval between two successive signals tj and tj+1 is
larger than the longest distance equivalent the signal has to travel, making the signals
unique to distinguish.
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2 Gaining Insight into TDoA

signal receivers
sources 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12
2 3 3 3 3 3 3 3 3 3 3 3 3
3 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6
4 7 5 3 1 -1 -3 -5 -7 -9 -11 -13 -15
5 9 6 3 0 -3 -6 -9 -12 -15 -18 -21 -24
6 11 7 3 -1 -5 -9 -13 -17 -21 -25 -29 -33
7 13 8 3 -2 -7 -12 -17 -22 -27 -32 -37 -42
8 15 9 3 -3 -9 -15 -21 -27 -33 -39 -45 -51
9 17 10 3 -4 -11 -18 -25 -32 -39 -46 -53 -60
10 19 11 3 -5 -13 -21 -29 -37 -45 -53 -61 -69
11 21 12 3 -6 -15 -24 -33 -42 -51 -60 -69 -78
12 23 13 3 -7 -17 -27 -37 -47 -57 -67 -77 -87

Table 2.2: Degrees of freedom for the two-dimensional case. Non-positive values indicate
potentially solvable problem instances. [54]

An interesting concept is to provide additional information with the timestamp.
By using pattern recognition, a similarity index of two received signals may be calcu-
lated. Considering the similarities to other received signals and the temporal differ-
ence, one may calculate a probability that two signals belong together. This results in
a problem of likelihood maximization, depending on the association. In experiments
we saw, however, that discrete acoustically similar signals, like a series of clapping, are
hard to distinguish by standard signal processing techniques, such as cross correlation
of signals [52]. By adding specific markers to synthetic signals one may overcome this
problem, which is described in Chapter 8. If such additional information is given, iter-
ative techniques such as clustering or the Iterative Closest Point algorithm [53] may be
worth an attempt, however they need to be extended to consider the permuted order
of timestamps and to return a set of possible solutions, instead of only one solution
after reaching the abort condition.

2.4 The Minimum Cases

We discuss the degrees of freedom and the theoretical bounds on how many receivers n
and signal sources m are necessary to find a unique solution. The minimal solutions
have also been appealed to in [4] and [5].
We start the discussion for the two-dimensional case. Since the locations of all

receivers and signals are unknown we face 2n+ 2m variables. Furthermore, we do not
know when a signal has been created which adds m variables. Since we have no anchor
points the number of variables reduces by two variables for translation, for example
setting one node as origin, and one variable for rotation, therefore setting another node
to the x-axis.
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2.4 The Minimum Cases

signal receivers
sources 1 2 3 4 5 6 7 8 9 10 11 12

1 0 2 4 6 8 10 12 14 16 18 20 22
2 3 4 5 6 7 8 9 10 11 12 13 14
3 6 6 6 6 6 6 6 6 6 6 6 6
4 9 8 7 6 5 4 3 2 1 0 -1 -2
5 12 10 8 6 4 2 0 -2 -4 -6 -8 -10
6 15 12 9 6 3 0 -3 -6 -9 -12 -15 -18
7 18 14 10 6 2 -2 -6 -10 -14 -18 -22 -26
8 21 16 11 6 1 -4 -9 -14 -19 -24 -29 -34
9 24 18 12 6 0 -6 -12 -18 -24 -30 -36 -42
10 27 20 13 6 -1 -8 -15 -22 -29 -36 -43 -50
11 30 22 14 6 -2 -10 -18 -26 -34 -42 -50 -58
12 33 24 15 6 -3 -12 -21 -30 -39 -48 -57 -66

Table 2.3: Degrees of freedom for the three-dimensional case. Non-positive values indicate
potentially solvable problem instances. [54]

We assume that all m signals are received at all n receivers which results in the
following equation for the degrees of freedom G2 presented by the problem size:

G2(n,m) = 2n+ 3m− nm− 3 (2.5)

If G2(n,m) > 0 then there is no unique solution for the problem, i.e. it is under-
determined. There is a chance of a unique solution if G2(n,m) equals zero. For
negative values the problem is over-determined, which might allow the compensation
of inaccuracies. See Table 2.2 for the two-dimensional case.
For the three-dimensional case the number of location variables is increased by n+m.

Here, three variables can be set to a constant for the symmetry induced by translation
and three variables for the rotation symmetry which leads to the following degrees of
freedom, see Table 2.3:

G3(n,m) = 3n+ 4m− nm− 6 (2.6)

Note that point and mirror symmetry is not covered by this discussion. If we assume
that there is abundant supply of ambient signals we can summarize that at least
four receivers might allow the solution in the two-dimensional case when at least five
signals are available. For the three-dimensional case of the problem five receivers for
at least nine signals might be sufficient. However, in our simulations we saw that
ambiguities remain which cannot be explained by symmetries, see Fig. 2.2 for an
example. Stewénius [4] found a maximum of 344 solutions to the problem of four
receivers and five signals in the plane. In fact, six signal sources seem to be the
minimum case for the problem.
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Figure 2.2: Two discrete solutions for the case of four receivers (green) and five signals (red).
The true positions are marked in white.

2.5 Estimation of the Convex Hull

One can use the arriving signals for topological considerations of the receiver positions.
Given n synchronized receivers in space Rp, p ∈ {2, 3}, as defined in Section 2.1,
a subset of the convex hull of the receivers can be determined by the timestamp of
every signal detected last. Depending on the availability of signals it may also be
possible to detect the complete convex hull.
For definition of the convex hull we use the Hesse normal form which introduces a

distance measure of a point to a line, respectively a plane, based on the normal vector
of the line.

Lemma 3 For points p ∈ Z and a receiver m ∈ Z that is element of the convex
hull of Z, holds

∃n ∀p : (m− p)T n ≥ 0 , n ∈ Rp . (2.7)

In this definition of Eq. (2.7) is n the normal vector of a border line through m if
p = 2, where all points p are on the same side of the line. If p = 3 then m and n
define a border plane.
Proof: For a proof of Lemma 3 consider the lines through m and the two neighbor
points on the convex hull, m′ and m′′ ∈ Z. If m is part of the convex hull, the internal
angle ∠m′mm′′ is αm ≤ π by definition of convexity. Then all other points p reside
inside the area bounded by the convex hull, therefore in the sector enclosed by αm.
For the external angle holds βm = π − αm ≥ 0. Therefore, in the sector of βm exists
an array of lines with normal vector n̂, where all points p are on the same side, which
is equivalent to satisfaction of Eq. (2.7). �

20



2.5 Estimation of the Convex Hull

For synchronized receivers holds that a signal originating from s arrives last at a
receiver i, iff mi is further from s than all other mk, therefore

∀k : Ti ≥ Tk ⇔ ‖mi − s‖ ≥ ‖mk − s‖ (1 ≤ k ≤ n) , (2.8)

which follows from the propagation of sound, Eq. (2.1). Using Lemma 3, we derive the
following theorem.

Theorem 1 A receiver i among synchronized receivers k is element of the convex hull,
if a signal exists that arrives last at i such that for all k holds Ti ≥ Tk.

Proof: We choose the normal vector n̂u = mi−s, where we know from the definition
of the Euclidean distance that

‖mi − s‖2 = (mi − s)T (mi − s) = (mi − s)T n̂u . (2.9)

Normalizing n̂u yields the normalized normal vector n̂ = n̂u/‖n̂u‖. Therefore if ∃i∀k :
Ti ≥ Tk then according to Eqns. (2.8) and (2.9) holds

(mi − s)T n̂ = ‖mi − s‖ ≥ ‖mk − s‖ ≥ (mk − s)T n̂ . (2.10)

We see that the distance between s and mk along n̂ is smaller than the distance
between s and mi. Eq. (2.10) can be transformed to

(mi − s)T n̂ ≥ (mk − s)T n̂
⇔ (mi − s)T n̂ − (mk − s)T n̂ ≥ 0

⇔
(
(mi − s)T − (mk − s)T

)
n̂ ≥ 0

⇔ (mi −mk)T n̂ ≥ 0 .

According to Lemma 3 are all receivers mk on the same side of a border line defined
by mi and n̂, therefore is mi element of the convex hull of a point set of all other
receivers mk. �

If only few signals are available then we probably cannot detect all elements of the
convex hull, as the inverse direction does not hold – not for all receivers that are part
of the convex hull does one of m signals necessarily arrive last. See Fig. 2.3, where a
subset of the convex hull is detected by signals in the vicinity of the receivers.
However, if signals arrive from all directions from a large distance then the distance

between the signals s and all receivers mk is reduced to the distance along a direction
vector. This is called the far-field case, which is topic of the next Chapter 3. Then,
the choice of n is not limited, therefore one can find appropriate normal vectors and
determine all elements of the convex hull.
Once the receivers are known after execution of some TDoA algorithm, the elements

of the convex hull of n points can be calculated by the test in Lemma 3, yet at
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Figure 2.3: Determination of a subset of the convex hull for ten receivers (diamonds). Of
seven hull elements could three elements be found (green) by using the last timestamps
of six signals.

high costs. For a point, n − 1 normal vectors need to be tested in the worst case, of
which each vector is tested with n − 1 points, which must be repeated for n points,
resulting in a runtime of O(n3). There exist faster algorithms to calculate the convex
hull of a finite set of points, such as the Graham scan algorithm [55] and the Quickhull
algorithm [56], both requiring asymptotic time O(n log(n)).

2.6 Evaluation of Anchor-Free TDoA

Since there are no anchor points we cannot directly compare the estimated positions
of our algorithms to the true positions, also called “ground truth”. As no positions
are known to the algorithm, the final translation and rotation of the signal source and
receiver network are not determined. For an evaluation of the quality of the algorithms
we follow the approach of Arun et al. [57] and use singular value decomposition (SVD)
to generate a rotation matrix R aligning the estimated positions to the real-world
positions. The alignment algorithm that we use [5] is described in the following.
Let G = {g} and H = {h} be a set of points of equal sizes n in Rp (p ∈ {2, 3}),

where G is the ground truth and H is our experimental data. We calculate the arith-
metic centers

µg = 1
n

n∑
i=1

gi and µh = 1
n

n∑
i=1

hi .
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2.7 The Velocity of Sound

The covariance matrix W is the sum of the dyadic products of G and H:

W =
n∑
i=1

(
(gi − µg)(hi − µh)T

)
By subtracting the arithmetic centers we eliminate the translation. The SVD of W is
defined as

W (SVD)= UDVT

where D is a diagonal matrix of singular values σi (1 ≤ i ≤ p) of W. U and V are
unitary matrices. R = UVT creates a rotation with a least-squares-optimal mapping
of H to G:

Ĥ =
{
ĥ
}

=
{
R(h− µh) + µg

}
≈
{
g
}

= G

The remaining localization error is retrieved by calculating the root mean square
(RMS) distance between G and Ĥ.

2.7 The Velocity of Sound

Localization based on the measurement of signal times relies on the signal velocity. In
contrast to measurement of the signal amplitude, the velocity of signals is reliable, as
it is mostly constant for radio signals and sound.

2.7.1 Sound Velocity in Air

For the velocity of sound in an ideal gas the linear theory [58] yields c2 = γp
ρ , where γ

is the adiabatic index, i.e. the ratio of heats, p is the pressure, and ρ is the density.
Using the ideal gas laws we replace

c =
√
γp

ρ
=

√
γRT

M
=

√
γkT

m
,

where R is the molar gas constant, T is the absolute temperature, M is the molar
mass, k is the Boltzmann constant, and m is the mass of a molecule. Therefore, in an
ideal gas, the sound velocity depends only on the temperature, not on pressure.
Depending on the type of gas, the masses m of gas molecules vary, and therefore

the sound velocities. In reality there is also a small influence of humidity on the sound
velocity, as an effect of mixing of lighter water molecules into air. According to [58],
the sound velocity is approximately 0.1% to 0.6% higher in saturated air compared to
dry air, depending on the temperature.
For dry air at 20 °C, the sound velocity is approximately cair = 343 m

s . For compar-
ison, in oxygen is the sound velocity coxygen = 318 m

s , in nitrogen cnitrogen = 333 m
s , in

helium chelium = 981 m
s . For air, one can use the temperature-dependent rule of thumb

cair = 331.3m
s + 0.6ϑ m

s , (2.11)
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Figure 2.4: In a temperature gradient the sound velocity decreases while propagating from
the warm ceiling to the cold floor. The propagation path is no longer a straight line. In
the picture the gradient is exaggerated by values of -10 °C to 40 °C.

where ϑ is the temperature in degrees Celsius, ignoring the rather small influence of
humidity. As the influence of temperature is small in indoor environments, we use in
our experiments the standard velocity cair = 343 m

s .

2.7.2 Sound Propagation in a Temperature Gradient

In an application-specific scenario, a signal emitter s is placed at the ceiling of a
large hall, sending a signal in a periodic interval to a receiver m, which may be a
robot driving on the floor. If the air is not perturbed by air conditioning or by open
doors or windows, a smooth gradient of heat distribution may be assumed, with the
coldest air on the floor and the warmest air just below the ceiling. Therefore, the
temperature is assumed to be linear in the interval [ϑ0, ϑy], depending on the height
h ∈ [0, y]. According to Eq. (2.11) the velocity of sound is linear in the temperature
with c(ϑ) = 331.3 + 0.6ϑ.
The signal is obtained by m after the propagation time t of any path between s

and m. In uniform air this path equals a straight line, as assumed in Section 2.1. In
the following, we analyze the form of the propagation path in a uniform temperature
gradient.
Considering the linear temperature gradient, we express the sound velocity as a func-

tion of the height, so we obtain c(h) =
(
1− h

y

)
c(ϑ0) + h

y c(ϑy), which we abbreviate by

ch =
(

1− h

y

)
c0 + h

y
cy , (2.12)

where cy is the initial sound velocity at the ceiling and c0 is the final velocity close to
the floor.
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2.7 The Velocity of Sound

Denote the angle between the normal vector (0, 1)T ∈ R2 of the temperature gradient
and a vector of sound wave propagation as α. According to Snell’s Law of Refraction
the angle of incidence α1 in a medium with signal velocity c1 and the angle of the
refracted beam α2 in a medium with signal velocity c2 behave as

sin(α1)
sin(α2) = c1

c2
, (2.13)

which can be reformulated to calculate the incidence, such that

sin(αh) = ch
c0

sin(α0)

is the incidence at height h, if α0 is the initial incidence at height 0. We obtain the
horizontal propagation component x by integration over h. To create the antiderivative
we replace and collect the constant terms as follows:

x =
y∫

h=0

tan(αh) dh

=
y∫

h=0

sin(αh)√
1− sin(αh)2 dh

=
y∫

h=0

sin(α0) + (cy−c0) sin(α0)
y c0

h√
1−

(
sin(α0) + (cy−c0) sin(α0)

y c0
h
)2

dh

=

− y c0
(cy − c0) sin(α0)

√
1−

(
sin(α0) + (cy − c0) sin(α0)

y c0
h

)2
y

0

(2.14)

Now, the initial angle α0 can be calculated by solving the antiderivative in Eq. (2.14) for

sin(α0) = 2 c0 xy√
(x2 + y2)

(
(cy − c0)2 x2 + (cy + c0)2 y2

) ,
which we use to calculate the travel time tgrad and the trajectory length dgrad from the
integrals

tgrad =
y∫

h=0

dh
ch cos(αh) =

y∫
h=0

1
ch
√

1− sin(αh)2 dh (2.15)

dgrad =
y∫

h=0

dh
cos(αh) =

y∫
h=0

1√
1− sin(αh)2 dh . (2.16)
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reference velocity travel time error
tgrad 0.042395 s
tlin with c0 0.044325 s 4.552 %
tlin with cy 0.040632 s −4.158 %
tlin with cavg 0.042398 s 0.008 %

Table 2.4: Sound travel times under assumption of different velocities and of the linear prop-
agation model Eq. (2.1). The average velocity cavg = 1

2 (c0 + cy) is a viable assumption
even for a temperature gradient.

In an exaggerated numerical example we use values of -10 °C close to the floor to
40 °C below the ceiling. The respective sound velocities range from 325 m

s to 355 m
s .

According to Eq. (2.15) we calculate the travel time tgrad to traverse in the example
from s = (0, 8)T to m = (12, 0)T . The propagation path that yields the duration tgrad
is a curve, as illustrated in Fig. 2.4.
Using only one of the initial or the final temperature and the linear propagation

assumption in Eq. (2.1) to calculate the expected travel time tlin = 1
c‖s−m‖ induces

an error of almost 5% for the chosen gradient and positions. However, the average of
both velocities cavg = 1

2(c0 + cy) yields an expected travel time where the deviation
from the real travel time tgrad is below 0.01%. See Table 2.4 for the expected run-
times. Therefore, the linear propagation model is a trustable approximation for such
experiment settings, even in a temperature gradient, if both the initial and the final
sound velocities are considered.
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3 Far-Field Approximation

The direct solution to the calibration-free TDoA problem is a difficult road due to
the non-linearity and large problem complexity. To date, approaches are computa-
tionally intensive, or do not consider the minimum case, or are numerically fragile.
Furthermore, if a specific minimum number of receivers and signals is not provided,
depending on the algorithm and the considerations in Section 2.4, typical approaches,
such as optimization, are helpless, as the problem is under-determined.
However, when receivers or signals are not arbitrarily distributed but are subject to

assumptions, statistical and approximative algorithms may be applied. One of these
constraints is the far-field assumption, where a remote origin of signals is assumed.
Then, the direction vector of a signal is identical for all receiving units, which simplifies
the problem immensely. In many cases the computational complexity of approximative
methods is small, compared to approaches to the general problem, so they are capable
to support more elaborate techniques without notable computational effort.
The original approaches of Thrun et al. [44] consider the term far-field with respect

to TDoA as signals of which the distance is infinite. We follow this definition, but we
include also algorithms into this chapter for which their model assumes a distribution
of signals closer than far-field. These still work when the signals are directly beneath
receivers, if at least some of them are approximately aligned with the receivers, for
example the Min/max method, which is described in Section 3.1.
In this chapter we consider localization of unknown receivers by the time differences

of signals from unknown senders, which are assumed far away. Once the locations of
receivers are known, estimating the direction of the signals is straightforward. Let the
known distance vector between two receivers be xi = m1 − mi, where 2 ≤ i ≤ n.
According to the cosine law, in space R2 the time difference τi = T1− Ti depends only
on the angle γi of the signal [37]. In this way, a direction vector u of the signal is
obtained by

cos(γi) = cτi
‖xi‖

= xTi u
‖xi‖ · ‖u‖

⇒ xTi u = cτi . (3.1)

Here, we assume the direction vector normalized by ‖u‖ = 1. Calculating vector u
in space Rp requires at least p − 1 time differences, due to normalization of u. In a
simple linear approach at least p time differences are required to solve the equation
system xTi u = cτi, ignoring the non-linear normalization.
Calculating the direction of signals is robust in the far-field case and allows for neat

applications such as auto-tracking of cameras, as demonstrated in [37]. In contrast,
estimating the range of remote signals is imprecise, due to the missing parallax of
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3 Far-Field Approximation

the distance vectors. In the following methods we do not calculate the signals at all,
and are satisfied with estimating the receivers. Once their positions are known, the
directions of signals may be calculated as described.
In the next sections we discuss two classes of approaches to the far-field approxima-

tion problem. First, we present statistical methods that estimate the distance between
a pair of receivers. They are based on simple evaluation of the observed time differ-
ences, or on statistical analysis of the distribution of timestamps. These methods can
be applied in many cases if at least two receivers and some signals are available. The
quality of the estimation, however, depends heavily on the number of signals and their
distribution.
Second, we present the Ellipsoid TDoA method, which is a more advanced algorithm

to apply to three receivers in the plane and to four receivers in three-dimensional space.
This one receiver less than the required minimum number for the general problem.
As we assume far-field distribution of signals, the equation system is reduced, which
compensates for the missing receiver. The Ellipsoid method uses the fact that signals
that originate from a distance characterize an ellipsoid between three, respectively four
receivers. From the shape of the ellipsoid one can estimate the distances and angles
between the receivers that caused such a distribution of time differences.
All of the described approximation approaches result in determination of the dis-

tances and angles between receivers, not their Cartesian coordinates. Calculating these
is an independent problem widely covered in literature. Due to its significance for us,
we give a short survey of two popular algorithms, which are Multidimensional Scaling
and iterative construction of distance graphs, followed by a discussion of the bipartite
graph problem.

3.1 Min/Max Method

Even if the signals do not actually originate from an infinite distance, an estimation
of the receiver configuration is feasible. We start with a simple approach, where we
relax the far-field assumption of signals to an assumption that a sufficient number of
signals resides in the unit disk with the receivers. Then, we suppose that at least some
of them reside on a line with two receivers, and beyond both receivers.
We have presented a theoretical analysis of the feasibility of distance estimation from

signals distributed in the unit disk in [59, 60]. We defined the ε-critical area of two
nodes m1 and m2 as the set of points p in the plane where holds

‖m1 −m2‖ −
(
‖p−m1‖ − ‖p−m2‖

)
≤ ε . (3.2)

The convex area that is described by this inequality is bounded by a hyperbola,
see Fig. 3.1. If in this critical area signals are produced, then the distance estimation
is accurate up to an absolute error of ε. We showed that these regions are surprisingly
large, which makes distance estimation with signals in the unit disk realistic, given a
sufficient number of signals.
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3.1 Min/Max Method

Figure 3.1: The 0.2-critical areas of two nodes at (−1, 0) and (1, 0) are on the left and right
side of the hyperbolas. [60]

We derive the estimator for the distance of receivers in the following. It is based
on the observation that the maximum time difference between two receivers i and k is
bounded by their distance dik = ‖mi−mk‖. Assume a number ofm signals originating
from the distance in two- or three-dimensional space. The signals j = 1, . . . ,m arrive
at the receivers at times Tij , respectively Tkj . Every receiver maintains its own clock,
so the time difference is shifted by an unknown offset δik. Due to uncertainty in the
measurement process, the observed reception times contain an error, corrupting the
true reception times. We assume that these errors are bounded by εij , εkj ∈ [−ε, ε].
The observed time difference is

τikj = (Tij + εij)− (Tkj + εkj) . (3.3)

The maximum time difference will occur for a signal that is aligned with the axis
through mi and mk, and that resides beyond both receivers. The minimum time is
analogous.

τmax = dik
c

+ δik , τmin = −dik
c

+ δik

Ignoring the fact, that the reception times and the distribution of signals contain
errors, we propose a simple estimator for the distance, based on the convex hull of the
observed measurements:

d̃ik = c

2(τ̂max − τ̂min) . (3.4)

The offset between the receiver clocks is obtained by

δ̃ik = 1
2(τ̂max + τ̂min) . (3.5)

The estimator will underestimate the true distance dik, if no measurements are ob-
served from the receiver axis, outside the receivers, and overestimate the distance in
case of measurement errors.
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i kdik

cτj

j

j

j

Figure 3.2: For a distant signal j the time difference of arrival τ depends only on the angle
of origin γ of the signal according to cos(γj) = cτj

dik
.

Approaches based on the range of time differences were demonstrated by Biswas and
Thrun [47] and by Pertila et al. [38] in practice, where the distances between sensor
motes and mobile phones were estimated. In [48] a distance estimator similar to the
Min/max-method is presented that explicitly considers measurement errors. In the
following we present two distance estimators that are more robust to measurement
uncertainty.

3.2 Statistical Approach

In a typical scenario we refer to two receivers surrounded by a large number of signals
originating from the horizon [51]. We assume that the angles of origin of the signals
are equally distributed, which may be approximately the case for a person standing
in the middle of a thunderstorm, or a pedestrian in a forest surrounded by birdsong.
Given this equal distribution of signal origins we propose a robust estimator for the
distance between a pair of receivers.
Recall that under the assumption of a large distance, the time difference of a signal j

arriving at two receivers i and k in the plane depends only on the angle of the signal γj
with respect to the receivers. Given a signal arriving at the receivers at time τj =
Tij − Tkj the cosine of the angle is cos(γj) = cτj

dik
, where dik is the distance between i

and k, see Fig. 3.2.
We consider the circle sector [−φ, φ] for arbitrary φ ∈ [0, π]. The probability that

the angle γj of any signal is inside the sector is

p(|γj | < |φ|) = φ

2π −
−φ
2π = φ

π
. (3.6)

Analogously, the probability that the time difference of a signal τj is smaller than any
τ ∈

[
−d
c ,

d
c

]
is p(τj < τ) = 1− φ

π . We obtain the cumulative distribution function

F (τ) = 1− φ

π

(3.1)= 1− 1
π

arccos
(
cτ

d

)
. (3.7)
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Figure 3.3: Left: The cumulative distribution function F (τ). Right: The probability density

function f(τ) reminds of a bathtub. [51]

The derivative of F is the probability density function

f(τ) = 1

π
√

d2

c2 − τ2
, (3.8)

which is defined in the domain
(
−d
c ,

d
c

)
.

The limit of the density function f(τ) is limτ→± d
c

= +∞, reminding of the shape of
a bathtub, see Fig. 3.3. This also suggests that the proportion of signals with maxi-
mum or minimum time difference is comparatively high, which supports the Min/max
approach from the previous section.

3.2.1 Variance Estimator

The variance of the signal distribution can be used as an estimator for the distance
between the two receivers. For a random variable X with continuous probability func-
tion h(x) the variance is defined as

Var(X) =
∫

(x− µ)2 h(x) dx .

As we assume that the signals are equally distributed and the receivers are synchro-
nized, i.e. the offset of their clocks is zero, the mean µ is zero. So, the variance of the
signals in the domain

(
−d
c ,

d
c

)
is

σ2
τ =

d
c∫

− d
c

τ2f(τ) dτ = d2

2c2 , (c > 0, d > 0) , (3.9)

from which we derive an estimator for the distance d̃ = c
√

2σ2
τ .
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Figure 3.4: Numerical evaluation of the Min/max, the Variance, and the Arc Cosine estima-
tors. The distance between the two receivers is 4m. Left: Violation of the assumption
of distant signals. Right: Violation of the assumption of equal distribution of the signals.
Note that the Min/max estimator is not robust against TDoA errors (not in picture). [51]

The statistical estimator based on the variance of the observed time differences is
robust, given a sufficient number of signals. However, when the assumption of equal
distribution of the signals at the horizon is violated, the variance method is prone
to misestimation. The variance estimator tends to overestimation if the signals are
cumulated at the elongation of the axis of both receivers, and to underestimation if
they are cumulated perpendicular to the receivers.

3.2.2 Arc Cosine Estimator

We propose an estimator to reconstruct the distribution from the observed time dif-
ferences, reducing the susceptibility to misestimation. By sorting the time differ-
ences τj by ascending value, and assigning an index Ij (1 ≤ j ≤ m) we obtain coordi-
nates (τj , 1

mIj), which correspond to the cumulated distribution F (x). Knowing that
sin(arccos(x)) =

√
1− x2, we reformulate F (x) in the following way:

Ij = 1− 1
π

arccos
(
c

d
τj

)
⇒

(
1− sin ((1− Ij)π)2

)
︸ ︷︷ ︸

q

d2

︸︷︷︸
u

= τ2
j c

2

︸︷︷︸
b

Using linear regression we obtain the best fit of F (x) to the observed signals, with
respect to minimizing the residuals, cf. Fig. 3.3. Given m ≥ 1 signals we obtain a
system of equations. Using the least squares method we solve(

qTq
)

u = qTb ⇒ u =
(
qTq

)−1 (
qTb

)
,

where the parameter vector u1 = u yields the solution d̃ = √u1.
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Figure 3.5: Scheme of the Ellipsoid TDoA method. The time differences τ1 and τ2 of distant
signal events s for three receivers describe an ellipse in space R2. From this ellipse the
receiver distances d1 and d2 and the angle α can be calculated. [61]

Using numeric simulation we have evaluated the precision and robustness of the
three estimators, violating the presupposed conditions individually, which are the as-
sumption of distant signals, the number of signals, the precision of the observations,
and the assumption of equal distribution of the signals [51].
According to the evaluation, distance approximation of distant signals is compu-

tationally fast and comparatively precise, even if the assumptions are only roughly
satisfied. The Arc Cosine estimator is superior to the other approaches, as it is robust
to timing errors and to adverse distribution of the signals, cf. Fig. 3.4.

3.3 The Ellipsoid TDoA Method

The scenario of receivers surrounded by signals from a very large distance is particular,
as a solution to the problem can be calculated in closed form. Some approaches exist
in literature where the problem has been considered. Thrun proposed one of the
earliest approaches to the problem [44]. In the paper, affine geometry is used to find
the distances of n receivers in the plane, however they are restricted to synchronized
receivers. Based on the approach of Thrun, an analysis of the problem and its failure
modes in three dimensions has been published in a recent paper [45]. In another
recent publication the authors calculate the positions of unsynchronized antennas that
receive signals from distant transmitters [46]. This algorithm tends towards a complete
solution of the far-field approximation problem, but five receivers in three dimensions
are required, which is more than the minimum case.
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3 Far-Field Approximation

In our approach, the Ellipsoid TDoA method [61, 62], we propose a solution to the
minimum case of three synchronized receivers and three signals in two dimensions,
and to three dimensions, where we require the minimum numbers of four receivers and
six signals. In addition, our approach is feasible for unsynchronized receivers, which
is straightforward by regression of a general ellipsoid equation. Then, the required
number of signals increases to five in the plane, and nine in three dimensions, which
is the theoretical minimum case.
In the following, we present a geometrical description of the TDoA distribution of

distant signals in the plane to calculate the distances between three receivers.

3.3.1 The Receiver Triangle

Consider three receivers in a triangle 4m1m2m3 in R2, where d1 = ‖m1 −m2‖ and
d2 = ‖m1−m3‖ denote the distances, and α denotes the angle ∠m1m2m3 between the
line segments m1m2 and m1m3.
A distant signal is obtained by the receivers at absolute times T1, T2, and T3, that

yield the time differences τ1 = T1 − T2 and τ2 = T1 − T3. As the signal origins are far
away, we describe the signal angle as

cos(γ1) = cτ1
d1

and cos(γ2) = cτ2
d2

.

We define γ = γ1 +α/2 = γ2−α/2 as the angle between s and the bisection of m1m2
and m1m3, cf. Fig. 3.2. We combine tuples of time differences to coordinates (x, y) as
follows:

x = cτ1 = d1 cos(γ1) = d1 cos(γ − α/2)
y = cτ2 = d2 cos(γ2) = d2 cos(γ + α/2) (3.10)

By combining the equations we obtain an ellipse equation, which we write in the
normalized form

1
d2

1 sin(α)2︸ ︷︷ ︸
a

x2 + 1
d2

2 sin(α)2︸ ︷︷ ︸
b

y2 + −2 cos(α)
d1d2 sin(α)2︸ ︷︷ ︸

c

xy = 1 . (3.11)

In order to allow the performed transformations we assume that α /∈ {0, π}, i.e. the
receivers do not reside on a line.
Equation (3.11) can be reformulated such that, given the three coefficients a, b, c, we

can solve for the parameters d1, d2, and α, which uniquely determine the triangle of
receivers 4m1m2m3. We obtain the following solutions:

d1 = 2

√
b

4ab− c2 , d2 = 2
√

a

4ab− c2 , cos(α) = −c
2
√
ab

(3.12)

The next step is to solve the ellipse equation for the unknown coefficients a, b, and c.
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3.3 The Ellipsoid TDoA Method

3.3.2 Solving the Equation System

To find a unique solution to three unknown values d1, d2, and α we require at least
three signals from different directions, if the receivers are synchronized, forming tuples
(xj , yj), where 1 ≤ j ≤ m. The measurements form an equation system with m ≥ 3
equations of the form

a xj + b y2
j + c xjyj = 1 . (3.13)

We use linear regression to calculate the three parameters. The Eqns. (3.13) can be
written in matrix notation asx

2
1 y2

1 x1y1
...

...
...

x2
m y2

m xmym


︸ ︷︷ ︸

Q

ab
c


︸ ︷︷ ︸

u

= ~1

If m > 3 we use the least squares method to solve for vector u:(
QTQ

)
u = QT~1 ⇒ u =

(
QTQ

)−1 (
QT~1

)
(3.14)

If m = 3 we solve directly by u = Q−1~1. If m < 3 the system is under-determined
and cannot be solved by this method. Now, we use the parameters a, b, and c in
Eqns. (3.12) to determine the distances in the receiver triangle.

3.3.3 Unsynchronized Receivers

If the receivers have no common time base then the relative times τ1 and τ2 are shifted
by constant offsets δ1 and δ2. This corresponds to the center of the ellipse being shifted
by a vector (δ1, δ2)T . The shifted ellipse is described by a general ellipse equation

a x2
j + b y2

j + c xjyj + d xj + e yj = 1 (3.15)

We use regression of at least m ≥ 5 signals to solve for the equation system

x
2
1 y2

1 x1y1 x1 y1
...

...
...

...
...

x2
m y2

m xmym xm ym


︸ ︷︷ ︸

Q


a
b
c
d
e


︸ ︷︷ ︸

u

= ~1

We obtain the parameter vector u using Eq. (3.14) as in the synchronous case. We
apply a transformation to the general description of the ellipse into a translation in-
variant representation, so we can extract coefficients â, b̂, ĉ, corresponding to an ellipse
of the form

â (xj − δ1)2 + b̂ (yj − δ2)2 + ĉ (xj − δ1)(yj − δ2) = 1 . (3.16)
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Figure 3.6: Scheme of the Ellipsoid method in three dimensions. Three distances d2, d3, d4,
and three angles ϕ3, ϕ4, and λ4 define a tetrahedron of four receivers m1,m2,m3,m4.
A signal arrives from the angles ϕs, λs. [63]

This transformation to translation invariant coefficients is calculated by

â = a
K

L
, b̂ = b

K

L
, ĉ = c

K

L
, where

K = 4ab− c2 and L = ae2 + bd2 − c2 + 4ab− cde , if L 6= 0.

As in the synchronous case, we use the Equations (3.12) to compute the receiver trian-
gle by inserting the parameters â, b̂, ĉ. Additionally, we can calculate the synchroniza-
tion offsets between the receivers m1 and m2 by δ1 = −(2bd− ce) 1

K and between m1
and m3 by δ2 = −(2ae− cd) 1

K , if K 6= 0.
Once the angle α and the lengths of the adjacent edges are known, we calculate the

Cartesian receiver coordinates as described in Section 3.4. If we want, we can calculate
the length of the remaining edge by the the cosine rule in the arbitrary triangle:

d3 = ‖m1 −m3‖ =
√
d2

1 + d2
2 − 2d1d2 cos(α)

Now, we can determine the direction of the signals from the triangle by multilateration
as described in Eq. (3.1).

3.3.4 A Solution in Three Dimensions

The Ellipsoid TDoA method can be extended to three dimensions [63]. Consider four
receivers m1, m2, m3, m4 that form a tetrahedron and distant emitters that send sig-
nals at discrete times. The tetrahedron is defined by three distances d2 = ‖m1 −m2‖,
d3 = ‖m1 − m3‖, and d4 = ‖m1 − m4‖, two height angles ϕ3 = ∠m2m1m3 , ϕ4 =
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3.3 The Ellipsoid TDoA Method

∠m2m1m4 , and the azimuth angle λ4 = ∠a3m1a4 , see Fig. 3.6. Signals arrive from
the angles ϕs = ∠m2m1s and λs = ∠a3m1as , uniquely determining the direction vector.
Furthermore we define α = ∠m3m1m4 which we need later. The auxiliary points a3, a4,
and as are projections of m3, m4, and s respectively, onto the plane orthogonal
to m1m2 through m1.
Similar to the two-dimensional case we define the time differences τi = T1 − Ti and

the angles γ2 = ∠m2m1s, γ3 = ∠m3m1s, and γ4 = ∠m4m1s. We obtain

x = cτ2 = d2 cos(γ2)
y = cτ3 = d3 cos(γ3)
z = cτ4 = d4 cos(γ4) (3.17)

These triples (x, y, z) describe an ellipsoid in space R3. Combining the equations we
derive the ellipsoid equation

(ax)2 + (by + cy)2 + (dx+ ey + fz)2 = 1 , (3.18)

where

a = 1
d2

b = − cos(ϕ3)
d2 sin(ϕ3)

c = 1
d3 sin(ϕ3)

d = − cos(ϕ4)
d2 sin(ϕ4) sin(λ4) −

cos(ϕ3) cos(λ4)
d2 sin(ϕ3) sin(λ4)

e = cos(λ4)
d3 sin(ϕ3) sin(λ4)

f = 1
d4 sin(ϕ4) sin(λ4) .

We compute the ellipsoid parameters by regression analogous to the two-dimensional
case. For three dimensions a minimum of six signal sources is required for a unique
solution. For higher numbers of signals the least squares method is used as described
in Section 3.3.2. In case the receivers are not synchronized the minimum number of
signals is increased to nine.

3.3.5 Covariance Representation

An elegant representation can be derived from the knowledge that an ellipsoid, which
is formed by time differences between three receivers, respectively four receivers, corre-
sponds to a covariance matrix [64]. If we know the covariance matrix, we can directly
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3 Far-Field Approximation

extract the parameters that generate the ellipsoid. In the following we describe the
procedure for space R3 with the motivation to replace the inconvenient notation in
Section 3.3.4. The two-dimensional case is simpler and can be obtained by setting
irrelevant terms to zero.
Recall that the mean µ and covariance Σ of a distribution X in R3 are defined as

µ =

µ1
µ2
µ3

 = E
(
X
)
, Σ =

σ2
1 v1 v2
v1 σ2

2 v3
v2 v3 σ2

3

 = E
(
X2)− E

(
X
)2

For matrix Σ holds that xTΣx ≥ 0 for all x ∈ R3, i.e. the matrix is positive semidef-
inite. The matrix characterizes a covariance ellipsoid, where all points on the ellipse
have the same constant probability density [65]. We derive the following definition.

Definition 2 The kΣ-ellipsoid for covariance matrix Σ is the ellipsoid with center µ
where for all points x holds

dMah(x,µ,Σ) =
√

(x− µ)TΣ−1(x− µ) = k .

The measure dMah(x,µ,Σ) is known as the Mahalanobis distance. The Σ-ellipsoid
is often used in probabilistic robotics for Gaussian distributed filters to visualize the
uncertainty of an estimation. We propose the following theorem.

Theorem 2 The time differences of distant signals arriving at four receivers m1, m2,
m3, m4 in space R3 form a 3Σ̂-ellipsoid with covariance matrix

Σ̂ = 1
3

 d2
2 d2d3 cos(ϕ3) d2d4 cos(ϕ4)

d2d3 cos(ϕ3) d2
3 d3d4 cos(α)

d2d4 cos(ϕ4) d3d4 cos(α) d2
4

 .

Therefore, according to Theorem 2, the distances and angles in the tetrahedron of
receivers are directly characterized by the coefficients of the covariance matrix. The
distances are calculated by

d2 =
√

3σ1 , d3 =
√

3σ2 , d4 =
√

3σ3 .

The angles of the tetrahedron are calculated from the correlation coefficients by

cos(ϕ3) = v1
σ1σ2

, cos(ϕ4) = v2
σ1σ3

, cos(α) = v3
σ2σ3

.

In order to prove Theorem 2 we require the following piece of information about
covariance ellipsoids.

Lemma 4 The covariance of a Σ-ellipsoid in R3 is Σ̂ = 1
3Σ. In the two-dimensional

case is Σ̂ = 1
2Σ the covariance of a Σ-ellipse.
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3.3 The Ellipsoid TDoA Method

The lemma can be verified by integration over all points of the Σ-ellipsoid. In the
following we prove Theorem 2 and calculate the covariance of the ellipsoid of time
differences.
Proof: According to the Eqns (3.17), the time differences in the Ellipsoid method
depend on the distance between two receivers and on the angle of a signal. For sim-
plicity, we assume that the receivers are synchronized. If they are not, i.e. the ellipse
center is displaced from the origin, use the technique described in the next paragraph
to synchronize the receivers and to center the ellipse, therefore eliminate the mean of
the ellipsoid distribution of time differences.
Now, consider the continuous distribution of the synchronized time differences X =
{(x, y, z)T } over uniformly distributed directions of origin. A uniform distribution of
signal origins ŝ in space R3 with basis axes (x̂, ŷ, ẑ) can be created by points

ŝ =

r cos(λ)
r sin(λ)

k

 , (3.19)

where λ ∈ [0, 2π] and k ∈ [−1, 1] are uniformly distributed random variables, and r =√
1− k2. By such a choice of λ and k holds that the points ŝ are uniformly distributed

on the surface of the unit sphere. The density functions of the uniform distributions
are f(k) = 1

2 and g(λ) = 1
2π , which can be combined to h(λ, k) = (g ◦ f)(λ, k) = 1

4π .
Without loss of generality, we align the tetrahedron such that m1 is the origin,

m1m2 is parallel to the ẑ-axis, and m3 resides on the x̂/ẑ-plane. Assuming that the
sphere is large, i.e. the signals ŝ originate from far away, the incidence angles of the
signals are

λs = λ and cos(ϕs) = k . (3.20)

By using spherical trigonometry we calculate the time differences with respect to the
tetrahedron angles as follows

x

d2
= cos(γ2) = cos(ϕs)

y

d3
= cos(γ3) = cos(ϕ3) cos(ϕs) + sin(ϕ3) sin(ϕs) cos(λs)

z

d4
= cos(γ4) = cos(ϕ4) cos(ϕs) + sin(ϕ4) sin(ϕs) cos(λs − λ4) . (3.21)

Note that the incidence angles γ2, γ3, γ4, are not uniformly distributed in the three-
dimensional case, in contrast to the planar case. Furthermore, we express α in terms
of the given angles as

cos(α) = sin(ϕ3) sin(ϕ4) cos(λ4) + cos(ϕ3) cos(ϕ4) . (3.22)
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3 Far-Field Approximation

Using the uniform distribution of signals (3.20) and the time differences (x, y, z) from
Eqns. (3.21) that follow, we calculate the covariance matrix by integration as follows:

Σ̂ =
2π∫
0

1∫
−1

X2 h(γ, k) dk dλ

= h(γ, k)
2π∫
0

1∫
−1

xy
z


2

dk dλ

= h(γ, k)
2π∫
0

1∫
−1

x2 xy xz
xy y2 yz
xz yz z2

 dk dλ

(3.20)−(3.22)= 1
3

 d2
2 d2d3 cos(ϕ3) d2d4 cos(ϕ4)

d2d3 cos(ϕ3) d2
3 d3d4 cos(α)

d2d4 cos(ϕ4) d3d4 cos(α) d2
4

 . (3.23)

It remains to show that the distribution of time differences is actually an ellipsoid.
From Eqns. (3.11) and (3.18) we see that the time difference tuples describe a quadric
hypersurface in space R2, respectively R3. As time differences are bounded by the
distance of the receivers the type of quadric is restricted to ellipsoids. Other quadric
shapes that are described by such polynomials, such as hyperboloids and paraboloids,
are not bounded, therefore do not apply. We can affirm this fact by verifying that
dMah(x,~0, Σ̂) = 1 as defined in Def. 2 for all time differences x = (x, y, z)T . �

3.3.6 Transformation of the Covariance Matrix

We describe now the transformation of parameters from the regression polynomial to
the parameters of the covariance matrix, which is done by basic math [64]. We show
the transformation exemplarily in three dimensions.
In space R3 an ellipsoid can be represented by the matrix form

xTΣ−1x = 1 , (3.24)

where x = (x1, x2, x3)T is a vector and Σ is a symmetric positive definite matrix

Σ =

σ2
1 v1 v2
v1 σ2

2 v3
v2 v3 σ2

3

 .

Under the assumption of a zero-mean ellipsoid, i.e. the receivers are synchronized, the
regression of a system of ellipsoid polynomial equations

ax2
1 + bx2

2 + cx2
3 + dx1x2 + ex1x3 + fx2x3 = 1 (3.25)
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3.3 The Ellipsoid TDoA Method

yields ellipsoid parameters a to f . We convert the parameter set and extract the
parameters of the covariance matrix by substitution in Eq. (3.24) by

Z = be2 + cd2 + af2 − 4abc− def
σ2

1 = (f2 − 4bc) / Z
σ2

2 = (e2 − 4ac) / Z
σ2

3 = (d2 − 4ab) / Z
v1 = (2cd− ef) / Z
v2 = (2be− df) / Z
v3 = (2af − de) / Z (3.26)

In case the receivers are not synchronized, the ellipsoid is shifted to zero-mean by
converting the general ellipsoid polynomial equation to a translation-invariant form.
In three dimensions the general form is

ax2
1 + bx2

2 + cx2
3 + dx1x2 + ex1x3 + fx2x3 + gx1 + hx2 + jx3 = 1 . (3.27)

Convert to the following translation-invariant form

â(x1 − û)2 + b̂(x2 − v̂)2 + ĉ(x3 − ŵ)2

+ d̂(x1 − û)(x2 − v̂) + ê(x1 − û)(x3 − ŵ) + f̂(x2 − v̂)(x3 − ŵ) = 1 . (3.28)

Calculating â to f̂ and û, v̂, ŵ from the coefficients of Eq. (3.27) is a lengthy equation.
It can be calculated using a computer algebra software by expansion of Eq. (3.28)
and substitution of the constant term. The coefficients â to f̂ are converted for the
covariance matrix using Eqns. (3.26). The coefficient vector (û, v̂, ŵ)T equals the center
point of the ellipse and the synchronization offset of the receivers.
Once the coefficients of the covariance matrix are known, the distances and angles

of the tetrahedron of receivers can be calculated as described. As the lengths of the
three edges and the three angles are known, the tetrahedron is rigid. The construction
of a triangle in two-dimensional space is a simpler subproblem where the z-term of the
transformation is omitted.

3.3.7 Issues of Regression

The direct computation of the ellipsoid using least squares regression is a simple and
fast approach, yet it is not trouble-free in terms of robustness. In some cases the
regression fails to return an elliptic curve, which is due to the fact that the polynomial
Eq. (3.25), respectively Eq. (3.13) in R2, does not only represent an ellipsoid but,
depending on the parameters a to f , may represent a different quadric hypersurface.
In [66] an iterative scheme for the two-dimensional case is proposed to minimize

the Euclidean distance between points and the ellipse, however this is computationally
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intensive. From Eq. (3.11) one can derive a side condition to test if the result of the
regression is successful. Eq. (3.13) describes an ellipse in R2 if K = 1

4ab−c2 > 0. One
can incorporate such a side condition into a linear regression scheme, as described
in [67] for ellipses. In three dimensions the case is more complex. Inspired by the
approach in Section 3.3.5 one may calculate the eigenvalues of the covariance matrix,
which must all be greater or equal to zero, however this is a complicated side condition
to include into regression. A closed form approach for three dimensions is described
in [68] for ellipsoids. This may solve the regression issue in most cases.
As an alternative we characterize the ellipsoid by calculating the mean and the

covariance of the time difference measures. In contrast to a regression matrix, such
an actual covariance matrix is dependent on the distribution of signals, and therefore
only an approximation. Consider a distribution of m time differences X = {xj} =
{(xj , yj , zj)T } that approximately describe an ellipsoid. We calculate the mean µ̃ and
covariance Σ̃ of the set of time differences by

µ̃ = 1
m

m∑
j=1

xj , Σ̃ = 1
m

m∑
j=1

(
xj − µ̃

)(
xj − µ̃

)T
.

The 3Σ̃-ellipsoid is an approximation to the ellipsoid of time differences compara-
ble to the 3Σ̂-ellipsoid from the previous section. Again, we extract the distances
and angles as described. The time offsets equal the mean of the time differences
(δ1, δ2, δ3) = µ̃T . In case the receivers are synchronized we set µ̃ = (0, 0, 0)T . Alterna-
tively, we obtain from Σ̃ the parameter vector that describes the shape of the ellipsoid
for the “old” approach by an inverse transformation of the coefficients.

3.3.8 Numerical Evaluation

For the Ellipsoid TDoA method we assume that signals originate from so far away
that the direction vectors of arrival at different receivers become identical. If this
assumption is violated, one may suppose that errors are induced when calculating the
receivers. Another source of error is timing uncertainty during detection of the signals
by the receivers, the TDoA error that we assume Gaussian distributed. We have
run numerical simulations in space R2 in an computer algebra system to quantify the
behavior of the algorithm [61]. In these tests, we vary parameters such as the distance
of signal sources and the error of timing.
For every test cycle we randomly placed three receivers on a circle around the origin

with a radius of 2.3m. By this setting, we obtain a large number of different triangle
shapes, in particular they are not necessarily equal-sided or equilateral.
Now we simulate m senders located on a circle with a specific radius, emitting a

signal in a straight line towards every receiver mi. The signals arrive at times Tij
according to the signal propagation equation

Tij = 1
c‖mi − sj‖+ δi + εi , (3.29)
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Figure 3.7: Evaluation of 12 signals arriving at three unsynchronized receivers in the plane.
The mean errors of the distance estimation d1 and d2 (left) and of the angle α (right)
diminish, if the signals are just about twice as far away as the receivers from each other.
The black bars denote the standard deviation. [61]

where i = {1, 2, 3} and 1 ≤ j ≤ m. Here, sj is the location of the sender j on the
circle, δi is the offset of the receiver clock, simulating unsynchronized receivers, and εi
is a Gaussian error variable, simulating timing uncertainty of receivers. From the
absolute values we calculate tuples of time differences (τ1, τ2)j = (T2j −T1j , T3j −T1j).
As we assume unsynchronized receivers, the ellipse described by the m tuples is shifted
from the origin.
We ran a set of 1000 cycles with different distances of 12 signal sources and ana-

lyzed the errors of the estimated distances d1, d2, and angle α, compared to the true
values. In the evaluation we see that if the signals occur from a distance of about 8m
on, which is only about twice the distance of the receivers, the errors of d1 and d2
diminish (Fig. 3.7). Similar behavior was observed for the angle α where the standard
deviation of errors clearly decreases.
However, if the signals occur from very close, far-field assumption of the signals is

violated, and the distances d1 and d2 are clearly underestimated. Interesting is also the
case when the signal radius is only slightly larger than the circle on which the receivers
reside. Then, the shape described by the signals is deformed, as shown in Fig. 3.8.
Furthermore, we have run experiments with simulated Gaussian timing error, now

with the signals originating from very far away. Due to the regression of m signal
measurements the algorithm is comparatively robust against these errors, in contrast
to for instance the min/max-method from the previous section. Given a sufficient
number of at least 8 signals, and reasonable TDoA errors, we obtain estimation errors
is in the range of centimeters. For details on the TDoA error evaluation see [61].
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Figure 3.8: Left: If the signals originate from close distance (here, a radius of 5m), the shape
is deformed (green), compared to the correct ellipse from distant signals (black). Right:
Signals in a real-world experiment arriving only from a small sector, from a distance of
13m. The correct ellipse can still be calculated. [61]

3.3.9 Real-World Evaluation

Using a network of connected laptops and Apple iPhones we have executed some
experiments in an indoor and an outdoor setting. In these experiments we recorded
short noisy audio events via the built-in microphones of the laptops, and detect the
time of the signals. The software we used is described in Section 7.1.
In the indoor experiment we demonstrated that the Ellipsoid method does not rely

on well-distributed signal origins, but is feasible even if signals originate only from a
small sector, see Fig. 3.8. For more details of the indoor experiment refer to [61].
In a second experiment we distributed four laptops and four iPhones randomly on

a green field on our campus and measured their positions by hand as a reference, see
Fig. 3.9. A pedestrian walked around the group of devices, starting in the vicinity,
up to a distance of 80m, generating noisy clap signals with two wooden bars every
few meters. These were recorded by the devices and exchanged in the network. With
the obtained TDoA data the algorithm calculated the distances of the eight devices
in groups of three using the Ellipsoid TDoA method. For n = 8 devices we selected
n(n− 1)(n− 2) = 336 subsets and calculated the edges, which includes of course many
symmetric cases. Given these distances, we calculated the coordinates of the devices
by optimization of

arg min
mi,mk

n∑
i,k

(
‖mi −mk‖ − d̃ik

)2
,

where d̃ik is the estimated distance between receiver i and k. We obtained an error of
the estimated receiver positions of only 0.38m (σ = 0.14m).
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Figure 3.9: Outdoor experiments. Left: A pedestrian walks around a group of four iPhones
and four randomly placed laptops, clapping two wooden bars. Right: The error of the
estimated receiver positions is only 0.38m (σ = 0.14m). [61]

3.4 Coordinates From Distances

A common characteristic of the previously presented approximation approaches and
of the Ellipsoid TDoA method is that only distances are calculated, not the Cartesian
coordinates between receivers in the plane or in three-dimensional space. Similarly,
in localization approaches based on the time of arrival (ToA) or the round-trip-time
of a signal, the absolute distance to a target is calculated by the signal velocity. Or
in case of using the received signal strength indication (RSSI) of radio signals, the
distance between two antennas is estimated by a path loss model based on the Friis
transmission equation.
Consider the distance problem as a problem of multidimensional scaling (MDS),

where the Euclidean norm is used as a metric. Given is a graph of n nodes, and
distances dij between nodes i and j, where 1 ≤ i, j ≤ n. We define the MDS problem
as a system of equations

‖xi − xj‖ ≈ dij , (3.30)

where node positions xi,xj ∈ Rp are an approximation to the equation system. In our
case we choose p ∈ {2, 3} for the dimension.

3.4.1 Classical Multidimensional Scaling

In the classical MDS approach a solution of point vectors xi is calculated by matrix de-
composition of a matrix of distances D = [dij ] (i, j ≤ n), which is self-similar (dii = 0)
and symmetric (dij = dji). By choosing the p < n largest vectors of eigenfactorization,
an embedding of xi into p-dimensional space is obtained.
We follow the description of MDS given in [19]. First, calculate the Gramian matrix

of D, for which the row mean and column mean of D is subtracted, and the overall
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mean is added. This is done by a matrix H = In×n − 1
n
~1n×n, where I is the identity

matrix and ~1 is a matrix of values 1, and the operation A = −1
2HD2H. Now, calculate

the spectral decomposition A (spec)= UΣUT , which yields an orthogonal matrix of eigen-
vectors U = (u1, . . . ,un), and the diagonal matrix Σ, containing the eigenvalues λi.
Choose the p largest eigenvalues λk1 > . . . > λkp , and their according eigenvectors,
and assemble a matrix

Xp×n =
(√

λk1 uk1 , . . . ,
√
λkp ukp

)T
.

The point vectors xi that we obtain from X, are the optimal linear approximation
to (3.30) in the least squares sense [19]. The MDS method is fast, compared to iterative
methods, as it can be calculated at most in time O(n3), which is required for the
matrix decomposition. However, the algorithm does not yield a solution if the graph
of measurements is incomplete, as the case of missing measurements dij cannot be
handled in the distance matrix D. In cases of incomplete measurement graphs we
require an alternative.

3.4.2 Iterative Construction

In a naive approach we iteratively build the network of n nodes from given distances dij
between nodes i and j [60]. Such an algorithm is feasible for trilateration graphs [69],
i.e. rigid graphs with minimum degree p+1 in space Rp. For simplicity we demonstrate
and discuss the approach in two-dimensional space, however it can be extended to three
dimensions.
We start by choosing two arbitrary nodes i and j, probably the nodes with the

largest distance, and connect them. We place the first node xi at the origin and the
second node xj at (dij , 0). Now, we choose a third node k and calculate the two
solutions xk = (cos(α) dij ,± sin(α) dij), where cos(α) = d2

ij+d2
ik−d

2
jk

2dijdik
. Without loss of

generality, we choose the node in the positive quadrant. We know three nodes now,
so any rotation and mirror symmetries of the graph are eliminated, if the nodes are in
general position.
To calculate the next node l, we choose any two of the previous nodes î and ĵ and

solve the equation system ‖xl − xî‖ = dl̂i and ‖xl − xĵ‖ = dlĵ . By transforming the
coordinates, such that xî is the origin and xî resides on the x-axis, we can directly
calculate the two solutions x(1)

l and x(2)
l of the quadratic system. By comparing the

distance errors ‖x(1)
l −xk̂‖−dlk̂ and ‖x(2)

l −xk̂‖−dlk̂ of another already known node k̂
we can decide, which of the two solutions is correct, if the error of distance measures is
sufficiently small. In this way, we can iteratively calculate all other nodes and build the
complete network in time O(n). Besides from the fast calculation, one may calculate
an upper bound of the error by describing the loss of localization quality in every
iteration [60].
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3.4.3 Bipartite Distance Graphs

Unfortunately, the iterative construction algorithm is not feasible in the time-of-arrival
problem of distinct senders and receivers. Here, the graph structure is a bipartite
graph Gn,m = (M,S,E), where the vertices are disjoint sets M = {mi} and S = {sj}.
The vertices are connected by edges (mi, sj), iff we know the distance dij (1 ≤ i ≤ n,
1 ≤ j ≤ m).
Bipartite graphs can be rigid and unique, then only one solution exists to equation

system (3.30), except for congruent transformations. According to [4] and [70] they
are rigid for general positions of vertices if n,m ≥ 3. However, as a general property
of bipartite graphs, they do not contain cycles of odd length, so no initial triangle can
exist for iterative construction, from which we continue to the other nodes.
One may resort to iterative optimization as an alternative. In case of the times-of-

arrival problem, which yields a bipartite graph of distances, neither classical multidi-
mensional scaling is feasible, as the graph is not complete, nor can we use iterative
construction of the node positions. Instead, optimization is feasible for a problem of
the form

arg min
mi,sj

n∑
i=1

m∑
j=1

(
‖mi − sj‖ − dij

)2
,

where dij are distance measurements between a sender sj and a receiver mi.
For optimization methods may be used that rely on the first-order derivative such as

gradient descent or spring relaxation, where dij represents the target length of a spring.
Both approaches are discussed in detail for the problem of hyperbolic localization in the
next chapter, which is a related problem. A framework for general graph optimization
is presented in [71].
In both problems, distance multilateration and hyperbolic localization, the exis-

tence of a unique solution and the probability to miss the global minimum of the
error function are an issue. For the problem of distance graphs the conditions for
rigidity [4, 69, 70] and the problem of a solution in large graphs [25, 26] have been
thoroughly discussed in literature.
A closed-form approach was suggested by Pollefeys [42], who proposed an approach

based on matrix factorization to calculate the receiver and signal positions, once the
signal times are known, which renders the problem effectively a bipartite graph prob-
lem. Yet the algorithm seems to induce additional error of a factor of ten into the
calculated positions. Another approach was presented by Crocco et al. [72, 73] where
they assume a signal position to coincide with a receiver position.
In a recent approach [74] the ToA bipartite graph problem is analyzed in detail

and the minimum problem is solved in closed form. Such linear approaches tend to
induce further error into the graph, so it is advisable to refine the results by non-linear
least-squares optimization.
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3.5 Summary

Approximative approaches provide a fast answer to the problem of time differences of
arrival. In all of the proposed algorithms receiver positions are calculated in polyno-
mial time, without the need for cumbersome iteration or search algorithms that require
vast amounts of CPU time and energy. Once the receivers are determined, either the
directions or the positions of signals can be calculated, using trigonometry or ordinary
TDoA multilateration, respectively. Furthermore, a statistical approximation may be
available for only two receivers, a far-field approximation requires only three, respec-
tively four receivers, depending on the dimension. With small effort approximation
algorithms can be applied when no synchronization between receivers is available.
When we can rely on certain assumptions, such as the distance and distributions

of signals, or even just a high number of arbitrary signals, we have demonstrated
that approximation algorithms achieve high precision of localization. In a real-world
experiment using the Ellipsoid TDoA method we have obtained the positions of laptops
up to an error of 38 cm, which is less than 2 % in an area of 25×20m. Even if the
assumptions on the signals are not perfectly satisfied, we obtain reasonable results.
And still, approximation is not a solution to the general TDoA problem. For in-

stance, the minimum case of four receivers and only few signals at general positions,
as described in Section 2.4, is not well-treated by the proposed algorithms. In the
next chapter we discuss iterative optimization as an approach that yields a solution to
general settings of the TDoA problem in most cases.
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The quality of approximative solutions under the far-field assumption degrades if sig-
nals are rare or in the vicinity of receivers. In the following we address the problem of
finding an exact solution to the TDoA equation system. Because of the high number of
at least eighteen quadratic equations that are required for unique determination of the
equation system, and the large number of quadratic terms, the existence of an algebraic
formulation of the solution is doubtful. Due to the non-linearity and non-convexity of
the equation system we use non-linear iterative optimization to approximate a numer-
ical solution up to floating point precision.
We present two algorithm classes of local optimization to conquer the problem. The

first two algorithms are based on evaluation of the gradient of the error function,
where we derive the Jacobian matrix for anchor-free TDoA localization. The gradient
descent method and the Gauss-Newton algorithm that rely on the Jacobian are the
standard approaches to non-linear optimization. Many sophisticated optimization al-
gorithms are based on these, such as the Levenberg-Marquardt [75] and the Gelfand
algorithm [76]. Second, we propose an iterative algorithm tailored to the TDoA prob-
lem which is based on a physical mass-spring simulation. The Iterative Cone Alignment
optimizes a TDoA error function by relaxation of springs that represent the time con-
straints of the error function.

4.1 First-Order Gradient Methods

An common approach of local optimization to the TDoA problem is iterative update
based on the gradient of an error function. We introduce gradient descent and the
Gauss-Newton method, two first-order methods that use the derivative of the system
of hyperbolic error equations, the Jacobian matrix.

4.1.1 The Gradient Descent Method

Such methods have been considered in literature, regarding this problem. Biswas &
Thrun represent the problem of signal and receiver localization using TDoA as a
Bayesian network [41]. They assume a Gaussian model of measurement errors and
optimize the signals and receivers as parameters in a likelihood maximization man-
ner. Because of monotony considerations, and because of the assumption of Gaussian
probability, the probabilistic model effectively reduces to a problem of minimization of
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quadratic error, cf. Eq. 8 in the paper [41]1. However, we were not satisfied with the
comment of the authors that “gradient descent may get stuck in local minima”, and
we felt that deeper insight into the problem is required.
Biswas & Thrun consider the quadratic objective

arg min
mi,sj ,tj

n∑
i=1

m∑
j=1

(‖mi − sj‖ − c (Tij − tj))2 ,

where they pursue to find solutions for receivers mi, senders sj in space Rp, where
p = {2, 3}, and send times of the signals tj . They obtain an equation system of
(p+ 1)m+ pn unknown variables and mn equations or less, if signals were missed by
one or more receivers.
We use a hyperbolic system of equations instead, which we obtain by combining the

i-th and the first equation, see [5, 54] and Section 2.2. In this way the signal time is
eliminated, reducing the system bym variables andm equations, so we obtain p(m+n)
unknowns and a maximum of m(n − 1) equations. We obtain a system of hyperbolic
equations of the form

fij = ‖mi − sj‖ − ‖m1 − sj‖ − c (Tij − T1j) , (4.1)

where 2 ≤ i ≤ n. Reduction of the equation system is an important step to increase
the probability of correct convergence, as some false minima of misleading send times
disappear, see Section 4.3.4. We combine the equations and obtain the quadratic
objective

arg min
mi,sj

n∑
i=2

m∑
j=1

(fij)2 ,

which is proportional to the objective in vector notation w = 1
2bTb, where b =

(f21, f22, . . . , fnm)T .

We define a state vector of the form u =
(
sT1,1, . . . , sm,p,mT

2,1, . . . ,mT
n,p

)T
, where

mi,`, sj,` denotes the `-th scalar of mi, sj . The operator ( · )T denotes the transposition.
We initialize u(0) with randomized values around the origin. Alternatively, the result
of an approximation algorithm from the previous chapter could be used.
In every iteration step k we calculate the first-order derivative of the equation system,

the Jacobian matrix Q and the function vector b from the input values of u(k). The
Jacobian is defined as

Q =


∂f21
∂s1,1

· · · ∂f21
∂sm,p

∂f21
∂m2,1

· · · ∂f21
∂mn,p

∂f22
∂s1,1

· · · ∂f22
∂sm,p

∂f22
∂m2,1

· · · ∂f22
∂mn,p

... . . . ...
... . . . ...

∂fnm

∂s1,1
· · · ∂fnm

∂sm,p

∂fnm

∂m2,1
· · · ∂fnm

∂mn,p

 ,

1Apparently, a minus sign is missing in Eq. (8) and in the previous Gaussian density function
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where the entries of Q are the partial derivatives of Eq. (4.1):

∂fij
∂sj,`

= − mi,` − sj,`
‖mi − sj‖

+ m1,` − sj,`
‖m1 − sj‖

∂fij
∂mi,`

= mi,` − sj,`
‖mi − sj‖

. (4.2)

We calculate the direction of the steepest ascent

∇w = ∇
(1

2bTb
)

= ∇

1
2
∑
i,j

(fij)2



=


...

∂

(
1
2
∑

i,j
(fij)2

)
∂uh...

 =


...∑

i,j
∂( 1

2 (fij)2)
∂uh...

 =


...∑

i,j

(
∂fij

∂uh
fij
)

...



=


...

. . .
∂fij

∂uh
. . .

...


T 

...
fij
...

 = QTb , (4.3)

where uh is the h-th element of u(k). The update vector is û = γ∇w = γQTb,
where γ is an adaptive factor for the step width. We proceed one step in direction
of the steepest descent by updating the state u(k+1) = u(k) − û. The algorithm is
repeated until ‖û‖ < εtarget.

4.1.2 The Gauss-Newton Algorithm

For speedup we have added an extension to the optimization algorithm, and switch to
the fast Gauss-Newton algorithm after some time, reducing the number of iterations
when the gradient has become small during gradient descent optimization. The scheme
of the Gauss-Newton algorithm is identical to the one of gradient descent, except for
the calculation of the update. For the Gauss-Newton update we write the system of
non-linear equations of the form (4.1) as a least squares equation system in matrix
notation, and solve in every iteration step for for û:

QTQû = QTb ⇒ û = (QTQ)−1(QTb) (4.4)

The equation system (4.4) is usually solved by calculating the inverse (QTQ)−1. How-
ever, we recommend using LU or QR decomposition for higher numerical stability.
As the Gauss-Newton algorithm is very prone to divergence when applied to random

initial positions, we do not use this method from the beginning. Instead, we rely on the
robust gradient descent until the error function has become steady. However, when the
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Figure 4.1: Runtime example of gradient descent and the Gauss-Newton method with six
receivers (green) and six signals (red). The true positions are marked in white. After
100 iterations (marked as “×” in the left plot) the algorithm switches to Gauss-Newton.
Because of random TDoA error of 1% the remaining error does not reduce to zero.

gradient is shallow later during optimization, convergence in gradient descent tends to
be very slow. Then, we switch to the fast the Gauss-Newton algorithm, making use of
the quadratic convergence and reducing the number of iterations notably. As described
later, we benefit from the Gauss-Newton algorithm not only after the gradient descent
method, but also for finalization of the Cone Alignment algorithm. In particular, this
leads to higher probability of convergence in case of badly scaled scenarios.
In experimental runs of the gradient method we saw that we could solve many

scenarios with this combination of algorithms, see Fig. 4.1 for an example. However,
some scenarios that run into local minima could not be solved even with repeated
attempts. In the next section we present an algorithm based on the relaxation of
springs which can achieve higher probability of convergence, and which we compare
empirically to the gradient based method.

4.2 Iterative Cone Alignment

Many iterative approaches to the problem of TDoA use gradient descent, which is
prone to local minima, or the Gauss-Newton method, which is prone to divergence.
Modifications of the gradient method with “momentum” require scenario-dependent
adjustments of parameters. Furthermore, the calculation and inversion of the Jaco-
bian matrix is an expensive operation, for which high numeric precision is required in
implementations.
We present an iterative approach to local optimization, the Cone Alignment algo-

rithm [5, 54, 77], which uses a geometric representation of the error function and a
physical mass-spring simulation to optimize the function for the general case.
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Figure 4.2: Cone representation of Eq. (4.5) for p = 2. Left: Signal source sj resides offside
the cone surface of receiver mi and therefore it is not valid and Φ 6= 0. Right: In order
to restore validity sj has to be moved in direction of nij . [5]

Consider a receiver mi and a signal origin sj in p ∈ {2, 3}-dimensional space. From
the problem setting we know that

Tij = tj + 1
c‖mi − sj‖ , (4.5)

where Tij is the time of reception and tj is the time of emission of a signal.
This equation describes a cone in p+1-dimensional space where the signal time tj is

added as an extra variable, see Fig. 4.2. The vector (mi;Tij) is the apex of the cone.
The vector (sj ; tj) describes a signal that occurred at position sj at time point tj . The
expression (• ; ◦) denotes a column vector of the form (•T , ◦T )T where (•) is a column
vector and (◦) is a scalar.
If for all receivers m1, . . . ,mn and signal sources s1, . . . , sm these equations are

satisfied we receive a possible solution of the given problem. Of course, this does
not necessarily imply we found the correct solution as the problem might be under-
determined. Recall that there is no absolute solution since we obtain only a relative
localization.

4.2.1 Error Function

Starting from an initial setting for all positions and time points our iterative approach
greedily decreases an error function. We describe now this error function which corre-
sponds to the potential energy of springs. We define the function in p+1-dimensional
space as an expression of the violation of constraint (4.5) by

Φ((d; d)) = c d+ ‖d‖ , (4.6)

where d is a difference vector in space and d is the time of flight. Φ((sj ; tj)− (mi;Tij))
describes the relation of a signal sj emitted at time tj relative to a receiver mi which
obtains the signal at time Tij . See Fig. 4.2, illustrating the Φ-function.
If Φ yields a non-zero value, which we call an invalid cone constraint, one can change

both the position and time (sj ; tj) of the signal source and the position vector mi of
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the receiver by moving it in space in order to recover a valid position. According to
Section 2.1, the receiver time Tij is fixed, so (mi;Tij) is restricted to movements in
p-dimensional space, whereas (sj ; tj) can be moved in p+1 dimensions.
We define the direction vector pointing towards the surface of the cone

n̂ij =
(

sj −mi

‖sj −mi‖
; 1
c

)
, (4.7)

which we normalize to nij = n̂ij

‖n̂ij‖ . The normalized direction vector nij describes the
shortest path from sj to the cone surface of mi, cf. Fig. 4.2. Note that the time axis is
compressed by the signal velocity c. Scaling by c reveals that nij is in fact orthogonal
to the cone surface.
For the case that tj > Tij + 1

c‖mi− sj‖ and thus nij does not intersect the cone, we
choose nij = (~0;−1) pointing along the time axis ensuring an intersection.
By construction there is a scalar κij ∈ R such that Φ((sj ; tj)−(mi;Tij)+κij nij) = 0,

i.e. an intersection point of nij and the cone surface exists. κij equals the distance
along nij between (sj ; tj) and the cone surface (Fig. 4.2).
Now, for every receiver i and signal j the distance can be computed by the intersect

theorem
κij = Φ((sj ; tj)− (mi;Tij))

Φ((sj ; tj)− (mi;Tij))− Φ((sj ; tj)− (mi;Tij) + nij)
. (4.8)

For the goal to minimize the distances κij between all signal senders and the cone
surfaces of the receivers we require to manipulate their positions in Rp+1. We aim to
minimize the quadratic objective

Esum = min
mi,sj ,tj

n∑
i=1

m∑
j=1

(κij)2 , (4.9)

which is proportional to the sum of the potential energy of springs [78]. By minimizing
the potential energy of a physical mass-spring system representing the signal senders
and receivers we minimize the objective Esum. In case of a value Esum = 0 we have
found a scenario of senders and receivers, which is a possible explanation of the observed
TDoA measurements.

4.2.2 Mass-Spring Simulation

We optimize the error objective Esum by a simulation of a physical mass-spring sys-
tem [78], calculating the signal source and receiver positions. The mass-spring system
is based on particles, which are tuples (x(k)

` ,v(k)
` ,m0), representing the receivers and

signals in p+1-dimensional space at discrete simulation times k ∈ R, where ` ∈ {i, j} is
a placeholder. The particles represent the physical properties position x`, velocity v`
and mass m0. They obey Newton’s law of inertia, i.e. velocity changes result only from
the influence of forces. For every receiver vector (mi;Tij) and sender vector (sj ; tj) we
create a particle

(
(mi;Tij)(k),v(k)

i ,m0
)
, respectively

(
(sj ; tj)(k),v(k)

j ,m0
)
.
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4.2 Iterative Cone Alignment

For every sender particle we use the distance to the cone surface κij of a receiver
particle to implement a force based on the spring equation fij = η κij nij , where η is
a constant of the spring stiffness. We apply the force −fij to every receiver particle
and the opposite force fij to the corresponding signal particle, accelerating the sender
particles towards the cone surface and the receiver particles in the opposite direction,
yet only in space Rp, not in the time dimension.
In cases, when movements are locked in a dimension, the respective component of

the force vector is set to zero, thus preventing changes of the position in the respective
dimension, as in our case for the time component of the receivers. In more advanced
cases, when restrictions of positions exist, for instance all receivers reside on a circle,
or signals are fixed to a plane, penalty forces or local constraints [79] can be used.
In addition, we introduce quadratic damping, which is comparable to aerodynamic

drag, stabilizing the simulation [78]:

w(k)
` = −λ ‖v(k)

` ‖
2 v(k)

`

‖v(k)
` ‖

= −λ ‖v(k)
` ‖ v(k)

` .

λ > 0 is a damping factor which we choose small to achieve high velocity of spring
relaxation, but large enough to avoid the simulation to oscillate and become instable.
For proper choice of a damping constant, damping reduces the velocity of a particle,
and in this way its kinetic energy. The overall force for every particle is the sum of all
spring forces Θ` and the individual damping force, in total f̂` = Θ` + w`.
The temporal integration of the mass-spring simulation is realized by a simple Euler-

Cromer scheme [80] with a timestep of h:

x(k+h)
` = x(k)

` + hv(k+h)
` v(k+h)

` = v(k)
` + h

m0
f̂ (k)
`

An Euler-Cromer scheme is stable, even in the undamped case, i.e. errors do not amplify
over time. When using springs the scheme is conditionally stable, which means the
stability is dependent on the parameters [80]. In practice the choice of spring and
damping parameters is not an issue, as the range of stable operation is large.
We initialize the particles close to the origin in p+1-dimensional space, randomized

by a small amount to avoid singularities. The initial signal source time is set to the
minimum of all associated receiver timestamps. This is the closest guess we can do, as
no positions are known a priori.
After the start, forces are calculated. Position and velocity updates are made accord-

ingly to the Euler-Cromer scheme. The simulation runs until a termination condition
has been met, where we obtain the receiver positions mi and the sender tuples (sj ; tj)
from the position vectors of the respective particles.
For the termination, either the overall energy function Esum falls below a fixed

threshold, or the overall particle velocity falls below a fixed limit, or a certain number
of steps have been exceeded. If no TDoA error was presumed the latter two cases are
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an indication that the algorithm did not arrive at the zero of the error function. We
call this a local minimum, an issue which is discussed later in Section 4.3.1.
The spring-mass simulation relies only on basic numerical operations, such as vector

addition and scalar multiplication. Same holds for the Euler-Comer integration scheme
and the calculation of the distance scalar κ and the normal vector n. Therefore, Cone
Alignment requires only low numeric precision, which can be a benefit for implemen-
tation on embedded systems that do not provide a hardware floating point unit. This
is an advantage over algorithms that use sophisticated operations such as inversion of
the gradient matrix, which requires high numerical precision even if numerically robust
matrix decomposition algorithms are employed.

4.3 Numerical Evaluation

We have implemented the Cone Alignment algorithm in C++. Simulations were run
in both, the two-dimensional and the three-dimensional case, also cf. [5]. For the signal
velocity we choose the speed of sound at 20 ◦C, which is c = 343m/s.
For any number of receivers and signal sources n,m ≤ 14 we created 100 random

scenarios. Receivers and signal sources were placed in a two-dimensional, resp. three-
dimensional space of 1000 meters edge length. For given randomly distributed signals in
space we calculated the timestamps at every receiver. Then, the timestamp information
was given to our algorithm and finally we evaluated the quality of the result by applying
SVD alignment as described in Section 2.6 and comparing the output of the simulation
to the ground truth positions. As an abort condition of the algorithm we chose an
error threshold ε. In the successful case the remaining RMS error lay clearly below the
threshold. If after 20.000 iteration steps the threshold could not be reached, the run
was marked as not successful.
The runtime of this algorithm is O(mn) and it converges after 1,000 to 10,000 itera-

tions for n,m ≤ 14 which gives an absolute runtime of 0.01 to 0.70 seconds on a stan-
dard 2GHz PC, cf. Table 4.1. Most interestingly, the number of iterations decreases
with increasing numbers of signal sources and receivers due to over-determination,
i.e. a highly negative degree of freedom, as described in Section 2.4.
For an evaluation of the necessary number of receivers and signals we calculated the

remaining error after mapping the experimental positions to the corresponding ground
truth positions using SVD alignment. The experiments indicate, that for the two-
dimensional case at least four receivers are necessary and sufficient. If the number of
signals is fixed to three, deploying a sufficient number of receivers makes the localization
error decrease to zero. We found that employing at least four receivers in the 2D
case, distance errors between estimated and true positions began to diminish, provided
enough signal sources were given. In an analogous manner given three signal sources,
which are obtained by enough receivers, RMS distances decrease to zero.
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4.3 Numerical Evaluation

receivers signals iterations duration (s)
2 2 1,815 0.013
14 2 4,359 0.132
2 14 5,086 0.148
5 5 9,087 0.108
7 7 5,620 0.170
10 10 4,636 0.333
14 14 4,259 0.680

Table 4.1: Average number of iterations and average experiment duration on a 2GHz PC
until the abort condition is satisfied in a 2D experiment. 100 runs were executed for
every setting of receiver and signal numbers. The number of iterations decreases in the
over-determined cases. [5]

In the three-dimensional case we observed similar results, with convergence for five
receivers, respectively four signal sources. These observations correspond to our con-
siderations from Section 2.4, where we predicted the reconstructability of all unknown
positions for such numbers of signals and receivers.

4.3.1 Local Minima

In some cases the localization algorithm failed and got stuck in a local minimum of the
error function which is not the global minimum. This opposes reconstruction errors
due to under-determined scenarios, where constraints contain too little information
and degrees of freedom remain. Local minima occurred mainly in uniquely determined
or over-determined scenarios. However, we saw cases where local minima also occurred
in under-determined cases.
The failure rate converges to zero with increasing number of signals, depicted in

Fig. 4.3(a) for the two-dimensional case and in Fig. 4.3(b) for three dimensions. Com-
paring this observation with Table 2.2 and 2.3 shows that high failure rates correspond
to small absolute degrees of freedom.
In a visual representation we saw that items were blocked on the wrong side of a

line or a plane. We implemented an algorithm that mirrored them on the other side
by way of trial. This successfully resolved local minima in some cases, but not in
all. Obviously, some of the local minima are complicated and hardly comprehensible
by geometrical considerations. For now, we disable the algorithm and instead use
repetitions of Cone Alignment with different random initial positions. By this means,
we could improve the rate of success notably, which is described in Section 4.3.4.
Furthermore, we ran experiments with simulated TDoA error. Here, the error in

timestamping the signals at the receivers is assumed to be Gaussian distributed. Tim-
ing errors may be induced from synchronization errors and from imprecisions in de-
termining the time points of signal events in the recorded audio. Errors of a standard
deviation up to 200ms were tested, which is a spatial equivalent of 70m.
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(a) In two dimensions for four receivers and for three signal sources
the risk of ending in a local minimum is exceedingly high.3D case, failing localizations
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(b) In three dimensions the risk of local minima is highest for five
receivers and for four signal sources.

Figure 4.3: Distribution of local minima for two and for three dimensions for the Cone
Alignment algorithm. The risk of ending in a local minimum culminates at the minimum
cases and converges to zero in overdetermined scenarios. [5]
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Figure 4.4: TDoA error experiment of the Cone Alignment algorithm for seven receivers and
seven signal sources. For TDoA error steps from 0 to 200ms a total of 1700 experiments
were run. With increasing error the average distance from the true positions increases
and local minima are harder to distinguish from the correct solution. [5]

With increasing TDoA error both the average distance from the true positions and
the tendency of local minima increased. We observed this tendency difficult to quan-
tize as with increasing error a local minimum is hard to distinguish from the global
minimum in the least-squares sense. See Fig. 4.4 for the example of seven receivers.

4.3.2 The Scilab lsqrsolve Function

We have run numerical tests on the Scilab lsqrsolve function2, which is an imple-
mentation of the Levenberg-Marquardt algorithm [81]. For a function F : Rn → Rm
a call to (x̂, F (x̂)) ← lsqrsolve(x0, F, q, [J ]) calculates a local minimization of the
objective ‖F (x)‖2, returning a vector x̂ and the residuum F (x̂). Optionally, a func-
tion handle for analytical calculation of the Jacobian J(x) can be provided, otherwise
the Finite Differences method [82] is used. In Finite Differences is

∂Fk(x)
∂xi

= lim
h→0

Fk(x + h[i])− Fk(x)
h

, h[i] = (0, . . . , 0, h︸︷︷︸
i-th

, 0, . . . , 0)

an approximation of the gradient, where Fk is the k-th function of an enumeration
of q functions, and 1 ≤ i ≤ n.

2Scilab 4.1.2, http://www.scilab.org
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Figure 4.5: Distribution of local minima for two-dimensional settings for the Scilab Levenberg-
Marquardt implementation with the Jacobian given. The probability of local minima is
higher than for gradient descent and Cone Alignment, especially in the critical cases of
four receivers and three signals.

For optimization of TDoA we consider the function fij and its derivative according
to the definitions in Eqns. (4.1) and (4.2). In a simulation we ran 100 randomized
cycles for every combination ofm,n ≤ 14 receivers and signal sources in the planar unit
square, with and without the analytical derivative provided. As no TDoA measurement
error was given we expected the function to return a zero residuum. If after a run the
residual is ‖F (x)‖ > 10−3 we marked a cycle as failure. In the evaluation we analyzed
the proportion of random test cases that can be solved successfully, therefore with zero
residuum. We observed an issue in under-determined scenarios, where none or all of
the scenarios failed for certain combinations of receivers and signals. We eliminated
the under-determined cases and consider only the results for determined and over-
determined scenarios. See Fig. 4.5 for an evaluation of the failure cases of the Scilab
Levenberg-Marquardt implementation with the analytical Jacobian given.
We compared the results of the Scilab minimizer lsqrsolve to test runs of the

implementation of gradient descent from Section 4.1, and to Cone Alignment, where
we ran similar test settings. For Cone Alignment a test field of 1000m × 1000m was
used, instead of the unit square, and an condition of Esum > 1 for the definition of a
failed test, see Eq. (4.9), which corresponds to a relative error of 10−3. Furthermore,
Cone Alignment uses not a hyperbolic error function, but an estimation of the send
time. However, we believe that the experiments are comparable, as the field size is only
a scaling factor, and the residual after termination is mostly clearly above or below
the decision threshold for local minima for all algorithms.

60



4.3 Numerical Evaluation

0 0.2 0.4 0.6 0.8 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Error: 1.0e−003, eval: RMS error

position error (m)

C
D

F

TDoA error: 10−3

0.3-percentile

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

0
10

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

0
10

Evaluate: RMS error, median: 0.3

TDoA error (m)

po
si

tio
n 

er
ro

r 
(m

)

scilab LM (f−diff)

scilab LM (jacobian)

gradient+gauss−newton 

cone alignment

Figure 4.6: Evaluation of the algorithms with varying relative TDoA error in a planar setting
of seven receivers and seven signals. Left: The position errors increase notably in case
of local minima. Right: The plot of the 0.3-percentile shows that the position errors are
proportional to the TDoA error. The algorithms behave very similar, as they minimize a
similar quadratic error function.

In an evaluation of the precision under influence of measurement errors series of
100 test cycles with relative Gaussian error from 10−6 to 100 were run in a planar setting
of seven receivers and seven signals. In the cumulative distribution we see that position
errors, compared to the true positions, are proportional to the input error in the
majority of attempts. However, in some runs, depending on the algorithm up to 50%,
the error of position estimation is salient, see Fig. 4.6, left. These disproportionalities
appear to be a result of local minima. We consider the 0.3-percentile of position errors
(the 0.5-percentile is the median), excluding potential local minima. Then, the four
algorithms exhibit only small variations, see Fig. 4.6, right, which is not surprising, as
they minimize the quadratic error of the same conic or hyperbolic TDoA equations.
The LM algorithm without Jacobian exhibits higher error, which might be caused by
numerical issues of the finite differences method.
In the evaluation of failure cases with no runtime error, we immediately notice

that test cycles where no analytical definition of the derivative is given, exhibit a
high amount of failures, and no decrease of failures due to local minima for over-
determined cases, see Fig. 4.7. We attribute this to the difficulty of choosing a proper
value of h in finite differences, leading to a badly chosen secant if h is too large, and
numerical rounding errors if h is too small. Small errors in the estimated gradient
may have a significant effect on the direction of convergence in the Gauss-Newton
component of Levenberg-Marquardt, and the problem is numerically critical due to the
high dimensionality of the state vector x. If the Jacobian is provided, the behavior of
the algorithms is more effective for over-determined scenarios, see Fig. 4.7. A difference
between the Levenberg-Marquardt, the Gauss-Newton and the Cone Alignment is only
barely noticeable, probably with small advantages for the gradient method and Cone
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Figure 4.7: Failure cases due to local minima for 100 runs in the planar world for the algo-
rithms: Levenberg-Marquardt (LM) with finite differences, LM with analytical Jacobian
(green line, see also Fig. 4.5), combined gradient descent and Gauss-Newton, and Cone
Alignment, for varying numbers of signals and receivers.
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Figure 4.8: Comparison of failure ratio for 100 runs per combination. In the important case of
four receivers in the plane the Cone Alignment (red marks) can find the global minimum
more frequently than the gradient method as used by Biswas & Thrun [41] (green marks).
Using the Gauss-Newton method after both Cone alignment and gradient descent improves
the probability to satisfy the abort condition. [5]

Alignment. Levenberg-Marquardt appears to perform weaker in the critical cases when
only four receivers or only three signals are given.
In the next section, we consider further comparison of the gradient method and Cone

Alignment. Both algorithms were run with and without the Gauss-Newton algorithm
used afterwards. Again, we observe regions with higher failure rate for the gradient
method, especially in the case of four receivers and in the case of three signal sources.

4.3.3 Minimum Case: Four Receivers

We focus on the case of four receivers in the plane, the smallest case in which positions
can be calculated, which is especially interesting for application, as the receivers are
usually the costly part of TDoA localization, while signals may be complimentary in
a natural environment.
According to Fig. 4.8, Cone Alignment exhibits a lower failure rate for a varying

numbers of signals, therefore a lower tendency to get stuck in local minima. We
observe the same with a fixed number of three signal sources. As an explanation we
suppose that the gradient descent method fails to escape local minima, as it can only
decrease in its error function. In contrast, the particles of the Cone Alignment gather
momentum while relaxing the spring constraints. In this way, barriers can be overcome
towards a smaller minimum. As we implemented particle velocity as an imitation of
physical springs we did not have to optimize a momentum parameter.
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solves total gradient+newton (classic)

Attempt 1 10259 10259 51.89% Attempt 1
Repeat 2 862 11121 56.25% Repeat 2
Repeat 3 1555 12676 64.12% Repeat 3
Repeat 4 908 13584 68.71% Repeat 4
Repeat 5 1443 15027 76.01% Repeat 5
Repeat 6 679 15706 79.44% Repeat 6
Repeat 7 473 16179 81.84% Repeat 7
Repeat 8 362 16541 83.67% Repeat 8
Repeat 9 277 16818 85.07% Repeat 9
Repeat 10 228 17046 86.22% Repeat 10
Repeat 11 190 17236 87.18% Repeat 11
Repeat 12 163 17399 88.01% Repeat 12
Repeat 13 158 17557 88.81% Repeat 13
Repeat 14 123 17680 89.43% Repeat 14
Repeat 15 126 17806 90.07% Repeat 15
Repeat 16 113 17919 90.64% Repeat 16
Repeat 17 100 18019 91.14% Repeat 17
Repeat 18 67 18086 91.48% Repeat 18
Repeat 19 68 18154 91.83% Repeat 19
Repeat 20 78 18232 92.22% Repeat 20
Repeat 21 70 18302 92.57% Repeat 21
Repeat 22 55 18357 92.85% Repeat 22
Repeat 23 44 18401 93.08% Repeat 23
Repeat 24 52 18453 93.34% Repeat 24
Repeat 25 50 18503 93.59% Repeat 25
Repeat 26 53 18556 93.86% Repeat 26
Repeat 27 46 18602 94.09% Repeat 27
Repeat 28 41 18643 94.30% Repeat 28
Repeat 29 45 18688 94.53% Repeat 29
Repeat 30 32 18720 94.69% Repeat 30
Repeat 31 26 18746 94.82% Repeat 31
Repeat 32 34 18780 94.99% Repeat 32
Repeat 33 31 18811 95.15% Repeat 33
Repeat 34 28 18839 95.29% Repeat 34
Repeat 35 20 18859 95.39% Repeat 35
Repeat 36 30 18889 95.54% Repeat 36
Repeat 37 26 18915 95.68% Repeat 37
Repeat 38 17 18932 95.76% Repeat 38
Repeat 39 17 18949 95.85% Repeat 39
Repeat 40 24 18973 95.97% Repeat 40
Repeat 41 20 18993 96.07% Repeat 41
Repeat 42 15 19008 96.15% Repeat 42
Repeat 43 17 19025 96.23% Repeat 43
Repeat 44 10 19035 96.28% Repeat 44
Repeat 45 19 19054 96.38% Repeat 45
Repeat 46 15 19069 96.45% Repeat 46
Repeat 47 15 19084 96.53% Repeat 47
Repeat 48 13 19097 96.60% Repeat 48
Repeat 49 13 19110 96.66% Repeat 49
Repeat 50 10 19120 96.71% Repeat 50
Repeat 51 8 19128 96.75% Repeat 51
Repeat 52 10 19138 96.80% Repeat 52
Repeat 53 12 19150 96.86% Repeat 53
Repeat 54 11 19161 96.92% Repeat 54

4 mics, 6 sources, ~20000 scenarios
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Figure 4.9: Repeated executions with randomized initialization increase the probability to
find the global minimum. In the important minimum case of four receivers and six sig-
nal sources in the plane we repeated a scenario 100 times. Of 20.000 random scenarios
Cone Alignment solved 99.4%. Gradient descent with Gauss-Newton combined is slightly
weaker, solving 98.8% with hyperbolic equations and 98.2% with conic equations.

Furthermore, we observe an exceedingly high tendency to get stuck if the Gauss-
Newton method is used after the gradient descent for four to six signal sources. We
could not finally elaborate the reason for that.
Both algorithms, the Cone Alignment and the gradient method, benefit from the

combination with the Gauss-Newton algorithm (Fig. 4.8). We observed that scenar-
ios with very shallow gradients were marked as “unsolved” when an error threshold
could not be reached after a maximum number of iteration steps. In several cases the
threshold could be met when the Gauss-Newton algorithm was executed afterwards.
This happens especially in ill-conditioned scenarios, for instance when two of the four
receivers are close. In general, the number of iteration steps is immensely reduced for
both algorithms when the run is finalized with a subsequent execution of the Gauss-
Newton algorithm. With increasing number of both receivers and signals the ratio of
local minima decreases. Also, the disparity between both algorithms diminishes.

4.3.4 Towards a 100 Percent Solution

We have analyzed our algorithms to increase the success rate of finding the global
minimum by repeated executions. The repeated attempts come with increased com-
putational power for finding the solution, but such calculations might be trivially
executed in parallel.
We consider now only gradient descent and Cone Alignment with the Gauss-Newton

method executed after the abort condition, increasing the rate of success in ill-condi-
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tioned scenarios. However, now we distinguish between gradient descent with hyper-
bolic equations as introduced in Section 4.1.1 and conic equations, as proposed in [41],
where also the send time is estimated. For the three algorithms we ran approximately
20,000 random scenarios. Every scenario was repeated with random initialization until
it is solved, up to a maximum of 100 times, where we noted down the required number
of repetitions.
In the minimum case of four receivers and six signal sources in the plane, Cone Align-

ment has already solved 95.6% of the scenarios after 12 repeats, while both gradient
descent with hyperbolic and with conic equations achieve only 88.0%, see Fig. 4.9.
After 100 repeats the algorithm achieves a success rate of 99.4% with randomized ini-
tialization. Only 0.6% of all scenarios remain stuck and unsolvable. In the case of the
gradient descent method we could not achieve such a high success rate. Still 1.2% of
all scenarios fail to be solved when using gradient descent with hyperbolic equations,
which is more by a factor of two. For gradient descent with conic equations is notice-
able after 100 repeats that even 1,8% of all random scenarios remain unsolved, which
we attribute to the additional complexity of conic equations, where the send time is
estimated as an additional parameter.
As we can split larger scenarios into subsets of this size and merge them after solving

a subset, we can solve larger scenarios in the same way. This form of repeating should
work also for the other minimum cases, for 5 / 4 and for 7 / 3 receivers and signal
sources, and for the three-dimensional case.

4.4 Related Work

We have derived the Jacobian and developed gradient based approaches to demonstrate
and analyze the application of non-linear iterative first-order optimization methods
for problems of calibration-free TDoA. An introduction to non-linear optimization is
given in [81, 82, 83, 84]. Optimization with a focus on practices for machine learning
is discussed in [85].
A standard approach for local optimization of an unconstrained non-linear func-

tion f(x) is the gradient descent method [82], where a function is minimized by follow-
ing the direction of the gradient. The gradient, i.e. the linear term of a Taylor expan-
sion of f(x), is either calculated by evaluation of the Jacobian matrix J(f) = ∂f(x)

∂x or
numerically by the Finite Differences method [82]. Conjugate gradient descent [86] re-
quires a system of linear equations, therefore does not apply to TDoA multilateration
which is non-linear. Yet there exist extensions for non-linear optimization [87], such
as Fletcher and Reeves [88], and Hager and Zhang [89].
The multivariate Newton method [90] that calculates a zero of f(x) requires the

Hessian matrix H(f) = ∂2f(x)
∂x2 in every iteration, which may be difficult to calculate,

depending on the function. We have implemented the Gauss-Newton algorithm [91]
instead, a modification that uses the Jacobian matrix to minimize an objective ‖f(x)‖2.
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The Levenberg-Marquardt algorithm [75, 81] is based on Gauss-Newton, improving
convergence by introducing a “trust-region method”. The BFGS method [81] is a
Quasi-Newton method that uses an approximation of the Hessian.

4.5 Global Optimization

The previously discussed gradient based and spring-mass based algorithms are both
approaches to local optimization. They are intrinsically prone to not finding the global
optimum, which is fundamental to local optimization. For the definition of complete-
ness we follow the definition in [92], of which we give an overview in the following.
Algorithms that only perform a local search for the first optimum they encounter

do not find the global optimum with probability one. They are considered incomplete
optimization algorithms.
By infinite number of repetitions with randomized initialization over the entire search

space one may suppose that incomplete algorithms eventually initialize with values that
end in the global optimum solution. Such algorithms are asymptotically complete, as
the global optimum is found with probability one. However, in presence of measure-
ment errors the algorithm does not know from the residuum of the objective if the
global optimum was approached, or if a better local optimum exists somewhere, as the
residuum is always larger than zero. Therefore, asymptotically complete algorithms
cannot find the global optimum in definite time.
Algorithms that find the global optimum after finite time with certainty are con-

sidered complete. They know by exploration of the search space, when the algorithm
has terminated that the global optimum was found, and not one of several inferior
local optima.
In [92] a survey is given about global optimization. Global optimization approaches

such as BARON and OQNLP are analyzed and compared in [93] and [94]. Recent
advances are discussed in [95]. Note that global optimization algorithms do not guar-
antee a solution for every random numeric problem in practice. First, finding the
global optimum in a multivariate problems of large dimension may take a very long
time of minutes or hours. Second, it may be impossible for an algorithm to further
proceed towards a solution due to precision limits of floating point operations.

4.6 Summary

In this chapter we have addressed the general problem of calibration-free TDoA local-
ization by iterative local optimization approaches. These are the standard approaches
to the problem, as they consider the minimum cases, and no assumptions of the receiver
and signal positions are required.
We have derived the Jacobian for gradient descent and Gauss-Newton based algo-

rithms and we have implemented the algorithms. We have furthermore proposed the
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Iterative Cone Alignment algorithm, an iterative mass-spring simulation that mini-
mizes the problem of anchor-free TDoA localization in an energy minimization man-
ner. The simulation bases on particles obeying Newton’s law of inertia that gather
momentum while spring constraints are relaxed.
In extensive numeric experiments we have analyzed the failure cases of the algo-

rithms. We demonstrated that our mass-spring algorithm can find the correct posi-
tions of receivers and signals in randomized scenarios with higher probability than the
gradient descent approach. With Cone Alignment we could find the correct solution
in 99.4% of all cases of four receivers and six signals in planar space by repeated
executions of the algorithm, making the algorithm asymptotically complete.
Yet, the problem of not finding always the correct solution remains unsolved by

the discussed optimization algorithms. Obviously, an issue are not only local minima,
but also difficulties of numerical nature. First, the iterative algorithms are bound to
abort conditions of the error function. Second, the algorithms based on the first-order
derivative encounter numerical instability when inverting the Jacobian – even with the
most robust numerical methods, such as QR decomposition.
In case of TDoA measurement error remains a residuum of the error function. Then,

these local optimization algorithms cannot decide if the residuum originates from a
local minimum next to a smaller minimum, or is just the result of measurement error.
Global optimization algorithms that explore the search space by non-local random
stepping to find the global minimum, such as the Gelfand algorithm [76, 83], are rare,
as the exploration of the search space is traded for the lack of an residual-dependent
abort condition in definite time. Usually, such algorithms are aborted after a given
period of time. Furthermore, in cases of ill-conditioned problems, i.e. when very small
changes of the observed time difference result in large changes of the positions, a local
minimum is hard to distinguish from the numerical inability to further approximate
the correct solution, even if no TDoA measurement error is assumed.
In the next chapter we present a complete exploration algorithm for calibration-free

TDoA based on iterative search in a tree of uncertainty test cases. This algorithm
can provably converge towards the correct solution, and furthermore enumerate all
solutions up to an error bound ε.
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Local optimization can yield a solution to the TDoA problem in many cases. In a
simple TDoA problem, as for example finding the position of a signal source using hy-
perbolic equations, one can calculate the correct solution often by just a few iterations
of the Gauss-Newton algorithm. Unfortunately, such algorithms are not guaranteed
to converge towards the correct solution, especially in the high-dimensional case of
calibration-free TDoA, which has been discussed in literature [41, 54]. In the following
we formulate a limit criterion to describe the ability of an algorithm to find a solution
to the TDoA problem.

5.1 Existence of a Solution in TDoA

Consider parameters x from a set X, which are in our case the true positions of TDoA
senders and receivers, and observations z from a set Z that depend on the parameters.
A function f : X → Z is an injective mapping, iff a different choice of parameters
always results in a change of observations. The injectivity of f depends not only on
the definition of the function, but also on the choice of x. For the problem of time
differences of arrival we assume that the mapping of positions to time measurements
is injective, if at least the minimum number of receivers and signals is given and no
signals are lost during reception, if x is normalized in a way that congruencies are
eliminated, and if x is limited to general positions, i.e. receivers or signals are not
collinear or coplanar, therefore the resulting equation system is over-determined.
Note, that we do not show a proof of injectivity of the TDoA problem. However,

based on our considerations about the solvability in Section 2.4, we believe that no
identical vectors of time differences for two different choices of signals and receivers
exist if the above conditions are satisfied.
From the injectivity of f follows the existence of an inverse mapping g, such that

g(f(x)) = x, if x is a strict subset of X, which is the case. Concerning the TDoA
problem, this implies that a unique solution of positions for given time differences
exists. For instance, a unique solution does exist for at least four receivers and six
signals in the plane, if they reside in general position, i.e. they are not exactly on a
line or even at identical positions. A unique solution does not exist for four receivers
and five signals, because the mapping f of positions is not injective, cf. Fig.2.2.
Now, we define defective observations zε = f(x) +D(ε), where D is a distribution of

errors bounded by [−ε, ε]. Such errors occur for instance from imprecisions in timing
or from environmental disturbances.
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Definition 3 Under the assumption of existence of the inverse g, an algorithm ĝ is
called a solution to the TDoA localization problem if

lim
ε→0

ĝ(zε) = x . (5.1)

This definition of convergence is equivalent to

∀δ > 0 ∃ε > 0 : ∀zε
(
‖zε − z‖ < ε ⇒ ‖ĝ(zε)− x‖ < δ

)
. (5.2)

So, ĝ is convergent if holds, whenever measurement errors are bounded by a constant ε,
the resulting position errors are bounded by another constant δ.
Optimization algorithms based on local search do not satisfy the convergence cri-

terion, as the result may be a local minimum of the error function. Then, the true
positions x are not obtained, even if the measurement error is zero. In the following
we present a complete algorithm which bounds the error of positions of receivers, given
a bounded input error ε, and therefore satisfies the criterion of convergence.

5.2 The Error Bound

We present an algorithm which is based on partitioning of a search space into subspaces,
and a hypothesis test to decide if a subspace is part of the solution [96]. An inspiration
to the algorithm was given in [97], where sender positions are approximated by recursive
partitioning of three-dimensional space, assuming known positions of receivers. Such a
subdivision and test strategy is commonly referred to as branch-and-bound algorithm.
According to literature the application of such algorithms is is often in the domain
of linear programming and discrete problems [98, 99, 100]. However, the principle
of a branch-and-bound algorithm holds also for optimization in a high-dimensional
continuous search space.
Consider the setting of n receivers and m signal senders in the unit square in two-

dimensional space R2, according to Section 2.1. The signals are emitted at times tj
and propagate from the sender positions sj to the receivers mi in a direct line. For
simplicity we normalize the speed of signals to c = 1.
Assume, that the reception times of signals are subject to imprecisions, which are

bounded by ε. So the positions of receivers and signals are bounded by the constraint

Tij − ε ≤ tj + ‖mi − sj‖ ≤ Tij + ε . (5.3)

If we can find a set of receivers mi and of signal positions sj for allmn constraints, then
we have found a possible solution up to the error ε. We call this an ε-approximation
of the TDoA problem.
Note that in such an approximation the TDoA error of Inequations (5.3) is bounded

by ε, but the positions of receivers or signals are not. First, depending on the prob-
lem, a small error can lead to large position errors. Second, if the problem is under-
determined, the results of the algorithm can be entirely wrong, even if no TDoA error
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Figure 5.1: The measured time difference τij between m1 and mi yields a hyperbola (solid
lines). Inequation (5.5) bounds a region of uncertainty where sj can reside (gray regions),
here depicted for the origin m1 and three other receivers. [96]

is assumed. However, if a problem is determined, and if the TDoA error is zero, then
the positions of senders and receivers converge towards the correct solution, as required
in Def. 3, which we demonstrate later on. In the following we describe a constraint
condition to test the position of four or more receivers.

5.3 A Test of Feasibility

When the positions of at least four receivers are known, the positions of the senders may
be calculated quickly. Then, we need to find signal positions to satisfy Inequations (5.3)
for a test of feasibility of a setting. This inspires the following test algorithm [96].
First, we eliminate the sending time by combining two receiver times Tij and T`j

to τi`j = Tij − T`j . Because of redundancy we choose ` = 1 and i > 1 without loss of
generality. We obtain the hyperbolic equation

H(i, j, τij) = ‖mi − sj‖ − ‖m1 − sj‖ = τij . (5.4)

The equation describes a hyperbola with m1 and mi as focal points and sj as a point
on the curve. For the ε-approximation we consider the inequality

−ε ≤ ‖mi − sj‖ − ‖m1 − sj‖ − τij ≤ +ε , (5.5)

which follows from the 1
2ε-approximation problem of Inequations (5.3). The inequality

describes an area of possible positions for sj . This uncertainty band is bounded by
the “inner” hyperbola H(i, j, τij − ε) and the “outer” hyperbola H(i, j, τij + ε). If we
repeat this step for all microphones, we obtain the intersection where sj can reside.
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intersection points
maximum of inner hyperbolas
minimum of outer hyperbolas
valid area segments

Figure 5.2: Scheme of the line-sweep algorithm. If the curve of maximum radius of the inner
hyperbolas (red) and the curve of minimum radius of the outer hyperbolas (green) enclose
a region, then the ε-test is positive for a scenario. The domain borders and hyperbola
vertices are not considered in this schematic figure.

See Fig. 5.1 for an example of four receivers and one signal. If the intersection is
non-empty for all signals j, then there is a solution to the approximation problem.
For the test of existence of such an area we use a segment test algorithm [96] in a

polar coordinate system. In such a polar representation a hyperbola of the form (5.4)
can be described as a function of the angle α,

R(α)τi = d2
i − τ2

i

2 |di cos(α)− τi|
, (5.6)

where di = ‖mi−m1‖, and where the domain is α ∈
(
− arccos

(
τi
di

)
, arccos

(
τi
di

))
. Note

that the borders are excluded from the domain.
As every hyperbola is only defined in a certain domain, we can compute an intersec-

tion of the domains, where all hyperbolas are defined. Only this domain intersection
is considered for a possible intersection area of the uncertainty bands. The domain in-
tersection may consist of multiple disjoint sets. Then, proceed for every set of domain
intersections individually.

Proposition 1 A non-empty intersection area of hyperbolas H(i, j, τij) exists, iff
∃α1, α2 : α1 < α2,∀α ∈ [α1, α2] : max

i
(R(α)τi−ε) < min

i
(R(α)τi+ε).

Therefore, the uncertainty bands enclose an area iff an interval exists, where the min-
imum of the radius of the outer hyperbolas is larger than the maximum of the radius
of the inner hyperbolas.
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It is sufficient to evaluate the sweep line only at critical points, which are the inter-
section points of the hyperbolas, the boundaries of the domain intersection, and the
vertices, the points of minimum radius. Between these critical points no intersection
area can begin or end, due to the continuity and the monotony of the hyperbolas in
the domain.
To execute the ε-test, we first calculate all intersection points of the hyperbolas.

The 2(n − 1) hyperbolas can be considered in
(2(n−1)

2
)
pairings, with a maximum of

two intersections per pair, which is implied by the symmetric radius function, so the
number of intersections ψ is bounded by ψ ≤ (2n − 2)(2n − 3). These intersections
can be calculated in closed form in time O(n2). Now, for every critical point we test if
the sweep line of the angle encloses a segment according to Proposition 1, see Fig. 5.2,
which can be done in linear time, yielding the total runtime O(n3).
By using a sweep line algorithm, where the sweep line starts at the origin, rotating

around it, the existence of an area can be tested in smaller asymptotic time. The
sweep line algorithm is motivated by the observation that the line intersects such a
hyperbola at most once, as of the radius function (5.6) of the hyperbola. With this
algorithm we track the curve of maximum radius of the inner hyperbolas and the curve
of minimum radius of the outer hyperbolas, therefore searching for the boundary curve
of the intersection area of the uncertainty bands, see Fig. 5.2.
Here, the intersection points need to be sorted first, which is done in O(n2 log(n))

for the quadratic number of intersection points. Then, beginning after the start of
the domain, the minimum radius and the maximum radius is calculated once. If the
curves intersect during the sweep at one of the now following intersection points, an
intersection area begins or ends.
These tests can be calculated in constant time for every intersection point, by noting

the index of the respective hyperbola and by considering the monotony of the hyperbo-
las, yielding the asymptotic time O(n2) after sorting, so the total time is O(n2 log(n)).
Due to the design of the branch-and-bound algorithm, n is small, hardly larger than
four, so a test with small constant overhead should be chosen.
Either test is repeated for all m signal sources, yielding the asymptotic time O(mn3)

for the segment test, and O(mn2 log(n)) in case of the sweep line algorithm. If the
test is satisfied for all signals then the setting of receiver and signal positions is an
ε-approximation of the observed time differences of arrival.

5.4 Recursive Grid Refinement

Previously, we introduced a test to decide the feasibility of a setting of receivers for
given TDoA data, with regard to an approximation error ε. Now we present an algo-
rithm based on the ε-test to determine the positions of receivers [96].
For n receivers, where we eliminate three unknowns for the translation and rotation,

the dimensionality of the search space is 2n−3. Now, to find the positions of n receivers,
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Algorithm 1 Breadth-first search for ε-environment for n receivers. [96]
Require: Initial guess of receiver positionsM = {m1, . . . ,mn},

receiver times T = {Tij}i∈[n],j∈[m], target εtarget
1: queue Q← ∅
2: M← (0, 0)n,
3: Q← Q ∪ (0,M)
4: repeat
5: (d̂,M̂)← Q.pop()
6: for all b1, . . . , b2n−3 ∈ {−1, 1}2n−3 do
7: M̃ = M̂+ 1

2d+1 · ((0, 0), (b1, 0), (b2, b3), . . . , (b2n−2, b2n−3))

8: if ReceiverPositionIsFeasible
(
M̃, T , 1

2d̂+ 1
2

)
then

9: Q← Q ∪
(
d̂+ 1,M̃

)
10: end if
11: end for
12: until Q = ∅ or 1

2d̂+ 1
2
≤ εtarget

13: return Q.pop()

in a trivial approach we would enumerate all positions of receivers in a grid of cell
size ε√

2 . This would result in the brute force exploration of
(√2
ε

)2n−3 grid cells where
the ε-test is executed for each cell.
Instead we consider the construction of a recursive search tree, as shown in Algo-

rithm 1. A node in this search tree corresponds to a setting with n receiver positions
(m1, . . . ,mn) in the unit square with the edge length s = 1. As described, m1 is
normalized to the origin and m2 to the x-axis. We start with a root node, which we
call depth level d = 0. Now, for every node we test for the feasibility of these receiver
positions using the ε-test, as demonstrated in the previous section. The uncertainty ε
depends on the depth d of the node. In case the setting is feasible, we add child nodes
for the next level d+ 1.
For searching for 2n− 3 variables we obtain 22n−3 child nodes, which represents all

combinations to shift the variables by a vector s · (±1, . . . ,±1)[2n−3]. In the case of
four receivers we obtain 25 = 32 child nodes.

Lemma 5 Displacement of the position of a receiver mi in an area of edge length s
increases the error according to Inequality 5.5 by at most

√
2 s.

Proof: Given is the position of a receiver mi and an error ε caused by measuring
the timestamps. According to Inequation (5.5) holds∣∣‖mi − sj‖ − ‖sj‖ − τij

∣∣ ≤ ε . (5.7)

Now, displace the receiver by a vector x, where ‖x‖ ≤ ε̂, which induces further error.
By choosing x in a square of edge length ŝ we obtain ε̂ =

√
2ŝ according to the circle

73



5 A Branch-and-Bound Algorithm

m
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(−s, −s)

(s, s)

(s, −s)

(−s, s)

d – 1  →  d

Figure 5.3: In the refinement step in depth d the edge length of a previous cell is partitioned
into grid cells of edge length 2−d. Every variable is shifted by s = ±2−d−1, in this figure
depicted for search space R2. The new cells are tested for ε = 2−d− 1

2 .

equation. Applying the triangle inequality yields∣∣‖mi + x− sj‖ − ‖sj‖ − τij
∣∣ ≤ ∣∣ ‖x‖︸︷︷︸

≤ ε̂

+ ‖mi − sj‖ − ‖sj‖ − τij︸ ︷︷ ︸
≤ ε

∣∣ ≤ ε+ ε̂

Therefore, the error induced by displacement of the receiver mi increases by at most
ε̂ =
√

2 s, which ends the proof. �

In the refinement step of the branch-and-bound algorithm a cell in the search space
is split and the previous estimations m̂(d−1)

i of depth d − 1 are shifted by an amount
s = 2−d−1, where we obtain m̂(d)

i = m̂(d−1)
i +

(±s
±s
)
, see Fig. 5.3. Assume that no

additional error is involved, and for an estimated m̂(d−1)
i is the real receiver mi in a

distance of at most ε = 2−d+ 1
2 . Then, according to Lemma 5, the ε-test holds. When

the area is partitioned as described, at least one receiver m̂(d)
i must exist for which the

distance to mi is at most 2−d−
1
2 , and therefore the 1

2ε-test holds.
The proof that in the partition step the whole search space is covered, and therefore

a solution is always found, is straightforward: The receivers reside in the unit square,
which is covered in the first depth level 0 by choosing ε =

√
2. By partitioning the

search space of edge length 4s into subsequent depth levels of edge length 2, where the
receivers are shifted by s for every dimension, the whole search space is covered.
Together with the proof that for a cell that satisfies the test, at least one subcell

satisfies the test, which follows from Lemma 5, ensures a solution of the refinement.
Lemma 5 also proves the convergence of the algorithm according to Eq. (5.2), as the
position error of receivers is now bounded by s = 1√

2ε for a measurement error ε.
The algorithm ends if a node is reached where ε ≤ εtarget. If there is additional TDoA

error in a setting, the algorithm will discard a cell if the TDoA error εtdoa exceeds the
error in the ε-test. Then, the ε-test will eventually fail for all child cells, so the queue
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is emptied and the algorithm will terminate. In this case a solution up to the error
bound ε is returned.
Once the positions of microphones are determined using the branch-and-bound al-

gorithm, calculating the positions of signal sources is straightforward. Just execute the
algorithm until ε ≤ εtarget or the queue is depleted. In the function for the ε-test return
also the positions of intersections that enclose a valid segment. These are positions of
signal sources bounded by an error proportional to ε.
In the minimum case of four receivers, the search space of this refinement algorithm

is five, which is the typical execution size in order to keep the runtime small. In case
that more receivers are subject to locate, calculate a subset of four receivers first using
the proposed algorithm. Once these are known, calculate the positions of signals by
the ε-test, then locate the other receivers by the signal positions, which can be done
in closed form.

5.5 Numerical Evaluation of Four Receivers

We have implemented the algorithm in C++ to evaluate the runtime and the number
of cells in practical experiments [96]. Due to the structure of the algorithm cell tests
are independent, so we utilize multi-threaded processing of the queue with multiple
worker threads. While in our implementation any number of n ≥ 4 receivers can be
used, we focus on four receivers, as the number of child cells in every step is as large
as 22n−3. For problems with more receivers one can select a subset of four receivers,
solve it using the algorithm and calculate the remaining receivers afterwards by simple
hyperbolic equations.
For our experiments we generate random positions of four receivers in the unit circle

in the plane. We normalize the receivers such that the first location is in the origin,
the second is on the positive leg of the x-axis, and the third receiver is in the upper
two quadrants. Furthermore, we create m random signals in the unit circle. For m
we choose a series from 5 to 50 signals with 100 runs for each number of signals. The
time differences of arrival are calculated and given to the algorithm, which is the only
information available to the algorithm. The algorithm calculates the feasibility, splits
and discards cells according to the specification in Algorithm 1. See Fig. 5.4 for a
runtime example of four receivers and 20 signals.
We evaluated the algorithm in terms of inspected search nodes, search queue length,

duration and correctness of the calculation, i.e. the receiver positions. In some under-
determined cases with few signal sources, or malicious receiver positions, where any
two receivers are very close to each other, we observe run-times as indicted by the
worst case analysis. Then, the width of the search tree grows rapidly resulting in
high run-times. In these cases we abort the algorithm after 10 minutes and mark the
attempt failed (although the algorithm would eventually find the solution).
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Figure 5.4: Runtime example of the branch-and-bound algorithm with recursive refinement of
four receivers, 20 signal sources, and no TDoA error. Although various areas are explored
up to a certain depth, the algorithm converges only at the correct receiver positions. For
clarity only cells of depth d ≥ 4 are displayed.
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Figure 5.5: Cumulative distribution of step numbers given 10 – 50 signal sources. The mean
is 6.7 · 105 steps, averaging to 44 seconds on a dual-core CPU. [96]

The number of required evaluation steps depends on the location characteristics
of the receivers, on the traversal strategy through the tree, and on the number of
signals. In our simulations we choose breadth-first search, which is the slowest search
type, but with deterministic characteristics. Then, given a sufficient number of signals,
the number of traversed nodes varies between 104 and 107 with a cumulation at 105.
With decreasing number of signals the algorithm has increased difficulty to eliminate
possible locations, increasing the number of steps by a factor of 101 and more, shifting
the cumulation towards higher step numbers (Fig. 5.5).
On an Intel Core-i5 machine we could process a number of 105 nodes in about

4 – 8 seconds, running on four processor cores (Fig. 5.6). A typical execution time
given 40 signals is 8 seconds, which is the mode of the distribution of runtime, with
some ill-conditioned settings raising the mean to 10.5 seconds. Altogether, the typical
execution time is 10 seconds with a mean of 44 seconds.

5.6 Summary

To our knowledge the presented branch-and-bound algorithm is the only algorithm
by the time of this thesis that can find a solution in the sense of convergence to the
minimum problem of calibration-free TDoA. This is not achieved by the discussed local
optimization algorithms, not by those in literature, and neither by the factorization
approach of Pollefeys which does not cover the minimum problem.
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Figure 5.6: Total run-time of an example with four receivers and 20 signals on an Intel Core-i5
quad-core CPU to achieve precision ε. The recursion level is d = 1

2−log2(ε). The run-time
is proportional to the number of processed nodes. [96]

However, branch-and-bound search is costly in terms of the runtime in such large
search dimensions. While approximation and local search algorithms find a solution
that can be tested for correctness in fractions of a second, the runtime of the recursive
search space exploration is in the range of seconds to minutes. In some cases our
approach suffers from an ill-conditioned configuration of the receiver locations, i.e. some
of the four receivers are close to each other or near to a line, rendering the problem
close to under-determined. Then, our algorithm is forced to generate a very large
search tree, resulting in a long duration for the traversal.
For an extension of the algorithm to three dimensions, one of the challenges is to

extend the ε-test and calculate the uncertainty regions in three dimensions. The corners
of these regions are defined by intersection points of exactly three hyperboloids in space.
Many of the closed-form TDoA algorithms use TDoA differences to a reference receiver,
as for instance [9], which increases the minimum number of hyperboloid equations to
four. On the other hand, calculating the intersection points with iterative methods,
even with the fast Gauss-Newton method, will horribly affect the runtime of the search
algorithm. Fortunately, the hyperbolic intersection can be expressed in closed form,
as demonstrated in [30], even though the equation is lengthy. Then, the search space
will increase from five variables for estimating four receivers, when eliminating three
variables for symmetry, to nine variables for estimating five receivers, eliminating six
variables.
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In Chapter 4 we saw that a solution to the general TDoA self-calibration problem is
found by iterative optimization in many cases. However, the optimization approach
does not consider spatial characteristics of subsequent signals, especially of a single
sender that moves in space, emitting signals at a constant interval. We will now focus
on the special case of tracking a moving signal beacon under the assumption of a
coherent trajectory of the beacon, which is a typical scenario in a localization system.
The scenario of a moving beacon has been considered in some recent approaches where
a particle filter is used for TDoA localization [101, 102, 103, 104, 105], which is also
known as Monte Carlo localization [106, 107, 108]. In the mentioned approaches the
receiver positions are known in advance, and only the signal emitter is located, which
requires a priori calibration of the receiver positions.
In cooperation with the Chair for Autonomous Intelligent Systems, University of

Freiburg, we have developed a probabilistic approach based on a particle filter. We
assume that receivers are stationary, yet their positions are unknown in the begin-
ning, as in the general calibration-free TDoA problem [109]. We propose a sensor
model which considers the Gaussian characteristics of the TDoA measurements at the
receivers and explicitly takes into account measurement outliers, increasing the robust-
ness of the approach to effects such as multipath signal propagation (echoes), which are
characteristic for indoor environments. In our motion model we assume a continuous
movement of the signal beacon, which enables a quick recovery in case of temporary
signal loss. Initialization of the particle filter estimate is achieved by multiple iterative
optimization attempts on randomly chosen subsets of the available measurement data.
Due to the weighting of the particles according to our TDoA sensor model, the particle
filter implicitly selects the correct initialization hypothesis and reliably converges to
the true configuration.

6.1 Problem Formulation

We consider the problem of simultaneous estimation of a continuous trajectory sh
(h = 1, . . . ,m) of a signal beacon and the stationary positions mi (i = 1, . . . , n) of
n receivers in Euclidean space Rp, where p ∈ {2, 3}. At each discrete time step h,
the beacon emits a discrete signal at the unknown send time th. Other than in the
general setting description in Section 2.1 the signals are assumed to occur in a regular
manner. The signal is received and uniquely identified by some or all of the receivers
at the times Tih. For estimating the beacon trajectory and the receiver positions only
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the arrival times Tih of the signal are available. Up to time h the measurement data
z1:h = {zj | j = 1, . . . , h} is available. As the range of the sound signal is limited and
its propagation may be inhibited by obstacles, at each time step the measurement data
zj ⊆ {Tij | i = 1, . . . , n} is a subset of the possible reception times of all receivers.
We assume that the signal propagates from the beacon to the receivers in a straight

line with a constant signal velocity c according to the signal propagation equation

‖mi − sh‖ = c (Tih − th) , (6.1)

where ‖ · ‖ is the Euclidean norm.
Recall that in the general TDoA localization problem [4, 54] the positions of signal

beacons sj and receivers mi are arbitrary in space. As no anchor positions are provided,
the position and the orientation of the signal beacon and the receivers relative to global
coordinates is undetermined. The estimated solution can be compared to references
by aligning it using a congruent transformation.

6.2 Robust State Estimation in the Particle Filter

We consider the estimation of the continuous trajectory of the signal beacon and the
positions of the stationary receivers as a recursive state estimation problem. For that,
we apply the Bayesian filtering scheme [108], which is a probabilistic approach to
recursive state estimation. It is suitable to TDoA localization as the state can be
computed online and it is robust to motion and measurement uncertainty. We have
published such an approach in [109], from which the following description is adopted.
The key idea of the recursive Bayesian filter is to maintain a probability density

p(xh | z1:h,u1:h) of the state xh at time h. The state is conditioned on all sensor
data z1:h and control commands u1:h up to that time h. This probability density
which is also called posterior distribution can be factorized into

p(xh |z1:h,u1:h)

= ηh p(zh | xh)
∫
p(xh | uh,xh−1) p(xh−1 | u1:h−1, z1:h−1) dxh−1 , (6.2)

where ηh is a normalizing constant ensuring that
∫
p(xh | z1:h,u1:h) dxh = 1. The term

p(xh | uh,xh−1) is the state transition probability and p(zh | xh) is the measurement
probability specified by the motion model and the sensor model, respectively.
Various implementations of the recursive Bayesian filter exist. The Kalman filter

assumes Gaussian uncertainty and linear system dynamics. There are various exten-
sions for nonlinear systems [108]. However, their performance degrades with increasing
nonlinearities [110], and the Gaussian uncertainty assumption is not valid on TDoA
data with additional measurement outliers.
We apply the particle filter, which approximates the current belief p(xh | z1:h,u1:h)

by a setM = {(x[k], w[k])}(k=1,...,N) of N particles. Each particle corresponds to a state
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(a) The weighted set of particles represents
the posterior distribution, the belief of the
moving beacon.

(b) The belief is updated in the prediction
step according to the motion model and to
control input.

(c) In the correction step the particles are
weighted according to the sensor model for
the probability of observations.

(d) In the resampling step the distribution
of the particles is refreshed according to the
weights of the particles.

Figure 6.1: Scheme of Monte Carlo Localization using a particle filter [108], a probabilistic
recursive state estimation algorithm based on particles, consisting of the components
prediction, correction, and resampling.
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hypothesis x[k] weighted by the so-called importance weight w[k], where the weight is
normalized by

∑N
k=1w

[k] = 1. In the particle filter, we perform the recursive belief
update given in (6.2) according to the following three steps:

1. In the prediction step, we propagate each particle by drawing a successor state
based on the proposal distribution p(x[k]

h | uh,x
[k]
h−1) specified by the motion

model. Thereby, the control command uh and the motion uncertainty is taken
into account.

2. In the correction step, we integrate a new measurement zh by updating the
weight w[k]

h ∝ w
[k]
h−1 p(zh | x[k]

h ) of each particle according to the measurement
likelihood given its state hypothesis. The measurement likelihood is defined in
the sensor model taking into account the measurement process and the sensor
characteristics.

3. In the resampling step, we draw a new set of particles fromM with replacement
such that each particle in M is selected with a probability that is proportional
to its weight.

We reduce the particle depletion by applying low variance resampling [108] and delay
the resampling step until the effective number of particles Neff =

(∑N
k=1

(
w[k])2)−1

drops below half the number of particles [111]. See Fig. 6.1 for an illustration of the
particle filter principle.
The initialization of the filter and the design of the sensor and motion models is

substantial for precise and reliable state estimation. In the Sections 6.2.2 to 6.2.4 we
describe our approach to robust initialization of the particle filter, a constant velocity
motion model suitable for standard beacon tracking, and the TDoA sensor model.
For tracking of a mobile beacon, we define the state xh at time h as

xh =
(
sTh ,vTh ,mT

1h, . . . ,mT
nh

)T
. (6.3)

Here, sh is the position and vh is the velocity of the beacon. Furthermore, we neglect
the fact that the receiver positions mi are assumed to be stationary, which will be
taken into account in the motion model as described in Section 6.2.3.

6.2.1 Calculation of the Particle Filter Estimate

We estimate both, the position of the signal beacon, as well as the positions of the
receivers. For calculation of the filter estimate from the weighted set of particles we
approximate the posterior distribution p(xh | z1:h,u1:h) by a Gaussian. According
to that approximation, the filter estimate x̂h is the weighted average of the particles
which is the mean of the Gaussian distribution.
In our state estimation problem the TDoA measurement data specifies only the

individual distances between the receivers and the signal origins, i.e., the internal
configuration of the system. Consequently, the global translation and rotation of the
state x[k] of every particle in the filter is arbitrary. To evaluate the weighted average
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of all particles we globally align the particles in a congruent transformation. The
constraints inside the configuration estimated by every particle, and the distances
between the beacon and the receivers remain unchanged in this procedure.
By following the approach of Arun et al. [57] we use singular value decomposition

to identify the transformation parameters between two particle states x[k] and x[l], the
rotation matrix Rkl and the translation vectors µk and µl. As the configuration of the
receivers can be mirror-inverted, the determinant of the rotation is |Rkl| = ±1. See
Section 2.6 for the calculation of Rkl.
We align all particles to the most likely particle, which we assume to be the first

particle in the set. The alignment of every receiver and the signal beacon in a particle
is calculated by

m̃[k]
i = R1k(m

[k]
i − µ

[k]) + µ[1]

s̃[k] = R1k(s[k] − µ[k]) + µ[1]

from the rotation matrix and the mean of each estimate of the receiver positions.
Analogously, the velocity estimate is transformed by ṽ[k] = R1kv[k].
Now, the weighted mean and the covariance of the particle filter with normalized

weights can be calculated by

µh =
N∑
k=1

w[k]x̃[k]
h

Σh =
N∑
k=1

w[k](x̃[k]
h − µh)(x̃[k]

h − µh)T .

6.2.2 Initialization

As long as the particle filter is in the initialization stage, we try to initialize the filter
using an iterative non-probabilistic error minimization approach. In this stage, we
periodically initialize a certain proportion of the particles according to the result of an
iterative minimization on a subset of TDoA measurement data as follows.
In an initialization attempt at time step h, we use gradient descent, followed by

the Gauss-Newton method [54] to optimize the signal propagation constraint (6.1).
For that, we randomly choose m̃ < h beacon signals including the latest signal
{zI1 , . . . , zIm̃−1 , zh} ⊆ z1:h as a subset of the available measurement data, where Ij
(j = 1, . . . , m̃−1) is the random index of the subset. For simplicity in notation, in the
following we use j to denote the measurement with the index Ij .
The signal propagation constraint (6.1) yields a maximum of m̃n equations if all

receivers obtain all signals, with (p+ 1)m̃+ pn unknown variables. By combining two
equations for receivers i and k (1 ≤ i, k ≤ n) and for a signal j the signal emission
time tj is eliminated, reducing the maximum number of equations to m̃(n−1) equations
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and pm̃+ pn variables. We obtain the hyperbolic equation

‖mi − sj‖ − ‖mk − sj‖ = c (Tij − Tkj) .

We define the state vector with signal and receiver positions to optimize as

ψ =
(
s̃T1 , . . . , s̃Tm̃, m̃T

1 , . . . , m̃T
n

)T
.

Without loss of generality, we choose k = 1 and define the error functional

fij(ψ) = ‖m̃i − s̃j‖ − ‖m̃k − s̃j‖ − c (Tij − Tkj) ,

which we combine into a hyperbolic error function

b(ψ) =
(
f21(ψ), f22(ψ), . . . , fnm̃(ψ)

)T
.

We minimize fij(ψ) by using gradient descent and refine the solution with the Gauss-
Newton method afterwards, which is described in detail in Section 4.1. The result of
the iterative approach is an approximation of the latest position of the beacon sh and
the stationary positions of the receivers m1 to mn:

x̃ =
(
s̃Th ,~0T , m̃T

1 , . . . , m̃T
n

)T
.

We inject this approximation as a possible initialization into the particle filter by
sampling a certain proportion of the particle set from the multivariate Gaussian distri-
bution N (x̃,ΣNewton). Here, the covariance ΣNewton of the Newton optimization results
with respect to the true state can be determined straight forward from recorded data.
Some of these attempts of the iterative algorithm may not be successful. In fact,

especially in the beginning, when only few signals are given and the signal beacon did
not move that far, so that the positions of the signal emissions are not well distributed,
most optimization attempts will fail or converge to a local minimum. However, the
probability of finding the correct solution is increased by repeated attempts [54]. Fur-
thermore, by using varying subsets of data, we circumvent adverse scenarios where the
iterative algorithm never finds a solution.
After some time, the initialization algorithm has provided an estimate which is close

to the true configuration, and the particle filter converges towards the correct positions.
We detect this by continuously evaluating the internal TDOA residual ‖(f1, . . . , fn)T ‖
of the particle filter mean µh, where

fi(µh) = ‖m̃1h − s̃‖ − ‖m̃ih − s̃‖ − c (T1h − Tih) .

After a possible initialization was found, a lowpass filtered indicator of the TDOA
residual will fall below a threshold εinit, which is proportional to the noise of the
system. Empirically, we have determined this value to εinit = 1, which is suitable for
all experiments that we conducted, reliably indicating proper convergence.
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Figure 6.2: A visual representation of the state estimate of the particle filter. The receivers
are shown in blue and the signal beacon in red. The ground truth positions are depicted
as blue and red circles, respectively. [109]

Naturally, the internal TDOA residual of the position estimate is not a safe guar-
antee that a possible solution of low TDOA residual is also the correct solution with
low deviation from the reference positions. The discrepancy becomes evident when
additional measurements are received which are not compatible to the current state,
so the TDOA residual will then increase to a high level. We allow the algorithm to
re-enable initialization mode if such an inconsistency occurs, which is triggered by the
internal error rising above a threshold of εretry = 2. See Fig. 7.12 in Chapter 7 for an
illustration of initialization.

6.2.3 Motion Model

The proper design of the probabilistic motion model is substantial for the efficiency
and the accuracy of the state estimation during the prediction step of the particle
filter. In the context of mobile beacon tracking with simultaneous calibration of the
receiver positions we factorize the probabilistic motion model into

p
(
x[k]
h | uh,x

[k]
h−1

)
= p

(
s[k]
h ,v

[k]
h | uh, s

[k]
h−1,v

[k]
h−1

)
·
n∏
j=1

p
(
m[k]
jh | uh,m

[k]
jh−1

)
, (6.4)

where we assume independent motion of the beacon and the individual receivers.
In most applications no control of the movement of the beacon is given. Hence,

we assume the control command uh = ∆h to contain only the time elapsed since the
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last prediction step and apply a constant velocity motion model. According to these
assumptions the probabilistic model is

sh+1 = sh + ∆hvh (6.5)
vh+1 = vh + ∆h ξ with ξ ∼ N (~0,Σv) . (6.6)

The model is inspired by the Euler integration method [80]. It assumes that the beacon
moves with a constant velocity, and models changes in the velocity by an Gaussian
noise term ξ, instead of acceleration. The covariance matrix Σv can be determined
from empirical data.
The positions of the stationary receivers do not have to be modified so that the

probability density function of the motion model

p
(
m[k]
jh | uh,m

[k]
jh−1

)
= δ

(
m[k]
jh−1

)
(6.7)

of the receivers is the Dirac delta distribution. This results in a sample degeneracy, or
“attrition”, which is usually prevented by adding small random Gaussian disturbances
to the receiver positions of each sample during resampling. However, this leads to a
loss of information in each resampling step, and hence is a suboptimal solution. We
use kernel smoothing [112] instead, as soon as the particle filter is converged:

m[k]
jh ∼ N

(
m[k]
jh ;αm[k]

jh−1 + (1− α) mjh−1, ρ
2ΣMjh−1

)
. (6.8)

mjh−1 and ΣMjh−1 are the weighted mean and covariance of the j-th receiver position
over the particle set at time h − 1. The constant factors α = 3γ−1

2γ and ρ2 = 1 − α2

only depend on a discount factor, which we set to γ = 0.95. Compared to adding
disturbances, kernel smoothing prevents a loss of information in the receiver posi-
tions. Before each kernel smoothing step the particle set is aligned as described in
Section 6.2.1.

6.2.4 Sensor Model

The probabilistic sensor model p(z | x) defines the likelihood of the measurement data
z given the state x of the system. Here, the measurement data zh = {z1, . . . , zk} ⊆
{Tih | i = 1, . . . , n} is a subset of all possible reception times of the beacon signal
emitted at time th measured by the receivers. We assume the measurements of the
individual receivers to be independent, given the current state x of the system, i.e.,
the position of the beacon and the receivers:

p(z | x) =
k∏
j=1

p(zj | x) . (6.9)

Based on Eq. (6.1) the measurement process of each individual measurement zj is
described by

zj − th = 1
c
‖mj − sh‖+ εj . (6.10)
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In our model, we assume that the corresponding error variable εj is basically Gaussian
distributed with an additional small proportion of extreme outliers induced by external
influences like reflections of the signal and echoes. Consequently, we apply a mixed
model combining a Gaussian and a uniform distribution:

p(εj) = (1− α) 1
2λ + αN

(
εj ; 0, σ2) . (6.11)

Here, λ is the maximum error of measurement outliers. N (◦;µ, σ2) denotes the density
function of the Gaussian distribution. The proportion of measurement outliers is
defined by the parameter 0 ≤ α ≤ 1.
Based on this measurement error, the measurement likelihood is defined as

p(zj | x) = (1− α) 1
2λ + αN

(
zj ;µj , σ2) (6.12)

with the mean µj = th + 1
c‖mj − sh‖.

To maximize the likelihood of the measured data with respect to the expected mea-
surements given the current pose of the beacon, we estimate the most likely send
time t̂h:

t̂h = arg max
t̃h

p(z | x, t̃h) = arg max
t̃h

k∏
j=1

p
(
zj | x, t̃h

)
. (6.13)

Maximizing Eq. (6.13) requires to solve

d
dt̂h

p(z | x, t̂h)

= d
dt̂h

k∏
j=1

p
(
zj | x, t̂h

)

= d
dt̂h

k∏
j=1

(
(1− α) 1

2λ + αN
(
zj ; t̂h + ‖mj − sh‖

c
, σ2

))
!= 0 . (6.14)

This product results in a binomial term of degree k, depending on the number of
available receiver measurements. For that derivative, we see no way to find a direct
solution in a closed form. A practical solution can be found using iterative optimization
with only a few iterations. However, as the likelihood maximization is calculated
in every observation step and for every particle in the filter, this will eventually be
very slow.

87



6 Probabilistic TDoA Localization

Hence, we approximate the most likely send time by neglecting the (comparably
small) uniform part of the measurement likelihood and obtain

0 = d
dt̂h

k∏
j=1
N
(
zj ; t̂h + ‖mj − sh‖

c
, σ2

)

=
( 1√

2π σ

)k
exp

−
∑k
j=1

(
zj − t̂h −

‖mj−sh‖
c

)2

2σ2

 1
σ2

k∑
j=1

(
zj − t̂h −

‖mj − sh‖
c

)
.

As the first and the second factor are always greater than zero, the equation can be
rewritten as

0 = 1
σ2

k∑
j=1

(
zj − t̂h −

‖mj − sh‖
c

)
,

which finally can be solved to

t̂h = 1
k

k∑
j=1

(
zj −

‖mj − sh‖
c

)
.

With that approximation of t̂h, we calculate the likelihood of a measurement zh in (6.9)
with

p(zj | x) = (1− α) 1
2λ + αN (zj ; t̂h + 1

c
‖mj − sh‖, σ2) , (6.15)

taking into account measurement outliers for robust beacon tracking in the particle
filter. Also refer to [109] where we published the motion and sensor model.

6.3 Parameter Estimation of the Particle Filter

An essential component of probabilistic state estimation is the choice of parameters
for the sensor and motion model. As described in Section 6.2.4, the sensor model relies
on two parameters – the proportion of the linear component α and the sensor noise
parameter σ2, the variance of the Gaussian proportion of the sensor model. In an ex-
periment with different values for the sensor model we saw that smaller values increase
the risk of divergence of the particle filter, while much larger values lead to a loss of
precision. In the empirical evaluation of the ultrasound system we observed a typical
standard deviation for time measurement of σ̂ ≈ 0.15ms. For TDoA measurements
leads such a small noise to a very highly peaked probability distribution, which is not
well represented by discrete particles, especially if the number of particles is small.
Therefore, we choose slightly larger values for the estimated sensor noise σ, trading
precision for increased robustness of the particle filter. A suitable choice for the given
empirical data of our experiments appears to be 0.3 ≤ σ ≤ 0.4, resulting in minimum
overall positioning error of the beacon, see Fig. 6.3. In the evaluation of the filter in
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Figure 6.3: Estimation of the sensor model noise parameter in experimental data set Exp. 1a
with measurement outliers up to 100ms. The data points represent the median of estima-
tion error of individual runs. The optimum is σ = 0.4ms for different linear component
parameters α.

Chapter 7 we use σ = 0.3ms. For the linear component parameter α the influence is
smaller, and a trend for different choices of α is hardly noticeable. Only if we choose α
close to one, therefore no uniform noise component is assumed, then the particle filter
appears to diverge in some cases. In our experiments we choose α = 0.8.
For the constant velocity motion model, which we described in Section 6.2.3, the

procedure is rather uncritical. We found a standard deviation of at least σv ≥ 0.5
appropriate for elements of the covariance matrix Σv = (σv)2 ·I, where I is the identity
matrix. According to Eq. (6.6), we add such a noise term to the velocity estimate in
every prediction step.
We also ran an evaluation of the required number of particles using the real-world

data sets, which are described later in Chapter 7. We have tested values from less
than 100 particles up to 200,000 particles. If at least 100 particles are given then the
particle filter can track the beacon most of the time, see Fig. 6.4. If 1000 particles
are given the localization becomes reliable, which is remarkably few, considering the
high dimensionality of the state space. We attribute this to the fact that we enforce
initialization of the particle filter by the iterative algorithm. A high number of more
than 100,000 particles does still increase the precision of localization, yet at the cost of
high computational load. In the evaluation of the particle filter in the next chapter we
use a high number of 40,000 particles to avoid aliasing effects due to sparse distribution
of particles.
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Figure 6.4: Evaluation of the required number of particles in experimental data set Exp. 1a
with measurement outliers up to 100ms. The data points represent the median of esti-
mation error of individual runs, and the 30/70 percentiles (gray). A higher number of
particles increases the precision of localization, yet also the computational load.

6.4 Summary

In this chapter, we have presented an approach to robust localization of a mobile beacon
using TDoA measurement data when no receiver positions are given a priori. We cope
with the high-dimensional state estimation problem, which typically has ambiguities
in the measurements and several local optima, through a probabilistic formulation
in a particle filter. The filter is reliably initialized through multiple attempts of an
iterative optimization algorithm and implicitly selects the correct state hypothesis. In
this way, our algorithm is robust to measurement outliers in the initialization phase.
Additionally, we detect the proper initialization of the filter and ensure the termination
of the initialization phase by monitoring the internal TDOA residual.
We have experimentally determined the parameters of the particle filter based on

empirical measurements. Furthermore, we have evaluated the robustness and the accu-
racy of the particle filtering approach using our ultrasound localization system, which
is described in the following chapter in Section 7.3.3. In these experiments, we demon-
strated that in comparison to tracking a moving beacon by iterative optimization, our
probabilistic approach is superior in terms of localization error, especially in case of
measurement outliers. Furthermore, we have shown that the filter successfully initial-
ized in less than 35 seconds in all experiments.
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6.4 Summary

At its current state, the particle filtering approach is implemented for state estima-
tion in two-dimensional environments. We feel positive about the implementation in
three dimensions, as for all components of the algorithm, the state vector size, the
motion and sensor model, the SVD alignment, and the initialization algorithm, the
conversion is straightforward. However, it might be necessary to increase the number
of particles to compensate for the higher dimensionality of the state space. Both, the
increased higher vector size and the higher number of particles will increase the compu-
tational cost of the algorithm. Then, we will be able to carry out further experiments
localizing flying vehicles and smart phones using robust calibration-free TDoA.
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7 Real-World Experiments

We have created a localization system to evaluate the practical feasibility of our TDoA
algorithms in a physical test environment [5]. With the localization system we pursue
two goals. On the one hand, we generate a test bench for elusive influences from the en-
vironment that emerge only in real-world tests, for instance time synchronization and
reverberation issues. We evaluate the performance of our approaches under these con-
ditions, especially the practical Cone Alignment and particle filter algorithms. Second,
we use our approaches in practical application and create a localization solution based
on sound and ultrasound. Especially, in indoor environments such a solution may
compensate for the lack of a reference system such as GPS.
In our system, multiple receiver devices connect in a wireless or wired network, where

they record sounds and exchange time differences of acoustic events over the network.
By using the time differences as input for our algorithms, we can self-calibrate the
positions in the network. An application of this can be locating the laptops in a
computer pool, just by recording the noises of people in the room. Another goal is to
find the positions or to follow the trajectory of an acoustic signal source, which can
be combined with self-calibration of the receivers. Then we obtain a “plug and play”
acoustic tracking system for indoor environments.

7.1 The Localization Framework

Our localization system consists of multiple distributed receivers, which are comput-
ers, and a software system, running on each computer. The devices are connected to
an acoustic receiver such as a microphone, or a USB device. To date we use ordinary
x86-based laptops running Windows or Linux, the ARM-based embedded Gumstix
computers and the Apple iPhone. As the communication protocol is system indepen-
dent an arbitrary mix of platforms and systems may be used in the same experiment.
The only limitation is the availability of receiver types for every platform. The x86-
laptops can use built-in microphones, they and the Gumstix based devices support
USB-connected sound and ultrasound microphones, on iPhone are only the built-in
microphones available [51, 54, 109, 113]. See Fig. 7.1 for a screenshot of the Windows
GUI of the software. The prototypical software framework that we have designed and
implemented consists of modules for network connection management, time synchro-
nization, audio recording and processing, algorithms for TDoA localization, and an
interface for visualization. Fig. 7.2 overviews the components of the framework.
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(a)

(b)

(c)

(d)

(e)

Figure 7.1: Screenshot of the GUI of the localization software. (a) Positions of receiver
devices and sounds. (b) List of recorded timestamps of this device. (c) Visualization of
the latest detected sound signal (blue), the noise threshold (red), and the amplitude-based
time mark algorithms (yellow diamonds). (d) Time differences of signals relative to other
devices in the network. (e) Console log and list of connected network devices.
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Time synchronization. TDoA localization with unsynchronized receivers is pos-
sible in general. For example, distance estimation approaches can be used without
synchronization, where the offset between receivers is estimated from the average of
the time differences. However, the number of required sounds will increase to compen-
sate for the additional variables. Another problem in unsynchronized localization is
the skew of clocks, which needs to be included into the mathematical model or elim-
inated by precise calibration of the clocks. Therefore, the devices in our localization
framework use synchronization between receivers.
As soon as multiple devices are connected in a local network, the devices detect

each other by UDP broadcast messages, and a master device is negotiated, depending
on the order of appearance of devices [77]. In the Synchronization component, the
clients adjust their clocks to the master, who acts as a time reference. We implement
a prototypical synchronization protocol similar to the Network Time Protocol [114],
relying on the exchange of synchronization messages between nodes in the network.
The clients send a series of pings at times tclient to the master, which answers by its
current time tref, yielding tuples (tclient, tref) ∈ K. This timestamp is corrected by a
half of the round trip time (RTT), assuming the network transmission took the same
runtime in both directions. The obtained timestamps are filtered for outliers, which
result from network jitter in a wireless network. Experiments also indicated that clock
skew correction is essential for the high precision event timers (HPET) [115] that we
use. Although they run with accurately constant speed, we observe skew rates between
HPET clocks of 300 ppm, which is very high.
For synchronization we obtain both estimated reference time t̃ref and clock skew t̃skew

between client and master by linear regression of the set K. Including RTT and skew
compensation, the synchronized time of a client is

tsync = t̃ref + 1
2 trtt + (tcurr − tlast) · t̃skew (7.1)

where tlast denotes the client time of the last synchronization, and tcurr denotes the
current time of the client. With this approach we achieve a synchronization precision
of better than 0.1ms in a 802.11 b/g Wi-Fi network with round trip times of about
5ms. See [116] for a survey of synchronization in wireless sensor networks and [117]
for a suggestion of round-based synchronization.

Signal recording and detection. The Timestamp Recorder component records
from the built-in microphone of the device or from a USB-connected receiver and
searches the sound or ultrasound stream for distinctive audio events. In the clapping
experiment and in the basic ultrasound localization system we use a simple edge detec-
tion technique. In this threshold-based approach, we search for the moment when the
amplitude of the audio stream rises above an environment noise dependent threshold
for the first time. Here, background noise is filtered implicitly. Fig. 7.3 displays an
example for clapping hands. More advanced algorithms such as phase correlation and
pattern-based algorithms are discussed in Chapter 8.
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Figure 7.2: Left: Components of the software framework. Right: Our application on an Apple
iPhone 3GS, displaying four receivers (blue dots) and four signal locations (red dots). [51]
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Figure 7.3: Environment noise dependent threshold detection of clapping hands. The moment
when the signal rises above the threshold is chosen as the timestamp. [51]
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In comparison of various amplitude-based detection techniques, threshold compari-
son turned out to be the most robust approach with only minor drawbacks in precision.
Maximum search, either directly or by the derivative (edge detection) showed to be
slightly more precise but appeared to be ambiguous with fatal results in cases when
different devices chose different maxima of a sound signal. In case of a clicking audio
signals with a steep initial edge we calculate time marks with a precision of 0.1ms, the
spatial equivalent is 3 cm. However, when signals are smooth, like the human voice,
the time point of signal detection cannot be clearly determined. Snapping one’s fingers
or clapping one’s hands is still adequate.
The Timestamp Aggregation component collects the local time marks from the

Timestamp Recorder and the time marks from remote devices in the network, com-
bining them to a logical sound event of the real world, for example a finger snap. It is
essential to aggregate the time marks to a sound event in the correct way, cf. Sec-
tion 2.3. We choose temporal proximity of timestamps as the criterion. We assume
that the time between sound events is greater than the maximum TDoA in a sound
event, such that the aggregation is unique. Otherwise, we discard ambiguous events
to prevent false assembly.
Although the Cone Alignment algorithm and the particle filter algorithm are feasi-

ble in three-dimensional space, as described in the respective chapters, the following
experiments will be conducted in a planar setting, a restriction for the sake of simplic-
ity of the experimental setup. In three dimensions the number of receivers would be
higher, due to the determination of the equation system and the limited aperture of the
microphones. Also, creating reference positions and sound signals is harder. Based on
the results of our simulations we expect similar results if we manage to record TDoA
measurements at the same precision as in two dimensions.

7.2 Acoustic Self-Localization

Our first real-world test took place in an outdoor setting on a green area on our campus,
where we evaluated the Cone Alignment algorithm [5]. We arranged a scenario of
four laptops and four Apple iPhones in a roughly elliptic formation of the dimensions
30m× 30m. The devices were connected by a Wi-Fi access point. Alternatively, one
of the laptops could have been used as Wi-Fi hotspot, making the setup independent of
external infrastructures. The goal was to locate the positions of all laptops and iPhones
just from natural sounds from the environment and the positions of the sounds.
With the network connection the software running on each device could communicate

with the other instances and provide synchronization among all devices. With their
built-in microphones the devices recorded any incoming sound event. The time points
of the sounds were calculated by analysis of the audio stream. Sharp sound events
like clapping, or finger snapping are detected by comparing the audio signal to an
environment noise dependent threshold, as described previously.
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Figure 7.4: Four iPhones and four laptops are being located from 15 unknown sound signals.
The experimenter claps two wooden planks while the assistant notes down the signal
positions. Two of the iPhones are on the wooden chairs in the background. The average
location error of the receivers is 0.28m (σ = 0.14m). [5]

We noted the positions of all laptops and smart phones by measuring the distances
to two anchor points, which were chosen as reference points for a Cartesian coordinate
system. Then we calculated the x/y-coordinates of the devices up to a precision of
10 cm using trilateration. Now, an assistant walked in the experiment field creating
noises by clapping two wooden bars, which made a noise with sharp characteristics,
see Fig. 7.4. He was allowed to choose the locations of the sounds arbitrarily, but to
move in between, such that the signals were well distributed.
The positions of the sound signals were marked with plastic cones on the floor. Since

the assistant was free to move we could chart the sound signals only to a precision of
30 cm. Using the synchronous time base the software on every receiver calculated a
synchronized timestamp of every sound event. A filter removed signals which had
been missed by more than one computer, which occurred in some cases as a result
of environmental noise. After filtering we identified a total of 15 sound signals at 15
noted positions.
Given these timestamps as input, the Cone Alignment algorithm computed the rel-

ative locations of the receivers and sounds. The experimental data and the reference
positions were aligned by a congruent transformation by using singular value decom-
position (SVD), minimizing the distances between experimental and ground truth po-
sitions. Recall, as pointed out in Section 1 and 4.2, that the algorithm does not use
anchor points and provides only relative localization.
The average location error of the microphones after alignment was 0.28m with a

standard deviation of 0.14m. The average error of the sounds was measured to 0.39m
with a standard deviation of 0.28m, see Fig. 7.4. The larger error of the sounds might
have been influenced by imprecise noise generation above the plastic cones and the
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7 Real-World Experiments

Figure 7.5: Left: Receiver board with ultrasound capsule and USB connector. Right: The first
version of the ultrasound beacon (blue box) with eight ultrasound capsules facing in all
directions, attached to a model train. [5]

measurement of their positions. We did not encounter the local minima issue in this
strictly over-determined scenario.
In these audio experiments we saw that in a controlled environment we could obtain

very precise timing of the audio events – and audible sounds are available for free
in many situations. By replacing the TDoA calculation by the more robust cross
correlation, this would also work for human voices, see Section 8.1. For now, we require
that no additional clicking noise is created during the experiments, which would impose
a risk of association ambiguity. In the next section we present an ultrasound tracking
system that is less vulnerable to environmental disturbance.

7.3 The Ultrasound Localization System

Amultitude of tracking systems and positioning approaches are available for indoor and
outdoor localization. Many of the commercially available systems are optical systems
and very expensive. A number of localization approaches is based on RSSI evaluation
of Wi-Fi hotspots, yet to date their precision is not convincing. Approaches using
TDoA multilateration usually require receivers with calibrated locations, for which
the positions have to be tediously measured by hand. This can be disadvantageous for
industrial applications, as these have to be easy to use.
We propose a novel tracking system for moving targets using our calibration-free

TDoA algorithms [5, 54]. It can quickly be set up, without the need to calibrate the
positions of receivers. Of course, when the positions of at least three of the devices are
given, the obtained relative coordinates can be converted to absolute coordinates.
We understand that audible sounds are not appropriate here, they would be an-

noying. Therefore we use ultrasound at a frequency of 40 kHz. In recordings with
a high-frequency microphone we saw that only few acoustic sources emit signals up
to the ultrasound range, which reduces the vulnerability of the tracking system to
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7.3 The Ultrasound Localization System

Figure 7.6: Left: The second version of the ultrasound beacon on the flagpole of a RC model
car. A reflective marker for the optical motion capturing system (MoCap) is attached
on top. Right: One of our integrated ultrasound receiver units with a Gumstix Overo
computer and wireless communication. [109]

environmental influences. Typical environmental noises such as the human voice, air
conditioning, noises of the model train and car, or even a bypassing aircraft, seem to
disappear above 30 kHz. Our ultrasound tracking system that we have developed in
cooperation with the Laboratory for Electrical Instrumentation, IMTEK, University
of Freiburg, consists of a mobile ultrasound emitter beacon and receivers that record
and process the signals from the beacon. It has been assembled from off-the-shelf
components and underprices most commercially available tracking systems.
The ultrasound beacon emits short ultrasound pulses of 40 kHz at periodic intervals.

With eight ultrasound capsules facing in all directions it creates an approximately
isotropic signal (Fig. 7.6). It can be carried by a person or it may be attached to a
moving unit, for example a model car or a model aircraft. As it is battery powered it
can be used independent from line voltage, therefore a moving vehicle can be tracked
in real-time. The interval of the pulses can be freely chosen. It should be so large that
signals arriving at the receivers can be distinguished. For example, in an experimental
setup with the dimensions of 20m the interval should be larger than 50ms. We send
short peaks of 1ms with no information encoded in the signal. In our experiments we
use an interval of 300ms, a compromise between update rate and network load.
We record the ultrasound signal by USB-connected ultrasound receiver devices that

we have developed, see Fig. 7.5. Each receiver device consists of an ultrasound capsule
attached to a custom controller board amplifying and digitizing the signal. The con-
troller board is connected to a computer which detects the ultrasound bursts of the
beacon and calculates their points in time. Furthermore, for flexible integration into
arbitrary environments we have built integrated receiver units that do not require an
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Figure 7.7:Model train experiment with five receivers (not in the picture) around an oval track
of the dimensions 1.8m× 3.9m. The average error of the estimated receiver positions is
44.5 cm (σ = 7.7 cm). For the estimated signal beacon position we observe a RMS track
error of only 2.5 cm. [5]

external computer. These are based on Gumstix Overo Computer-on-Modules (COMs)
with an ARM Cortex-A8 processor, see Fig. 7.6. With their low power consumption
and the small dimensions of 12 cm × 11 cm × 4 cm they can be battery powered and
quickly installed into the environment. For both types of receivers we use a Wi-Fi
connection for data communication and time synchronization.

7.3.1 Model Train

In an experiment we track a moving model train [5, 54], where the ultrasound beacon
is attached to its roof (Fig. 7.5). On a simple trajectory, a rectangle of the dimen-
sions 1.8m× 3.9m and a curve radius of 0.6m, the train moves with a velocity of
about 0.5m/s (Fig. 7.7).
Five receivers were placed evenly around the track, at a distance of 4 – 7m. As we

conduct an experiment in the plane, we placed the receivers at the same height as the
beacon. The ultrasound microphones were roughly oriented towards the oval track and
connected to adjacent laptops. With our software running they find each other in a
Wi-Fi network and synchronize their clocks. Using a measuring tape we measured the
positions of the ultrasound capsules of the receivers up to a precision of 3 cm. For the
dimensions of the train track we describe the geometrical shape of the track.
For the tracking experiment we assume that the signals are spatially coherent, such

that the moving beacon has limited velocity. In this way, we filter implausible times-
tamps. The phenomenon of multipath propagation, i.e. echoes from walls, was handled
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Figure 7.8: Left: RC model car with ultrasound beacon on top and markers for the optical
reference system (MoCap). Right: Experiment setting with the RC model car and eleven
ultrasound receivers.

by issuing a dead time of the timestamp detector after every received signal. In rare
cases a detector did not receive a signal in the direct path, but only a delayed echo
of the same signal, which is then detected as the first signal. These false signals are
detected and discarded in the way described.
After approximately three rounds the Cone Alignment algorithm got the TDoA data

as the only input. We calculate both the unknown ultrasound receiver positions and
the trajectory of the train on the track. The estimated receiver positions were fit to the
measured coordinates using SVD. Comparing the data, we find it well matching the
ground truth, but we observe some overestimation of the receivers, which exhibit an
average deviation from the true positions of 44.5 cm (σ = 7.7 cm). The overestimation
is weakly pronounced for the trajectory of the model train. We observe only a small
overestimation resulting in a root mean square (RMS) track error of 2.5 cm.
Sippel et al. [118, 119] use a similar setup of an oval trajectory with a model train.

In the indoor radar experiments they obtain an overall standard deviation of 3.6 cm,
with notable overestimation of the real track of about 20 cm and with large outliers
in case of disturbances. Using a laser scanner precise results are obtained, however
the authors describe that the scanner is susceptible to losing track of the train. Both
techniques require calibration and they are prone to influences of the environment.
In contrast, our ultrasound system is not affected by obstacles in the environment, as
long as a line-of-sight to the beacon exists, and the financial effort should be way below
the costs of the radar and the laser system.
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Figure 7.9: Evaluation of the trajectory of the RC car in the time interval 70 – 102 seconds
with Cone Alignment. On its path, the model car generates ultrasound pulses every
0.3 seconds, which are received by up to eleven receivers. [5]

7.3.2 RC Model Car

For a second experiment [5] we have redesigned the ultrasound beacon, as the quality
of the results in the last experiment may have been affected by the rectangular shape
of the box (Fig. 7.5, right). Signals from the outer edge (i.e. the shorter edge) of the
box will do a “head start”, compared to the long edge, resulting in a timing error of
the receivers. With the new cylindrical casing the signal is now emitted from the same
radius from the center to all directions in the plane (Fig. 7.6, left).
Our present ultrasound system for this experiment consists of five integrated receiver

units and additional six conventional ultrasound receiver devices connected to laptop
computers, see Fig. 7.8. We arranged the receivers in an area of 12m× 8m in a roughly
oval shaped formation on the same level with the ultrasound microphone directed
towards the center of the tracking area. As pointed out previously, our arrangement
in two dimensions simplifies the experimental setup immensely.
We attached the redesigned ultrasound beacon to a flagpole on top of a 1:12 scale

RC model car. For continuous tracking we programmed the beacon to emit an ul-
trasound burst in a fixed interval of 300ms. Although our tracking system does not
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Figure 7.10: Evaluation of the time interval 70 – 102 seconds, see the top-down view in Fig. 7.9.
Left: Cumulative distribution function (CDF) of the errors after evaluation with Cone
Alignment. The mean error of the ultrasound beacon is 5.4 cm (σ = 4.7 cm), compared
to the references. Right: Estimated and reference velocity of the signal beacon. [5]

rely on fixed intervals, the 300ms interval turned out to allow for a precise and all-
over tracking of the moving beacon while the receivers can still uniquely identify the
individual bursts.
To evaluate the precision and robustness of our ultrasound tracking system we used a

MotionAnalysis optical motion capture system (MoCap) with nine Raptor-E cameras.
The MoCap cameras were installed at the ceiling of the experimental area observing
the full area inside the receiver array. The positions of the receiver devices were
obtained by attaching a reflective marker to each device exactly above the ultrasound
microphone. We attached another marker to the top of the ultrasound beacon, so
that the trajectory of the sender could also be determined at a tracking frequency of
100Hz. In this way, we generate position references with a precision of millimeters. In
an experiment, where the beacon is carried by a person, he wore a hat with reflective
markers on its top to obtain the ground-truth positions of the person instead of the
position of the beacon.
This time, our focus was to create a large-scale experiment with signals received by

only a subset of the receivers and allow an arbitrary trajectory of the signal beacon.
The model car moved on the field between the receivers for several minutes on a random
trajectory, generating a few hundreds of signals. Because of the limited range and
aperture of the ultrasound capsules, and because the model car was guided through
the whole experiment field, even outside the perimeter of the eleven receivers, the
signals were not necessarily received by all of the receivers. We discarded the signals
that were received by less than three receivers, as the positions of these signals cannot
be calculated reliably, because the equation system is under-determined.
After the experiment a subset of the signals with the model car driving on a path

throughout the experiment field was chosen for evaluation with the Cone Alignment
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Figure 7.11: Iterative adding of the most recent signal, up to 80 signals. In the beginning
neither the receivers nor the signal beacon positions are known. After 22 seconds a good
estimation of the receivers is found, so the model car can be tracked. Left: Error of the
ultrasound beacon. Right: Mean error and standard deviation of the receiver positions.
The marker detailed view denotes the data segment in Fig. 7.9. [5]

algorithm. We selected a section of the model car path with constant velocity of 1.8m/s
in the beginning, followed by variations of the velocity between 0.7m/s and 2.3m/s,
which is a data set that we also use in [109]. The subset consisted of 101 signals, where
the number of received timestamps per signal ranged from three to eleven. The data
was evaluated by the algorithm and the resulting position estimates for the ultrasound
trajectory and for the receivers were mapped by SVD to the references, see Fig. 7.9.
The mean error of the moving signal beacon of this experiment was 5.4 cm (σ = 4.7 cm),
see the distribution of errors in Fig 7.10, the mean error of the stationary microphones
was 8.6 cm (σ = 5.0 cm). We did not observe the overestimation that occurred the
previous experiment, most probably because of the redesigned beacon.
In an online evaluation of the experiment with recorded data, we iteratively added

signals, up to a maximum of 80 signals, corresponding to about 24 seconds of time. Us-
ing the Cone Alignment algorithm we evaluate the positions of the most recent signal
and of all receivers, given only the TDoA information. For this, we have created a mod-
ification of Cone Alignment, where particles are successively added into the running
mass-spring simulation, while the abort condition of the algorithm is disabled. In this
setting we, naturally, face an initialization problem of the receivers. No information
is available in the beginning, neither the positions of the beacon, nor of the receivers.
When the car starts to move, TDoA information is rare and not well distributed, most
probably leading to defective position assumptions. As soon as the ultrasound signals
arrive from different origins, the algorithm can recover, and the positions of signals
and receivers can be calculated1.

1Demonstration video of Cone Alignment: http://www.youtube.com/watch?v=nKyYJy20CTc
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7.3 The Ultrasound Localization System

In this experiment we evaluated a total of 350 signals from an interval of 110 sec-
onds. 22 seconds after the beginning, a plausible estimation of the receivers was
found (Fig. 7.11), enabling precise tracking of the ultrasound beacon with an error of
centimeters. We also saw in this experiment that Cone Alignment can run in real-time
on a standard PC with moderate CPU load when new ultrasound signals from 11 re-
ceivers arrive every 300ms. In some rare cases we observed that the online algorithm
got stuck in a local minimum, even when TDoA data was collected from throughout
the experiment field. Re-initialization of the algorithm, as described in Section 4.3.4,
may probably solve this problem.

7.3.3 Evaluation of the Particle Filter

We have also verified the capability of our particle filtering approach using the de-
scribed indoor test setting [109]. In the two-dimensional arrangement of stationary
receivers a moving signal beacon was to be tracked, similar to the testbed in the Cone
Alignment experiment in the previous section. As in the experimental evaluation of
the optimization algorithm, the beacon emits short ultrasound bursts, which can be
detected by the receivers.
For the first experiment, which we denote as the model car experiment, we installed

the ultrasound beacon to an R/C model car on a pole, such that it resides at the
same height as the receivers (see Fig. 7.8). In several runs of three to ten minutes
we navigated the model car through the experimental area2, at varying velocities at
an average of 1.5m/s and up to 4m/s. In Exp. 1 the path of the model car included
sharp turns, sudden stops, and rapid starts. In Exp. 2 we extended the movements
by leaving the perimeter of the ultrasound microphones and the optical reference and
re-entering at another location to force the particle filter to recover at totally different
positions. Naturally, the signal is not received by all receivers, as the car navigates
into a corner of the area, or even outside.
In the pedestrian experiment (Exp. 3 ) a person carried the sender in his hand. He

walked a random path of a few minutes through the area, with sharp turns and stops.
At all times, he held the beacon at the same height as the receivers to satisfy the planar
constraint. In this experiment the direct path of the ultrasound signal to the receivers
was obstructed by the body of the person, blocking some of the signals. Most notably,
the ultrasound beacon and the hat with the reflective markers were not vertically
aligned, such that their horizontal positions deviate up to half a meter. Consequently,
the reference positions are less reliable in this experiment.
We have split the experiments into several data sets to evaluate the behavior of

the algorithm from different aspects. We obtain four data sets from the model car
experiment, namely Exp. 1a, Exp. 1b, Exp. 2a, and Exp. 2b. From the pedestrian
experiment we obtain the data sets Exp. 3a and Exp. 3b.

2Demonstration video of the particle filter: http://www.youtube.com/watch?v=V85wejcYyXs
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Figure 7.12: TDOA residual of Exp. 1a. After 26 seconds the filtered TDOA residual falls
below the threshold of εinit = 1. Then, initialization with the optimization algorithm
ends. Recall that the TDOA residual is not to be confused with position error of the
beacon compared to the MoCap reference. [109]

Initialization phase. In the beginning, no positions of neither the beacon nor the
receivers are known. The particle filter algorithm is initialized with a uniform dis-
tribution. As the number of measurements increases, the iterative TDoA algorithm
described in Section 6.2.2 begins to compute configurations of likely receiver positions
and the beacon using a random subset of the available signals. We choose to use the
algorithm with a fixed number of 10 signals, which is a compromise between compu-
tational load and a good chance of converging.
We have evaluated the initialization scheme described in Section 6.2.2 with six runs

for each of the six data sets. During the initialization period the beacon moved on
a curvy trajectory in the experimental area, which we require to initialize. Our lo-
calization algorithm monitors and low-pass filters the internal TDOA residual of the
particle filter estimate as shown in Fig. 7.12. It automatically finishes the initialization
phase as soon as the filtered TDOA residual drops below the threshold εinit = 1. As
shown in Fig. 7.13, the end of initialization of the filter is achieved in all of the tested
scenarios after a maximum initialization time of 35 seconds. When the initialization
was finished, the position error of the beacon was already below 70 cm in all cases,
which indicates a proper initialization near to the true state.

Tracking phase. After the initialization phase is finished, we deactivate the iterative
algorithm and switch to position tracking in the particle filter. Additionally, we enable
kernel smoothing on the receiver estimates to prevent from information loss during
the resampling step, cf. Section 6.2.3. Fig. 6.2 illustrates the beacon and the receiver
estimate in the particle filter.
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Figure 7.13: The end time of the initialization, which is triggered by the TDOA residual falling
below εinit = 1, and the corresponding localization error for six particle filter runs on each
of the six data sets. In all runs the initialization time does not exceed 35 seconds. [109]

During the tracking phase the estimated beacon positions are very consistent to
the indicated references. We observe an effect of the constant velocity motion model,
which assumes a straight path of the beacon and consequently pushes the particles
slightly to the outside curve. In an extract of 30 seconds of the first data set Exp. 1a
we find that 95% of all positions deviate less than 10 cm from the reference positions,
at a mean of 4.8 cm (Fig. 7.14).
In Exp. 2 we navigated the model car outside the range of the receivers, re-entering

at another position after three to five seconds. As shown in Fig. 7.15, the estimate
of the beacon diverges, as soon as not enough TDoA measurement data is available.
However, a few steps after re-entering the range of the receivers new measurement data
is received and the particle filter quickly recovers to the correct position.

7.3.4 Robustness to Outliers and Comparison of Algorithms

A common problem for TDoA localization in indoor environments are extreme mea-
surement errors caused by echoes from nearby walls, noise from the environment, and
wrong assignment of signals. These typical errors appear as single spikes in the TDoA
graph, with magnitudes of 10ms to more than 100ms. We verify the robustness of our
particle filtering approach by a systematical simulation of such spikes.
We compared the particle filtering algorithm to the iterative Cone Alignment al-

gorithm [5, 109]. Recall this iterative optimization approach, which minimizes the
constraints between signals and receivers according to Eq. (2.1) in terms of energy
minimization. For every new signal we call the algorithm with a set of 80 previous
signals, which is described in the previous section. Although defective measurements
are carried for a longer time, the high number of measurements taken into account
increases the precision and the robustness of the algorithm.
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Figure 7.14: An extract of 30 seconds of Exp. 1a. Top: In sharp corners the particles are
slightly drawn to the outside, which is an effect of the constant velocity motion model.
Bottom: Position error and velocity of the beacon. The mean position error is 4.8 cm
(σ = 2.8 cm). [109]
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Figure 7.15: Data set Exp. 2a: The beacon estimate when the signal is lost. Only a few steps
after new TDoA information is available the particle filter estimate reliably converges to
the true state. [109]

For the evaluation of the robustness of the algorithms we systematically manipulated
our measurement data by randomly generating outliers every 50 to 70 measurements.
Their magnitudes were sampled from a Gaussian distribution with standard deviations
of 10, 20, 50, 100, 200 and 500 milliseconds. For all of the six data sets we compare
the deviation of the estimated positions from the reference positions for the different
standard deviations.
Fig. 7.16 shows the error distribution of all algorithms with and without outliers.

In all data sets without outliers the particle filter with kernel smoothing performs
slightly better than the iterative approach. In contrast, in the presence of outliers,
even the particle filter without kernel smoothing outperforms the Cone Alignment
algorithm which is susceptible to these errors. Especially with kernel smoothing the
particle filter performs robustly as soon as the estimates of the receiver positions have
converged. The position errors in case of different magnitudes of outliers are illustrated
in Fig. 7.17. As the estimates of the signal and receiver positions are related through
the TDoA constraints between them, a wrongly estimated beacon position, caused
by an outlier in the TDoA data, can also corrupt the receiver position estimates. In
this way, the estimate of iterative algorithms like the Cone Alignment can literally
“explode”, resulting in a complete loss of the estimate.
Using the probabilistic state estimation approach we did not observe initialization

failures of the algorithm in these data sets. By repeated initialization attempts with
different subsets of measurements the particle filter can eventually find a good estimate
of the receivers and thereby overcome the local minima issue that occurred in the online
version of the Cone Alignment algorithm.

109



7 Real-World Experiments

 0

 0.2

 0.4

 0.6

 0.8

 1

CA PF KS

D
is

tr
ib

u
ti

o
n

 o
f 

er
ro

rs

> 4.00 m
2.00 - 4.00 m
1.00 - 2.00 m
0.50 - 1.00 m
0.25 - 0.50 m
0.13 - 0.25 m
0.07 - 0.13 m
0.04 - 0.07 m
0.02 - 0.04 m
< 0.02 m

Exp1a

 0

 0.2

 0.4

 0.6

 0.8

 1

CA PF KS

D
is

tr
ib

u
ti

o
n
 o

f 
er

ro
rs

> 4.00 m
2.00 - 4.00 m
1.00 - 2.00 m
0.50 - 1.00 m
0.25 - 0.50 m
0.13 - 0.25 m
0.07 - 0.13 m
0.04 - 0.07 m
0.02 - 0.04 m
< 0.02 m

Exp1a

 0

 0.2

 0.4

 0.6

 0.8

 1

CA PF KS CA PF KS CA PF KS CA PF KS CA PF KS CA PF KS

di
st

rib
ut

io
n 

of
 e

rr
or

s

> 4.002.00 - 4.001.00 - 2.000.50 - 1.000.25 - 0.500.13 - 0.250.07 - 0.130.04 - 0.070.02 - 0.04< 0.02> 4.002.00 - 4.001.00 - 2.000.50 - 1.000.25 - 0.500.13 - 0.250.07 - 0.130.04 - 0.070.02 - 0.04< 0.02> 4.002.00 - 4.001.00 - 2.000.50 - 1.000.25 - 0.500.13 - 0.250.07 - 0.130.04 - 0.070.02 - 0.04< 0.02> 4.002.00 - 4.001.00 - 2.000.50 - 1.000.25 - 0.500.13 - 0.250.07 - 0.130.04 - 0.070.02 - 0.04< 0.02> 4.002.00 - 4.001.00 - 2.000.50 - 1.000.25 - 0.500.13 - 0.250.07 - 0.130.04 - 0.070.02 - 0.04< 0.02> 4.002.00 - 4.001.00 - 2.000.50 - 1.000.25 - 0.500.13 - 0.250.07 - 0.130.04 - 0.070.02 - 0.04< 0.02 Exp3bExp3aExp2bExp2aExp1bExp1a

 0

 0.2

 0.4

 0.6

 0.8

 1

CA PF KS CA PF KS CA PF KS CA PF KS CA PF KS CA PF KS

di
st

rib
ut

io
n 

of
 e

rr
or

s

> 4.002.00 - 4.001.00 - 2.000.50 - 1.000.25 - 0.500.13 - 0.250.07 - 0.130.04 - 0.070.02 - 0.04< 0.02> 4.002.00 - 4.001.00 - 2.000.50 - 1.000.25 - 0.500.13 - 0.250.07 - 0.130.04 - 0.070.02 - 0.04< 0.02> 4.002.00 - 4.001.00 - 2.000.50 - 1.000.25 - 0.500.13 - 0.250.07 - 0.130.04 - 0.070.02 - 0.04< 0.02> 4.002.00 - 4.001.00 - 2.000.50 - 1.000.25 - 0.500.13 - 0.250.07 - 0.130.04 - 0.070.02 - 0.04< 0.02> 4.002.00 - 4.001.00 - 2.000.50 - 1.000.25 - 0.500.13 - 0.250.07 - 0.130.04 - 0.070.02 - 0.04< 0.02> 4.002.00 - 4.001.00 - 2.000.50 - 1.000.25 - 0.500.13 - 0.250.07 - 0.130.04 - 0.070.02 - 0.04< 0.02 Exp3bExp3aExp2bExp2aExp1bExp1a

Figure 7.16: The error distribution of the two model car experiments Exp. 1 and Exp. 2
and of the pedestrian experiment Exp. 3, comparing Cone Alignment (CA), particle
filtering without (PF) and with kernel smoothing (KS). Read the plot as “Higher seg-
ments are better”. Top: No outliers. Bottom: Simulated outliers with 100 ms standard
deviation. [109]
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(a) While in the RC car experiments Exp. 1 and Exp. 2 the particle filter (KS) is robust
even to extreme outliers of 200ms, the Cone Alignment algorithm (CA) exhibits an increasing
proportion of bad estimates.
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(b) In the pedestrian experiments Exp. 3 the absolute error is higher, as the reference positions
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in the RC car experiments.

Figure 7.17: The cumulative distribution of the position errors of the beacon for Cone Align-
ment (CA) and for the particle filter with kernel smoothing (KS) for varying magnitudes
of measurement outliers. [109]

7.4 Related Work

We discuss a short survey of popular acoustic localization systems. In the decentralized
Cricket system [1, 120] distributed static and mobile nodes are equipped with an
ultrasound beacons and a “listener”. By transmission of ultrasound and RF signals
the locations of new static nodes and of mobile nodes can be inferred, relative to
the previously configured nodes. In the 3DLocus system [121, 122, 123] stationary
bi-directional ultrasound units communicate with a mobile unit. Stationary units are
synchronized with the mobile unit by wireless or wired network, and the ultrasound
signal is decoded by cross correlation, yielding high precision ranging up to 9mm.
In [15] is the ultrasound ranging experiment AHLoS presented, where in an iterative
approach the positions of ultrasound nodes are determined from already given nodes.
In the ActiveBat [124, 125] system are synchronized mobile ultrasound badges located
by receivers in the ceiling.
BeepBeep [2] is a ranging system for smart phones and PDA. At least two devices

estimate the distance between each other by exchange of acoustic sounds of frequencies
up to 20 kHz by using the built-in speakers and microphones of the devices. By listening
not only to the other unit’s signal, but also to the own emitted sound, the hardware
delay of the devices can be eliminated. In Whistle [126] a similar approach is used for
hyperbolic localization. Mobile phones are located by sending a sound signal over an
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intermediate signal repeater, which is also a mobile phone, eliminating the need for
synchronization. While the idea is elegant, both systems suffer from increased risk of
missing a measurement, due to the high number of intermediate waypoints of signals.
In WALRUS [127] are pulses of 21 kHz of stationary beacons received by mobile PDAs
and laptops. As they are synchronized to the beacons by Wi-Fi, the ranges between
beacons and mobile unit can be calculated.
Some auto-calibration systems and experiments use sounds from the environment

to locate network devices with built-in microphones, as in Section 7.2, for example the
calibration-free TDoA approaches in [41, 46, 47], or the approaches for tracking a mov-
ing speaker by cross correlation [37]. In PANDAA [48] are sounds events detected by
their amplitude, and the distance between a pair of receivers is calculated by a method
similar to the maximum estimator from Section 3.1, yet with explicit consideration of
Gaussian measurement errors. See [128] for a survey on further indoor and outdoor
location systems.

7.5 Summary

For evaluation of our algorithms, and to study the characteristics and challenges of
TDoA localization, we created a localization framework where nodes in a computer
network record sound or ultrasound signals, and exchange the timestamps to calculate
the position of the nodes. We implemented this framework on laptops, smart phones,
and embedded computers. We have demonstrated that the framework is capable to
calculate the positions of laptops and iPhones with our algorithms by clapping sounds
from the environment, of which the time differences of arrival are calculated.
Using our framework, we have created the calibration-free ultrasound localization

system, consisting of a small and simplistic ultrasound emitter and specific ultrasound
receivers. With the system we can localize the position of the beacon relative to the
receivers without the need to measure the positions of the receivers a priori. The
receiver positions are calibrated automatically during operation of the localization
system by our calibration-free TDoA algorithms. In our system, the simplistic mobile
ultrasound beacon does not require additional communication, nor synchronization
with the receivers.
We have conducted extensive experiments with the ultrasound tracking system,

where we randomly navigated the signal beacon mounted on a R/C model car through
an indoor environment. In these experiments we demonstrated the accuracy and relia-
bility of the probabilistic state estimation algorithm. We performed a detailed analysis
of the algorithm and compared it to iterative Cone Alignment in terms of robustness.
In comparison to tracking a moving beacon by iterative optimization, our probabilis-
tic approach is superior in terms of localization error, especially in case of measure-
ment outliers. We have demonstrated that the filter successfully initialized in less
than 35 seconds in all experiments. In the subsequent tracking phase the algorithm
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localized the beacon with an average position error of less than 5 cm and was able to
reliably recover the beacon position in case of signal loss. In experiments with random
measurement outliers, which may occur from environmental influences such as noise
and echoes, the particle filter was marginally affected, even in case of very high error
magnitudes.
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Reliable calculation of time differences is essential for TDoA localization. For the
ultrasound system, the simple amplitude-based edge detection of signals that we in-
troduced in Section 7.1 turned out to be adequate, as only few sources of disturbance
emit signals up to the ultrasound frequency range of 40 kHz. However, for the acoustic
self-localization by environmental sound, and for smart phone localization in the range
of 20 kHz as described in [113], the simple edge detection technique is prone to addi-
tional recording of false sound events and to ambiguities of the edge position in case of
smooth sound, for instance the human voice. Furthermore, edge detection effectively
limits the range of transmission, as the signal has to be clearly louder than the envi-
ronmental noise threshold, for it can be distinguished. We go on a short excursion into
the field of signal processing and present two approaches for robust TDoA calculation
that we have developed.
Cross correlation of audio signals is a promising approach, especially when a multi-

channel audio signal is available on a computer, for instance in the application example
of calibrating a microphone array, as suggested in [42]. We have implemented the
computationally more efficient phase correlation algorithm, which calculates the cross-
power spectrum in the frequency domain, for which we have developed an algorithm
for speaker tracking based on particle filtering, which we present in the following.

8.1 Cross Correlation

Both cross correlation and phase correlation with Fourier transform calculate a simi-
larity measure of two audio tracks g1, g2 ∈ RN for a shift τ ∈ N of the tracks, which is
the time difference of arrival (TDoA). Typically, a window of size N of both tracks is
used to calculate the cross correlation as

(g1 ? g2)(τ) =
N∑
i=1

g1(i) g2(τ + i) . (8.1)

As can be seen, to calculate the cross-correlation for all shifts τ in a window of size N
time O(N2) is required.
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8.1.1 Phase Correlation Algorithm

We use phase correlation instead, which requires time O(N log(N)) for the Fast Fourier
Transform (FFT) of both audio tracks, plus a linear term for calculating the cross-
power spectrum, where the window size for FFT is N = 2u, u ∈ N+. For the imple-
mentation we follow the approach of Valin et al. [37].
The first step is to compute the Fourier transform G1 = F(g1) and G2 = F(g2),

where G1, G2 ∈ C
N
2 +1. The coefficients of the weighted normalized cross-power spec-

trum H are calculated by

H(k) = w(k) G1(k)G2(k)∗

|G1(k)| |G2(k)| , (1 ≤ k ≤ N
2 + 1)

where (·)∗ denotes the complex conjugate, and | · | the complex magnitude. Normal-
ization by the spectral magnitude ensures balancing of all frequencies by eliminating
the overweight of low frequencies, which causes widened correlation peaks [37]. In
contrast, the weighting parameter w(k) may be used to emphasize certain frequency
ranges. It is used as a frequency filter in the chirp spread spectrum algorithm, which
is described in the next section. For comparison of two audio tracks we set w(k) = 1.
By inverse Fourier transform we obtain an approximation to the cross correlation, the
vector h = F−1(H) which maps a correlation h(τ) to a time difference τ . As a result
of the window size is −N

2 ≤ τ ≤
N
2 .

We use phase correlation to track a moving speaker in a recording of two audio
microphones, for which we have implemented the algorithm in C++. We execute
the algorithm on subsequent windows in the audio track. By merging the correlation
windows, we obtain a matrix of a correlations h(t, τ) for a time frame t and time
difference τ .
The obvious approach for calculating the time difference is to consider the correlation

maximum. However, we saw that this is unreliable in moments of silence in the audio
track. Alternatively, one might consider the matrix h(t, τ) as an image and combine
different methods from the domain of pattern recognition [85]. For instance, a typical
strategy is to remove noise with a Gaussian kernel, then enhance the edges with the
Sobel operator, then use a threshold to define a line. Yet, we could still not achieve
convincing results with these techniques, due to the small contrast.

8.1.2 Particle Filter

We rely instead on the assumption that the speaker’s trajectory, and the resulting time
difference, is continuous. We have developed a particle filter in a one-dimensional state
space that propagates in time, trying to follow the trace of highest correlation in every
time frame of the correlation matrix.
The particle filter consists of a set of particles M = {(x[k], w[k])}(1≤k≤K) which

are updated in three algorithm components, sampling, weighting, and resampling, as
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8.1 Cross Correlation

(a) Phase correlation diagram. Bright colors
indicate positive correlation.

(b) Particle filter diagram. The particle filter
follows the time difference of the speaker.

(c) Phase correlation diagram. Bright colors
indicate positive correlation.

(d) Particle filter diagram. The particle filter
cannot follow both speakers.

Figure 8.1: Top: One speaker moving between two microphones, reading a newspaper. The
horizontal axis is the time axis in a recording of 37 seconds. Bottom: Tracking of two
speakers moving between two microphones for 83 seconds. The window size is N = 1024,
therefore the vertical axis is the TDoA in the interval ±11.6ms.
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8 Advanced TDoA Calculation

(a) Phase correlation diagram. Bright colors
indicate positive correlation.

(b) Particle filter diagram. The particle filter
follows the time difference of the quadrotor.

Figure 8.2: Tracking of the screaming uniform noise of an AR.Drone quadrotor of 88 seconds
duration. The window size is N = 512, therefore the time difference is ±5.8ms.

described in Chapter 6. The state x = (τ̂ , τ̇)T represents the time difference τ̂ ∈ R
and the change in time difference, the velocity τ̇ ∈ R. For the motion model we use
a constant velocity model, where in every time frame t the position is updated by the
velocity as

τ̂
[k]
t+1 = τ̂

[k]
t + τ̇

[k]
t and τ̇

[k]
t+1 = τ̇

[k]
t + ξ , (8.2)

where ξ is a Gaussian random variable. For the observation model we decided to use
a simplistic formulation, where the weight update is calculated from the q nearest
measures by

p(z | x) =
q∑

`=−q
h(t, bτ̂c+ `) N̄q(`) , (8.3)

where N̄q is a discrete Gaussian kernel of size 2q + 1.
For initialization, all particles are uniformly distributed in the first frame t = 0. In

every movement step, a particle propagates into the next time frame, depending on
its velocity, where the weight is updated according to the observation. Resampling is
performed according to the low variance resampling scheme [108]. We consider that the
speaker may become silent and start somewhere else, the so-called “kidnapped robot
problem” [108], for which we generate random uniformly distributed samples in every
prediction step. For more details on the particle filter algorithm refer to Chapter 6.

8.1.3 Experimental Evaluation

In an experiment we placed two microphones in a distance of few meters and had a
speaker walk between them back and forth, while reading a story from a newspaper.
While speaking, the speaker was advised to reduce breaks between words and sentences,

118



8.2 Chirp Spread Spectrum

in order to generate a continuous acoustic flow. We recorded the audio track at a
sampling rate of 44,100 kHz and evaluated a section of 38 seconds with a window size
of N = 1024 and 50% overlap of windows, corresponding to 3261 correlation frames.
On the cross correlation result we see a clear line for the eye where the time difference
of the speaker appears, framed by thinner lines of echoes from a wall, see Fig. 8.1(a).
We see that the particle filter can well track that speaker in Fig. 8.1(b).
We repeated the experiment with two simultaneous speakers. We chose two male

persons, yet with different vocal ranges, to facilitate distinction of both. For the first
50 seconds both persons were walking and speaking, then one of both speakers became
silent, yielding a total duration of the audio track of 83 seconds. The evaluation yielded
a clearly distinguishable correlation diagram, see Fig. 8.1(c), however the particle filter
could not track both speakers, but followed only one of the correlation curves, see
Fig. 8.1(d). This is not surprising, as the particle filter was not designed as a multi-
hypothesis tracker.
In a third experiment we had a Parrot AR.Drone quadrotor hover between two mi-

crophones, for which the high-pitched screaming noise of its rotor gear is characteristic.
We recorded an audio file of 87 seconds and evaluated with a window of N = 512, due
to smaller distance of the microphones. According to the evaluation, see Fig. 8.2, even
this sonorous mechanical sound is adequate for tracking by correlation.
Phase correlation of similar audio information of two microphones is robust and

works with a continuous sound signals, as demonstrated in the experiments. A draw-
back is the high computational cost of the algorithm and the high amount of infor-
mation to exchange between receiver nodes, which opposes the employment of phase
correlation in a low-power wireless sensor network.
In contrast, pattern detection in an audio track uses the benefits of both worlds.

No information is exchanged between nodes and the computational cost may be de-
creased if a short pattern is chosen. In the following we present chirp spread spectrum
as an algorithm of audio pattern detection.

8.2 Chirp Spread Spectrum

In digital communication, spread spectrum is a wideband technique to enhance the
fault-tolerance and noise resilience of a signal transmission. In chirp spread spec-
trum (CSS) a linearly modulated sinusoid waveform is used [113, 129]. Depending on
begin and end frequencies f1 and f2 and the duration of the chirp `, for time 0 ≤ t ≤ `
a chirp is defined in the time domain as

A(t) = sin
(

2π
(
f1t+ (f2 − f1) t

2

2`

))
. (8.4)

A chirp in an audio or ultrasound signal can be detected by calculating the correla-
tion of the recorded signal g1 and a pattern of the chirp g2 which is created from

(
A,~0

)T
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8 Advanced TDoA Calculation

(a) The spectral view of the recorded audio track, where the horizontal axis is the time
and the vertical axis is the frequency, illustrates the sequence of UP and DOWN chirps.
Note the reverberation after the end of the sequence.
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(b) The phase correlation of two chirp symbols UP (red) and DOWN (green) yields
maxima in the correlation function. The most likely position of the sequence begin is
found by calculating the product (blue) of eight test positions (magenta).

Figure 8.3: Evaluation of a recorded audio chirp sequence of 8 bits in the frequency range
8 kHz – 12 kHz and duration of a chirp of 3ms. The transmitted bit string ’10100110’
(LSB first), corresponds to the ASCII letter ’e’.
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8.2 Chirp Spread Spectrum

by using a window size of N = 2u ≥ `Ω, for u ∈ N+, where Ω is the sampling fre-
quency. The rest of the window is padded with zeros. The phase correlation of the
pattern and the recorded signal is calculated as described in the previous section. For
CSS we choose the cross spectrum weight

w(k) =

1 if f1 ≤ kΩ
N
2 +1 ≤ f2 ,

ζ else ,
(8.5)

where 0 ≤ ζ < 1, therefore reducing the influence of signals outside the frequency
range of the chirp.
By means of the correlation, even if a notable amount of noise is contained in the

recording, a sharp peak can be observed at shift position τ , if f2 6= f1. The position
of the peak determines the time of the recorded chirp. The magnitude, depending on
the noise and the window size, is an indicator of the clarity of the detection.
The chirp spread spectrum technique can be used for robust transmission of a data

word, for example to distinguish the sender of a signal by an identification number,
by combining 2q chirp symbols that represent a sequence of q bits. In the simplest
form an “UP” chirp in the frequency range (f1, f2) and a “DOWN” chirp in (f2, f1) is
chosen, where f1 < f2, representing “1” and “0”, respectively.
In an experiment we created sequences of n = 8 bits, in total a message of 118 ASCII

characters from a text. Bits of a sequence were encoded as UP and DOWN chirps in
the frequency range 8 kHz to 12 kHz at a duration of 3ms per chirp, yielding a total
sequence length of 24ms. The sequences were concatenated in an audio track with a
pause of 400ms between each sequence. The audio track of 50 seconds was played by
a conventional loudspeaker and recorded by a high quality measurement microphone
at a distance of few meters at a sampling rate of 44.1 kHz. For both chirp symbols we
calculated h1 as the correlation of the recorded signal and the UP pattern, and h2 as
correlation of the DOWN pattern respectively. We calculate the estimated begin of
the sequence, which is required for determining the TDoA, by the product

C(t) =
n−1∏
i=0

max
(
h1(t+ i`), h2(t+ i`)

)
, (8.6)

taking into consideration that a sequence may consist of either symbols. Analogously,
once the position of the sequence is determined, the bit values are obtained by com-
parison of the correlation values. See Fig. 8.3(a) for an example of the spectral view
of a recorded sequence and Fig. 8.3(b) for the detected correlation of the sequence
of chirps.
Chirp spread spectrum is an elegant technique to combine robust transmission of a

signal under high environmental noise, and precise time determination of the signal
by the correlation peak. We have executed the CSS algorithm by phase correlation
to benefit from the low time complexity of the Fast Fourier Transform. However, for
chirps of short duration calculating the correlation in the time domain, as defined in
Eq. (8.1), is worth consideration.
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8 Advanced TDoA Calculation

8.3 Summary

In this chapter we have presented two approaches to increase the robustness of TDoA
calculation. We have implemented a phase correlation approach to experiment with
direct comparison of audio signals, and we have developed a particle filtering approach
to ensure reliable tracking of a speaker’s position, which we demonstrated in several
experiments. Furthermore, we have created an algorithm based on chirp spread spec-
trum, where we demonstrated a promising result for error-resilient transmission and
TDoA calculation of binary data.
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9 The Energy-Autarkic Calibration-
Free Ultrasound Tracking System
(eCULTS)

The idea of TDoA without the need of pre-defined anchors proceeds in the industrial
MicroTEC-Südwest project eCULTS, which follows from the origins of the calibration-
free ultrasound localization system that was developed during this thesis. eCULTS is
an acronym for energy-autarkic Calibration-free ULtrasound Tracking System. The
project, which is funded by the German Federal Ministry of Education and Research
(BMBF), envisages the development of an indoor localization system for commercial
intralogistics, where reference nodes are deployed that operate energy-autarkic, and
that require no manual calibration during installation of the system. The goal of
the project is to combine the high availability and cost efficiency of ultrasound based
solutions to a localization system that can be installed and maintained with low effort
by the customer.
eCULTS is a collaboration of academic and industrial partners. The Department of

Computer Science (IIF) and the Department of Microsystems Engineering (IMTEK)
of the University of Freiburg are involved as initiators and collaborators of the project,
among several industrial collaborators such as the SICK AG, Pepperl+Fuchs, the HSG
Institute for Microsystems Engineering (HSG-IMIT), and others. The project started
in October 2012, the current funding phase lasts until June 2015.

9.1 Background
The domain of in-house logistics of commercial enterprises, sometimes also referred to
as intralogistics, covers the entire range of organization, execution and optimization of
in-house material flow and warehousing. While traditionally by the means of mate-
rial transportation a static infrastructure is understood, involving conveyor belts and
manually operated cranes and fork lifts, a trend towards autonomous agents has been
developing in the past time.
An important factor is localization and tracking of these autonomous systems. In the

outdoor domain of logistics GPS has been playing an important role for fleet manage-
ment for years. However, in intralogistics is GPS barely available and with a precision
of few meters too imprecise for navigation of autonomous units. Also, localization sys-
tems based on radio are usually too imprecise for positioning and navigation in indoor
environments. Furthermore, they require extensive effort for installation and mainte-
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radio connection 
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(data consolidation, 

data processing)

Internet

satellites 
(ultrasound sender)
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Figure 9.1: Prospected component overview of the eCULTS localization system. One or more
mobile receivers navigate by means of static ultrasound beacons (satellites). The locality
information is directly available to the receiver unit. Optionally, the navigation process
is monitored by web-based applications.

nance of reference nodes, which implies that a large amount of technical knowledge
is required by the customer – or the installation and maintenance is executed by the
system provider, which is expensive to the customer.
Systems based on laser scanning are employed in many cases. These require effort

for installation of scanable reference tags and for calibration of the laser systems.
Yet, in many prospective plans in intralogistics, the employment of a large number of
inexpensive small agents is advised, instead of a small number of expensive ones. It
does not seem profitable to equip all these units with expensive high performance laser
scanners. A low-priced alternative is required.

9.2 Localization of Mobile Receivers

In an application scenario, mobile units such as in the small-scale redundant intralogis-
tics system (KARIS) [130] navigate autonomously in a warehouse, forwarding goods
between a pick-up and a handoff place, which are scheduled dynamically. For this sce-
nario, several signal emitters are regularly placed, preferably at the hall ceiling. The
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9.2 Localization of Mobile Receivers

autonomous units receive periodical ultrasound pulses from the emitters. From the
times and time differences of the signals the receivers can determine their positions in
a hall. Optionally, they forward the locality information to a server, where the data
is consolidated, so the mobile units can be monitored and assigned tasks. See Fig. 9.1
for an overview of the prospective system concept.
Localization of receivers in eCULTS is done solely by evaluation of the time points

of reception of the signals emitted by the ultrasound senders. No additional radio
connection is required for this purpose. Optionally can an inertial measurement unit
and odometry support the ultrasound localization. The ultrasound signals contain
identification codes of the senders, so they can be distinguished by the receiver. A fea-
sible technique may be chirp spread spectrum, as described in Section 8.2. Reliable
discrimination of the senders is a requirement for all time-of-arrival based algorithms.
The setting in the eCULTS project may be considered as the “inverted” problem of

calibration-free TDoA, compared to the scenario in Chapter 6 and the experimental
Section 7.3. The advantage of the inversion is that a constant number of stationary
emitters may be used to locate an arbitrary number of mobile agents, and that the
locality information is instantly available to the agents where it is required.
Localization is done in a two-phased approach, containing a calibration phase and a

tracking phase. After installation of the system begins the calibration phase, where the
positions and phase differences of satellites are calculated by an automatic approach
based on ultrasound measurements of a reference receiver. After accomplishment the
tracking phase begins, which is the normal operation phase. By the initially gathered
reference information, the receiver can now be positioned in relation to the reference.
In practical implementation both phases are not clearly distinct. For instance, depend-
ing on the localization result can positions of satellites be tested for plausibility and
corrected during operation of the system, if necessary.

9.2.1 Calibration Phase

As a simple suggestion, a test receiver is once brought close to all satellites. In this
way, the distance and the time offset between two satellites are calculated from the
minimum and maximum time differences that occur [51, 61]. An approximation of the
distance is d̃ = 1

2 c(τmax − τmin), where c is the sound velocity and τ is the maximum,
respective minimum, observed time difference. The time offset between the senders is
δ̃ = 1

2(τmax + τmin). From the distances the Cartesian coordinates are calculated by
solving an equation system ‖si − sj‖ = d̂ij , where si, sj are satellites and d̂ij is an
observed distance between both. See Sections 3.1f. and 3.4.
Alternatively, measurements are conducted at multiple well-distributed random po-

sitions in the warehouse. Given measurements at position mi of the time difference τijk
between senders sj and sk leads to a system of equations that is solved for positions
mi, sj , sk and the time offset δjk between senders j and k. Without loss of generality,
we choose sender k as a reference node. Given a sufficient number of measurements,
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satellite time offset
known unknown

Receiver is station-
ary to measure time
differences

Closed-form solution of the
hyperbolic Equation (9.1),
instant localization with a
single measurement

Multiple measurements at dif-
ferent places using Eq. (9.1).
After that, the time offset is
known.

Receiver moves con-
tinuously

Probabilistic filtering using
Kalman or particle filter.
Estimate is quickly avail-
able after filter initializa-
tion. Eqns. (9.2)(9.3).

Kalman or particle filter. Esti-
mation of position, velocity and
time offsets. Requires multiple
measurements for initialization.
Eqns. (9.2)(9.3).

Table 9.1: Different tracking modes of the receiver, depending of availability of synchronization
and movement characteristics of the receiver.

a unique solution can exist. To solve the equation system iterative optimization ap-
proach are employed, such as gradient descent and the multivariate Gauss-Newton
method [5], see Chapter 4. A mixture of both techniques is thinkable – as soon as
some of the distances are known, the rest can be found more easily.
An important goal of the project is that the calibration procedure does not require

professional staff, but can be performed by staff of the consumer. The person that
conducts the calibration should be notified about the progress of the procedure, and
he should receive specific instructions by adequate means, for instance by feedback
from the display of a calibration device. Once the calibration phase is completed the
configuration parameters are committed to the mobile receiver units, either by radio
communication or by a one-time download.

9.2.2 Tracking Phase

Known time offsets. As soon as the positions sj and time offsets δjk of the satel-
lites are known, the receiver can directly calculate the time differences. The tracking
problem is then reduced to finding the trajectory of the receiver. If the receiver is tem-
porarily stationary, i.e. it does not move until a signal was received by every sender in
range, then just a hyperbolic equation system of the form

1
c‖mi − sj‖ − 1

c‖mi − sk‖ = Tijj − Tikk − (ijaj − ikak) + δjk (9.1)

is solved for mi, which may be done quickly by linear estimators or by few iterations
of the Gauss-Newton algorithm. 1 ≤ ij , ik ≤ ` are continuous indices of the signals
from the senders j and k.
However, if the receiver moves continuously, which is most likely the case for an

autonomous unit, then an equation system is obtained with a new receiver position for
every measurement, which leads to equations that are no longer hyperbolic:

1
c‖mijj − sj‖ − 1

c‖mikk − sk‖ = Tijj − Tikk − (ijaj − ikak) + δjk . (9.2)
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measurement 1
measurement 2 measurement 3

measurement 1

measurement 2

measurement 3

stationary 
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moving 
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satellites

Figure 9.2: Three measurements from three senders. Left: The receiver is temporarily station-
ary, until it has obtained measurements from every sender. This results in nine equations
for three unknown receiver positions. Right: The receiver moves continuously, which yields
nine unknown receiver positions.

For ` measurements from m senders, the number of equations is `m. Even if the
receiver moves on the floor, therefore in space R2, the number of variables is 2`m,
therefore the equation system is under-determined, see Fig. 9.2 for an example. Such
a problem cannot be solved by the usual approaches without further assumptions.
In eCULTS one can assume coherent movement of the receiver, so recursive state

estimators can be employed, for instance the Kalman filter. According to Eq. (9.2) we
obtain a non-linear observation model, so using the Extended or the Unscented Kalman
filter is advisable. Alternatively, a particle filter is used which is robust against non-
Gaussian observations and which can represent a non-Gaussian state estimation, yet
at the price of higher computational cost. We used particle filtering to track a moving
sender, see Chapter 6. For the probabilistic estimators must be noted that positioning
is not immediately available, in contrast to optimization or closed-form calculation,
but requires some measurements for initialization of the filter, even if the time offset
of the senders is given.
One approach for enabling optimization in the continuous movement problem, may

be in the simple case to ignore the movement of the receiver. Probably, the velocity of
the receiver is small, so the induced positioning error from its movement is acceptable.
In a more advanced approach the velocity is estimated from previous localization and
accordingly the movement is assumed linear, which is reasonable for the short time of
measurement. The positions of the receiver are then reduced to a linear function that
can be expressed by two variables in R2, which is not more than in the stationary case.

Unknown time offsets. If the offset between the senders is not known, and only the
positions are given, then the shift in sending intervals can be observed, if the receiver
moves towards a sender j, or away from it. This is called Frequency Difference of
Arrival (FDoA), also known as the Doppler effect. Given a sufficient number of these
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distance differences in a continuous movement of the receiver, a “finger print” of the
possible locations is obtained which can be described by a probabilistic filter. Because
of the reduction of multiple hypotheses using a particle filter is advised. For estimation
of a state (m,v)T , where v is a velocity estimate, the hyperbolic constraint is

1
c‖mi1j − sj‖ − 1

c‖mi2j − sj‖ = Ti1j − Ti2j − (i1 − i2) aj , (9.3)

where aj is the given sender interval, and 1 ≤ i1, i2 ≤ ` are two measurements of a
receiver. More advanced is simultaneous estimation of the time offsets between two
satellites j and k in a state (m,v, δ1k, . . . , δmk)T using Eqns. (9.2). We have published
such an approach that considers tracking of a moving receiver given unsynchronized
senders in [131].
In case the movement of the receiver is not continuous, but temporarily stationary,

then simpler hyperbolic equations are obtained of the form (9.1) which are solved by
optimization for receiver positions mi and offsets δjk. Once the offsets are known, they
can be re-used in subsequent state estimation. For a brief sketch of the four operation
modes see Table 9.1.

9.3 Challenges

One of the most challenging issues to be solved originates from the fact that the
described model ignores skew of imprecise clock generators. Synchronization is valid
only for a short period of time after calibration of the system if the satellites manage
their own local clocks and are not externally triggered.
Standard clock oscillators are precise up to 10 parts per million, which is equivalent

to an error of 0.6ms/min, or 36ms/h, or 0.86 s/day. The required synchronization
for TDoA localization in the range of centimeters of 0.1ms is maintained for only
10 seconds. Therefore, the time offsets cannot be trusted even if the sender clocks
were synchronized initially. As a solution, one of the following, or the combination,
are thinkable:

1. The satellites may be synchronized by additional hardware that receives a trigger
signal, either by wire or wireless. This may increase cost and energy consumption,
and the availability of the trigger signal must be guaranteed.

2. Monitoring of the time skew by stationary reference receivers. Here, the updated
skew information has to be forwarded to the mobile receiver units that need a
radio connection to obtain the updated offset information. Depending on the
scenario, a large number of references may be required to cover all satellites.

3. Implementation of algorithms that can calculate the offset, as in Eq. (9.2), or
do not require it at all, as in Eq. (9.3). The variability of the offsets raises the
complexity of the equation system and increases the required time and number
of measurements to calculate the receiver position.
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9.4 Summary

9.4 Summary

Scope of the MicroTEC-Südwest project eCULTS is the development of an ultrasound
localization system for industrial intralogistics. The prospected application scenario
is localization and navigation of autonomous mobile units for material transportation.
In the context of the project new problems of TDoA localization are adressed, which
are calibration-free localization of a moving receiver and error-resilient transmission of
distinguishable ultrasound signals.
eCULTS is a challenging project, both from an academic point of view of TDoA

localization, and from the collaboration aspect. The academic interests of university
encounter the pragmatic strategy of industrial enterprises, where the challenge is to
amalgamate the expectations of cooperation partners from different areas. However,
we see here the opportunity to contribute with academic research to the development
of an industrial consumer product, of which the offspring was academic research.
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10 Conclusions

In this thesis we have contributed to the domain of indoor localization by propos-
ing several novel approaches for TDoA-based calibration-free localization. We have
addressed the problem from several points-of-view, which are rapid approximative al-
gorithms, the problem of a complete solution for the general setting, and resilience of
algorithms in case of measurement errors. For these partial problems we have presented
novel algorithms mainly in four fields – the far-field assumption, local optimization,
branch-and-bound algorithms, and probabilistic state estimation.

10.1 Summary of this Thesis

Under the assumption that signals originate from remote locations, the so-called far-
field assumption, the propagation direction is reduced to parallel vectors, which simpli-
fies the equation system and allows for closed-form algorithms. Far-field approximation
yields a fast and robust solution for self-localization by using radio signals and natural
sounds from the environment, without the need to control these signals, furthermore
it can be used as initial guess for optimization.
Our main contribution to far-field approximation is the Ellipsoid TDoA method.

The algorithm uses the fact that pairs of TDoA measurements from three receivers in
the plane form an ellipse when senders emit signals from the distance. This ellipse is
robustly determined by regression, and the distances and angles between the receivers
are calculated from the parameters of the ellipse. The concept is also demonstrated for
the three-dimensional case. The Ellipsoid TDoA method is to date to our knowledge
the first algorithm that solves the minimum problem in the TDoA far-field assumption
in two and three dimensions for synchronized and unsynchronized receivers, hereby
surpassing previous approaches that consider this problem. We have demonstrated
the robustness of the algorithm in simulation and in real-world experiments, where
we have shown that the Ellipsoid method can also be employed when the far-field
assumption is violated to some extent.
Approximative algorithms are limited in generality, especially for the minimum cases

when measurements are rare. In the field of non-linear optimization we have set focus to
the failure cases. Due to the high dimensionality of the calibration-free TDoA problem,
iterative optimization of a system of hyperbolic equations tends not to find the global
optimum, which is the only acceptable solution. This problem is mostly inevitable in
local optimization, however we have presented an algorithm that increases the chance
to find the global minimum. We have proposed the Cone Alignment algorithm, which
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10.1 Summary of this Thesis

is an iterative optimization algorithm based on a mass-spring simulation where signal
and receiver positions are represented by physical particles. A TDoA error function
is modeled by physical springs between the particles. By relaxation of the springs
the error function is minimized. Hereby, the particles gather momentum to overcome
local minima. In extensive simulations we tested the characteristics of the algorithm
and compared it to standard optimization algorithms, which are gradient descent, the
Gauss-Newton method and the Levenberg-Marquardt algorithm. We demonstrated
that by repeated execution the algorithm could find the correct solution in 99.4% of
random simulations of the two-dimensional minimum problem if no TDoA error is
assumed, which is more than the other algorithms.
Although the discussed local search algorithms promise a high chance of success,

the intrinsic problem of local iterative optimization persists: The question if and when
the solution is found, remains unanswered. To address this problem of completeness,
we have developed a polynomial time branch-and-bound algorithm that is a proof
to enumerate all solutions to calibration-free TDoA up to an error bound ε. The
algorithm is based on subdivision of a five-dimensional search space into subspaces,
by which the minimum problem of four receivers in the plane is represented, and
test of each subspace for being a possible explanation of the TDoA measurements,
given uncertainty ε. In practical implementation we demonstrated that the algorithm
is asymptotically faster than enumerating all cells of size ε, which is the brute-force
approach. The branch-and-bound algorithm is to our knowledge the first theoretical
solution to the calibration-free TDoA problem.
The primarily application-oriented contribution in this thesis is the calibration-free

ultrasound localization system. During the time of this thesis we have developed
a software framework for localization that provides the algorithmic backbone of an
ultrasound localization system for indoor application. In the localization system, a
mobile ultrasound sender emits short pulses that are received by several ultrasound
receivers, by which the sender is located. As its main characteristic, the localization
system is calibration-free, therefore no initial manual measurement of the reference
receivers is required. This eliminates a major source of agony in TDoA-based localiza-
tion, where usually receivers were measured by hand, or placed precisely in geometrical
constraints, for example in a grid. In our contributed localization system, the receivers
may be randomly distributed in a room. The calibration of the system is performed
by our TDoA auto-calibration algorithms.
For the localization system we have created a probabilistic state estimation algorithm

based on a particle filter that estimates both the mobile sender and the positions of
receivers. The algorithm is robust against measurement outliers, which is a common
pitfall in TDoA localization. This is achieved through a probabilistic sensor model
for TDoA data which explicitly considers the measurement uncertainty. For the re-
liable initialization of the particle filter, we apply an iterative optimization approach
to multiple subsets of TDoA data, where the best solution is implicitly selected by
appropriate weighing of the sensor model.
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We have verified the robustness of the ultrasound localization system in extensive
experiments in a large indoor hall, where we demonstrate that our approach ensures
proper initialization of the particle filter and provides accurate position estimates for
the signal beacon and the receivers even in case of measurement outliers. Compared
to position references of an optical motion capture system we have achieved mean
position errors below 5 centimeters.
In the following we discuss a categorization of our presented algorithms in terms

of their affinity to the three subproblems of TDoA – rapidness, completeness, and
robustness.

10.2 Categorization of Algorithms

The field of calibration-free TDoA localization is promising in its aspects and versatile
in application, yet also multi-layered and complex. The non-linearity and high dimen-
sionality of the minimum problem reduce the chance of an “allrounder algorithm” that
solves the general problem fast and reliable. However, during the time of this thesis
we have approached the problem of calibration-free TDoA localization based on three
main aspects. First, we have developed and analyzed approximative solutions that
lead to a rapid, yet precise solution in many cases. Second, we have worked on the
completeness of a solution, i.e. the difficult characteristics of TDoA that prevent to
find the correct result, even if it does exist. Third, we improved on the response of
calibration-free TDoA towards measurement outliers, and created an algorithm that
can track a target with high robustness and high precision. We attempt to arrange our
algorithms in a three-dimensional diagram of these categories for a qualitative discus-
sion of their characteristics. See Fig. 10.1 for our suggested arrangement. Although
not of our origin, we have included Pollefeys’ factorization algorithm, because of its
distinctness from the other algorithms.

Rapidness. We start by consideration of rapidness of algorithms. At the top end
are the statistical approximations that estimate distances based on the distribution of
a signal. For the consideration of m measurements they depend on the solution of a
linear equation system, and therefore require a runtime of O(m3) for simple matrix
algorithms and for a constant number of references to be estimated. Some of the
algorithms are even faster, when only minima, maxima, and average of measurements
are determined in O(m). Slightly slower is the factorization approach [42] where a
small number of iterative steps is recommended to improve the numerical quality of
the result. Next are the iterative optimization approaches, where Gauss-Newton is fast
due to the quadratic convergence, yet it can be used only if an initialization close to
the solution is provided. The iterative gradient-based and spring relaxation approaches
tend to be slow at the end of the runtime when the gradient is shallow. Still more
efficient than brute-force search, yet with exponential growth of the search tree, is the
branch-and-bound algorithm a comparatively time-consuming algorithm.
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Figure 10.1: Completeness of algorithms versus rapidness and robustness. The three criteria
can be arranged in a three-dimensional quality space. For calibration-free TDoA local-
ization exist algorithms that yield a quick approximation, or are complete, or robust to
measurement errors.

Completeness. While rapidness might be only a symptomatic criterion, the com-
pleteness of the solution is one of the central challenges that we pursued. We defined
a solution as the ability of an algorithm to converge towards the true result, if the
setting is determined and non-degenerate, and if the measurement error approaches
zero. In such a setting, the branch-and-bound algorithm is complete, as it provably
finds the solution.
All other proposed algorithms are incomplete. We rely on numerical argumentation

to categorize the level of completeness, and consider the ability to return the uncer-
tainty of a result. For instance, the iterative algorithms may return the wrong result
due to local minima, yet this may be detected by the residual. Matrix factorization
may fail due to side conditions such as semi-definite matrix properties, and the prob-
abilistic algorithms may fail due to inability to initialize. Mass-spring optimization
appears to be more reliable than gradient-based optimization, which was numerically
demonstrated, and both are more reliable than Gauss-Newton alone. Last, statistical
approximation is intrinsically error-prone for small numbers of receivers and signals
and depends strongly on assumptions.

Robustness. The last category is the behavior of algorithms in case of measurement
errors. For most algorithms we assume that the distribution of errors is Gaussian.
However, this is only realistic for errors caused by measurement imprecision. Environ-
mental effects, such as reflections from walls cause errors of high magnitude that are
hardly predictable and hard to describe by a distribution and in a model.
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10 Conclusions

We have created a probabilistic state estimation algorithm for TDoA based on a
particle filter that uses optimization attempts for initialization, which are infused and
weighted into the filter belief, where a single successful attempt can initialize the filter.
The subsequent tracking phase is also implicitly robust, which we demonstrated in
experiments with outliers of large magnitude. Also, if the algorithm loses the TDoA
signal due to shadowing of the signal, it can recover reliably, which we also demon-
strated. With these characteristics, our particle filter algorithm is the top end of
robustness in our scale.
Algorithms follow in terms of robustness that use over-determination to compensate

for errors. For instance, some statistical approximation algorithms use least squares
regression, so do the gradient bases approaches. However, least squares minimization
can work sufficiently only under the Gaussian assumption, where it is equivalent to
likelihood maximization. Non-proportional outliers are not considered in these models,
and the algorithms that rely on least-squares are vulnerable to such errors of large
magnitude. Error mitigation algorithms such as RANSAC could possibly be used to
eliminate the non-proportional errors. As their application is probably easier in rapid
closed-form algorithms which are repeated with a different subset of measurements,
we consider the statistical approximation algorithms as more robust than the time-
consuming iterative algorithms. We suppose the branch-and-bound algorithm as less
robust, as the limit of the ε-test is susceptible to exclusion caused by a single outlier –
and repeated tests with subsets of measurements would further enlarge the runtime.
The end of the flagpole is marked by the matrix factorization approach that induces
position errors in the order of 103, compared to the measurement errors.
During the time of this thesis we have created for each of the three criteria an

algorithm that marks the head among the algorithms that we are aware of in literature.
It depends on the requirements of application which one is adequate to engage in
a specific TDoA localization scenario. We discuss now an outlook towards future
challenges in calibration-free TDoA.

10.3 Outlook

We have proposed several promising approaches to anchor-free TDoA in this thesis,
covering a large bandwidth of application scenarios. However, a number of improve-
ments are thinkable.
We suggest enhancement of the Ellipsoid TDoA method, which requires consider-

ation of more than the minimum number of receivers, which is not straightforward
due to the geometric representation. Also a combination of approximative and itera-
tive algorithms might be considered, with the goal to create a generalized solver with
adaptive choice of algorithms, minimizing the computational time.
In the probabilistic approaches we suggest the employment of an adaptive algorithm

that decreases the state size and the number of particles by estimating only the moving
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10.3 Outlook

beacon once the receiver locations have been determined, with the purpose to reduce
the computational cost of the algorithm. Here, malicious relocation of a receiver can be
detected by evaluation of the residuum of the TDoA equation system and compensated
by temporary recalibration using the full state size. Furthermore, the employment of
the Extended and the Unscented Kalman Filter may be considered, which are more
efficient in terms of computational cost. Yet, it is an open question how to compensate
for the non-linearities of the TDoA equation system and the non-Gaussian ambiguities
of position estimation while using the Kalman Filter. For instance, an alternative for
our proposed sample injection during of initialization of the probabilistic algorithm is
required.
An important aspect of future work on anchor-free time-of-arrival based localization

is unification and standardization of the variety of scattered approaches. One the
one hand is a multitude of different T(D)oA application scenarios with and without
synchronization of either receivers or senders, varying mobility of receivers or senders,
different acquisition sources of signals, where in many cases the same algorithms may
be applied with modified side conditions. On the other hand are the different sensors of
mobile handheld devices and autonomous systems, such as (ultra-)sound emitters and
microphones, accelerometers, micro-electromechanical gyroscopes, odometry, or even
laser scanners, where sensor data fusion approaches are required to unify anchor-free
TDoA localization with other absolute and relative means of navigation.
Here is the development of a generalized abstract TDoA localization framework re-

quired that can be accessed by a clearly distinguished programming interface by the
user. By such a framework one might assemble a promising strategy for localization
and navigation, for example said combination of fast approximation and precise op-
timization. Also the integration into established robotics and navigation frameworks
such as OpenSLAM1 and the Robot Operating System2 should be considered. Parts
of these suggestions for unification and standardization are subject to consideration in
the ongoing industrial eCULTS project.

1OpenSLAM, http://www.openslam.org
2Robot Operating System, http://www.ros.org
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