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ABSTRACT
We consider an anchor-free, relative localization and syn-
chronization problem where a set of n receiver nodes and
m wireless signal sources are independently, uniformly, and
randomly distributed in a disk in the plane. The signals
can be distinguished and their capture times can be mea-
sured. At the beginning neither the positions of the signal
sources and receivers are known nor the sending moments of
the signals. Now each receiver captures each signal after its
constant speed journey over the unknown distance between
signal source and receiver position. Given these nm capture
times the task is to compute the relative distances between
all synchronized receivers. In a more generalized setting the
receiver nodes have no synchronized clocks and need to be
synchronized from the capture times of the stolen signals.

Categories and Subject Descriptors: G.1.2 Approxi-
mation: Nonlinear approximation

General Terms: Algorithms, Measurement

Keywords: TDOA, localization, synchronization

1. INTRODUCTION
Localization and synchronization are fundamental and well

researched problems. In this paper we take a fresh look at
this problem. We use the time difference of arrival of abun-
dantly available, distinguishable signal sources of unknown
location and timing, which can be received at a set of re-
ceivers. Assuming that the senders and receivers are on the
plane the task is to find the locations of all receivers.

We assume a uniform distribution in a disk of the same or
larger size. After collecting all the time information from all
receivers we want to compute the time offsets and positions
of all nodes without knowing where or when the random sig-
nals are produced. We only assume that we can distinguish
the signals and that they reach all nodes of our network.

The survey in [1] describes a selection of range-based ap-
proaches. Also of interest is the analysis of the uniqueness
of ranged networks [2]. The term time differences of arrival
(TDOA) describes the reception of an unknown signal with-
out any given range information. Close to our problem is
the setting in [3] where only TDOA information is used to
locate wireless sensor nodes. An elegant solution for a fixed
number of 10 microphones is shown in [4]. However, it does
not scale for large numbers of microphones.
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In [5] we present a technique for robust distance estima-
tion between microphones by evaluating the timing infor-
mation of sharp sound signals. We assume synchronized
receivers and signals originating from a far distance, but we
have no further information about their location.

2. ESTIMATING DISTANCES
Our distance estimation approach begins with only two

receivers. As we have pointed out in [5] it is possible to esti-
mate the distance between two receiver nodes if the signals
are uniformly distributed on a circle around the receivers at
a large distance. Here, we show that this method also re-
sults in a reasonable estimation if the signals are distributed
in the same disk where the receivers lie.

Max-Min-Technique.
Given two vertices i, j (1 ≤ i < j ≤ n) and the relative

time differences of the stolen signals: tri,sk − trj ,sk for all
stolen signals s1, . . . , sm, we compute the estimated distance
di,j between i and j as

• di,j := maxk{|tri,sk − trj ,sk |} if the receivers are syn-
chronized and as

• di,j := 1
2

(
maxk{tri,sk − trj ,sk} −mink{tri,sk − trj ,sk}

)
if the receivers are not synchronized. The estimated
relative time offset will be computed using the time
signal k∗ := arg maxk{tri,sk − trj ,sk}. Then, tri,sk∗ −
trj ,sk∗−di,j yields the approximation of the correction
for the clocks at i and j.

First, note that in both cases the estimation is always
upper-bounded by the real distance: ‖ri − rj‖ ≥ di,j . We
now describe a sufficient condition for the accuracy of the
estimator. For this we define the ε-critical area.

Definition 1 The ε-critical area of two nodes (u, v) is the
set of points p in the plane where

‖u− v‖ − (‖p− v‖ − ‖p− u‖) ≤ ε .

This convex area is bounded by a hyperbola containing
the point u. If in this critical area signals are produced,
then the distance estimation is accurate up to an absolute
error of ε.

Lemma 1 If in both of the ε-critical areas of (u, v) and
(v, u) signals are produced, then the Max-Min distance es-
timation du,v is in the interval du,v ∈ [‖u−v‖−2ε, ‖u−v‖].



Figure 1: The 0.2-critical areas of two nodes at (−1, 0)
and (1, 0) are on the left and right side of the hyper-
bolas.

The time offset between the clocks of u and v can be com-
puted up to an absolute error margin of 2ε.

If at least in one of the ε-critical areas of (u, v) and (v, u) a
signal is produced, then for synchronized receivers the Max-
Min distance estimation du,v is in the interval du,v ∈ [‖u−
v‖ − ε, ‖u− v‖]. These signals can be found in time O(m).

Proof. The proof of the accuracy of the distance esti-
mators follows from the definition of the critical areas. For
the accuracy of the time offset consider that one clock u is
assumed to be correct, then the other node’s clock offset is
chosen such that the signal arrives later at time du,v if the
signal was detected at the ε-critical area of u.

The best signals can be found by computing the minimum
or maximum of the differences of the time points at the
receivers u and v.

Lemma 2 For two receivers u, v with ` := ‖u − v‖ the in-
tersection of the ε-critical area (v, u) of a disk with center
1
2
(u+ v) and radius r has

• at least an area of min{π`2, 1
2
ε2} if r = ` and

• at least an area of min{πr2, (r − `)2
√
ε/`} if r > `.

Since the critical areas are rather large there is a good
chance that a signal could be found in one of these areas.

Theorem 1 For m stolen signals the Max-Min distance es-
timator for two receiver nodes u, v with distance ` := ‖u−v‖
within the disk with center (0, 0) and radius 1 outputs a re-
sult du,v with du,v ∈ [‖u − v‖ − ε, ‖u − v‖] with probability
1− p, where for ε and p we have:

1. If u and v are unsynchronized and the m signal sources
are uniformly distributed in the unit disk we have ε =

O
(√

logm
m

)
and p = 1

mc for any c > 1.

2. If u and v are unsynchronized, u and v are not close to
the unit disk boundary, i.e. |u| < 1− k and |v| < 1− k
for some constant k > 0, and the m signal sources
are uniformly distributed in the unit disk we have ε =

O
(

log2 m
m2

)
and p = 1

mck2 for any c > 1.

Theorem 2 For unsynchronized receivers we can compute
in time O(nm) an approximation of the positions and the

clock offset within an absolute error of O
(√

logm
m

)
with

probability 1 − m−c − e−c′n (for any c ∈ O(1) and some
c′ > 0).

Theorem 3 For synchronized receivers we can compute in
time O(nm) an approximation of the correct relative posi-

tions within an absolute error margin of O
(

log2 m
m2

)
with

probability 1 − m−c − e−c′n. This error bound holds also
for unsynchronized receivers if we consider a normal dis-
tribution of the sound signals, or if the sound signals are
randomly distributed in a surrounding larger disk.

In an ad hoc network a distributed algorithm can approx-
imate the positions and clock offsets for the network within

an absolute error of O
(√

logm
m

)
with probability 1 − n−c

if m > n using O(nm logn) messages.

3. OUTLOOK
From now on, we will use the distance estimation informa-

tion and compute the locations of the receiver nodes. While
our focus is the localization and synchronization of the re-
ceivers, it is straight-forward to determine the time and po-
sition of the signals using the receivers as anchor points.

Anchor-free localization based on TDOA signals faces the
characteristic problems of possible ambiguous solutions and
an incoherent solution set. Combined with the non-linear,
non-convex nature of this optimization problem (which can
be expressed as a set of nm polynomial equations of quadratic
degree) one may expect an ill-posed problem. In this paper
we overcome this problem with an efficient approximation
algorithm. Moreover, we can prove the quality of the result
for a random input set with high probability.

The output of our algorithm can be used as the initial
starting point of standard non-linear optimization methods
like gradient-based search or Newton’s method. Our algo-
rithm computes the start position in time O(mn), i.e. in
linear time with respect to the problem size. So, computing
such a starting point amounts for the same time as a con-
stant number of iterations for these problems. Whether the
success rate of optimization algorithms improves with such
an input set is part of further research.
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