
Polynomial Time Approximation Algorithms for 
Localization based on Unknown Signals 

Christian Schindelhauer, Johannes Wendeberg 
Department of Computer Science, University of Freiburg, Germany 

{schindel, wendeber}@informatik.uni-freiburg.de  

Abstract:  
We consider the problem of anchor-free self-calibration of receiver locations using only the reception 
time of signals produced at unknown locations and time points. In our settings the receivers are 
synchronized, so the time differences of arrival (TDOA) of the signals arriving at the receivers can be 
calculated. Given the set of distinguishable time points for all receivers the task is to determine the 
positions of the receivers as well as the signal sources.  

We present the first polynomial time approximation algorithms for the minimum problem in the plane, 
in which the number of receivers is four, respectively the number of signals is three. For this, we first 
consider the problem that the time points of m signals are jittered by at most some ε > 0. We provide 
an algorithm which tests whether n given receiver positions are feasible with respect to m unknown 
sender positions with a run-time of O(nm2) and we provide an algorithm with run-time O(nm log m) 
which tests the feasibility of m given sender positions for n unknown receiver positions. Using these 
tests, we can compute all possible receiver and signal source positions. 
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I. Introduction 

The problem of location awareness of 
computing devices plays an important role in 
many engineering fields. A popular technique 
for acquiring the positions of devices is 
hyperbolic multilateration, as for example used 
in the LORAN and DECCA systems, global 
navigation satellite systems (GNSS), or cellular 
phone tracking in GSM networks.  

In hyperbolic localization the position of a signal 
origin is located by a set of synchronized 
receivers. The times of arrival or time 
differences of arrival (TDOA) of a signal 
determine a system of hyperbolic equations. 
The benefit of this TDOA multilateration is that 
no control over the signal source is needed. 
Arbitrary sources of sound can be overheard, or 
the signal of radio emitters. Dedicated signal 
sources, as for example a tracked moving 
ultrasound beacon, can be primitive and cheap. 
It needs only to emit ultrasound pulses – no 
control signal is required.  

In an extension the positions of anchors are not 
given a priori and are obtained as a result of the 
calculations. We present an approach to solve 
the problem in an approximation scheme 

yielding the best explanation of receiver 
locations for given time differences of arrival, up 
to a threshold of ε, which is chosen on the basis 
of the input error.  

A. Related work 
The problem of TDOA localization has been 
widely researched and is present in literature. In 
conventional hyperbolic multilateration with 
fixed receiver positions the problem of signal 
localization is solved in closed form [1], [2], or 
by iterative approaches, and position estimates 
can be refined using Kalman filtering [3].  

TDOA times are calculated by discrete 
timestamping [4], [5] or by cross correlation of 
audio streams [6]. Sources of information may 
be ultrasound signals [7], often in combination 
with RF signals. These are solved as Time of 
Arrival approaches [8], [9].  

The problem of self-localization of receivers 
using only TDOA data and no anchor points is 
seldom considered in literature. In [10] a 
combination with DOA (“direction of arrival”) 
data is presented as an initialization aid. In 
some cases the signals are assumed to 
originate from a large distance, the “far-field 
case” [5], [11], [12]. For near-field signals in the 
unit disc an upper bound of the error is shown 
in [13]. In [14] an approach is presented under 



the assumption that speakers are close to the 
receivers. In some contributions iterative 
algorithms are used to compute a solution [4], 
[7]. However, they tend to get stuck in local 
minima of the error function.  

If many receivers are available there exists a 
closed form solution. For at least eight receivers 
in the plane, respectively ten receivers in three-
dimensional space, the problem can be solved 
using matrix factorization [15].  

Our refinement approach is inspired by branch-
and-bound algorithms [16] usually applied to 
discrete problems. An algorithm for integer 
programming was first presented in [17]. By 
extension with Linked Ordered Sets it can be 
applied to nonlinear integer problems [18]. We 
saw some contributions suggesting the 
application of branch-and-bound to nonlinear 
nonconvex functions for global optimization 
[19]. However, problem solvers using branch-
and-bound algorithms for multi-dimensional 
continuous space are rare. 

II. Problem setting 
Let Mi (1 ≤ i ≤ n) be a set of receivers and Sj  
(1 ≤ j ≤ m) a set of signal origins, all positioned 
in the unit square of the Euclidean plane. Both, 
the receiver and the signal positions are 
unknown. The signals are emitted at unknown 
times uj. Each signal Sj is propagated to each 
synchronized receiver Mi in a direct line with 
constant signal speed c and is detected at times 
tij . These times are the sole information given 
in the system. We normalize c = 1 for the 
simplicity and so, the signals and receivers and 
the event times satisfy the nm signal propa-
gation equations for all i={1,…, n} , j={1,…, m}  

 tij – uj   =   || Mi – Sj ||  (1)  

where || · || denotes the Euclidean norm. From 
these equalities we cannot derive absolute 
coordinates. We remove transitional, rotational 
and mirroring symmetries by placing the first 
receiver M1 at (0,0), placing the second receiver 
on the x-axis and place the third receiver on the 
half-plane with positive y-coordinates.  

The degrees of freedom G2 have been 
considered in [20] and [7]. Each of the nm 
equations decrements the degree of freedom. 
For n receivers and m signals we have G2(n, m) 
= 2n + 3m – nm – 3 degrees of freedom in the 
plane. If G2 (n, m) > 0 then either infinitely many 
solutions or no solutions exist. Only if G2 (n, m)  
≤ 0 the solution space can be reduced to a 
single solution. However, also no solutions, a 
constant number of solutions or infinitely many 
solutions may exist in this case, depending on 
the input. We conjecture that for G2 (n, m) < 0 no 

side solutions exist if the input is derived from 
signal sources and receivers in general 
position, i.e. this conjecture holds with 
probability 1 for random positions from the unit 
square.  

Definition 1: Anchorless localization problem 
(self-calibration based on TDOA): Given the 
exact time points tij compute the positions of 
senders and receivers such that Equation (1) is 
satisfied.  

The problem is only solvable, if n = 4, m ≥ 5, or  
n = 5, m ≥ 4, or n ≥ 6, m ≥ 3. If the system is only 
slightly over-constrained, there is some chance 
of ambiguity. For example, for n = 4, m = 5 the 
number of solutions is bounded by 344 [20]. For 
n = 6, m = 3 at most 150 solutions exist. We 
have found some inputs where at least two 
solutions exist for n = 4 and m = 5. However, 
their exact number and probability is not known 
at the moment and are part of future work.  

If the system is highly over-constrained, i.e.  
n ≥ 8, m ≥ 4 yielding G2(n, m) ≤ –7, then Pollefeys 
et al. [15] showed how this nonlinear equation 
system can be transformed into a linear 
equation system, which allows for a polynomial 
time solution with run-time O(m2n2). For other 
values only heuristic algorithms are known, 
which do not generate solutions for all inputs, 
as in [4] and [7].  

Clearly, there are precision limits for the inputs 
tij. So, we consider the relaxed inequalities 
which assumes an error bound ε > 0 for all  
i = {1, …, n}, j = {1, …, m}.  

 tij – ε   ≤   uj + || Mi – Sj ||   ≤   tij + ε  (2)  

If we can compute a solution which satisfies 
these inequalities we call this an ε-approxi-
mation. Note that we are aware that the 
positions of the receivers or signals might be 
further than ε from the real position. Further-
more, in an ambiguous problem it is possible 
that we approximate multiple solutions which 
are not even close to the original positions. 
Then, we cannot decide which one is the 
correct solution. However, it is the best one can 
achieve given the error-prone problem setting.  

Definition 2: Approximation problem of 
anchorless localization: Given the time points tij 
and uj and an error margin ε compute a possible 
set of positions of senders and receivers such 
that the inequalities (2) are satisfied, if they 
exist.  

This problem is not addressed by Pollefeys’ 
algorithm. Furthermore, for small numbers of 
receivers (n < 8) or small numbers of signals  
(m = 3) no solution is known. We have 
presented a solution for large numbers of 



senders and receivers randomly distributed in a 
unit disk [13]. For synchronized receivers we 
can compute in time O(nm) an approximation of 
the correct relative positions within an absolute 
error margin of O(log2(m)/m2) with probability  
1 – m–c – e–c’n.  

For small n and m there is a naïve solution for 
finding receiver and signal positions. For this 
one can test all (2–3/2ε)3-2n-2m positions of senders 
and receivers in a grid of cell size 2-1/2/2 ε 
whether they satisfy the inequalities (2). From 
the positions the signal time can be easily 
computed and the inequalities can be checked 
in time O(nm). When this exhaustive search has 
tested receivers and signals within the distance 
1/2 ε  from the correct solution this implies an 
overall error of ε, if there exists a solution.  

Theorem 1: The naïve approximation algorithm 
solves the approximation problem using time 
differences of arrival in time O((2-3/2ε)3-2n-2mnm) .  

III. Polynomial Time Approximation for Small 
Numbers of Receivers  
This approximation algorithm consists of two 
components. The first component tests for a 
given set of receivers if there exists a set of 
signal sources satisfying the constraints. The 
second component is a recursive tree search to 
find the receiver positions by applying the first 
test with increasing precision.  

 
Fig. 1. The measured time difference  Δtkϑj between 
Mk and Mϑ yields a hyperbola (solid lines). Inequation 
(4) bounds a region of uncertainty where Sj can 
reside (grey regions), here depicted for the origin M1 
and three other receivers. 

A. A Test for the Feasibility of Receiver 
Positions 
If the receiver positions are known the location 
of the signal sources can be computed very 
efficiently. This observation inspires the 
following test algorithm. The problem of given 
receiver positions is to find signal sources 

which satisfy the inequalities (2). We combine 
two receiver times tkj and tϑj for one signal 
source j � to the time difference of arrival  Δtkϑj = 
tkj – tϑj �and yield the hyperbolic equation  

 Δtkϑj   =   || Mk – Sj || – || Mϑ – Sj ||   (3)  

for the exact solution which describes a 
hyperbola, called H(k, ϑ, j �, Δtkϑj) with Mk and Mϑ 
as focal points and Sj residing on the curve. For 
the approximation problem we consider the 
inequality  

 | Δtkϑj – (|| Mk – Sj || – || Mϑ – Sj ||) |    ≤    ε   (4)  

where ε  is an upper bound of the error.  

Lemma 1: The inequality (4) for k =1, ϑ={1,…,n} 
and j = {1, …, m} follows from the 1/2 ε-approxi-
mation problem of localization.  

From inequality (4) for k = 1, ϑ  = {1, …, n} and  
j = {1, …, m} follows a solution for the ε-approxi-
mation problem.  

The inequality (4) describes an uncertainty 
band for the position of the signal source Sj 
enclosed by the hyperbolas H(1, ϑ, j �, Δt1ϑj – ε) 
and H(1, ϑ, j �, Δt1ϑj + ε), see Fig. 1. We compute 
the intersections of these areas for all Mϑ for  
ϑ  > 1. If the intersections of these areas are 
non-empty, then for these receivers positions a 
signal source exists. If these areas exist for all 
signal sources, then there is a solution to the 
approximation problem. So, the test problem is 
reduced to a computational geometry problem.  

Lemma 2: The intersection of the n–1 
uncertainty bands for a signal source Sj can be 
computed in time O(n2).  

Lemma 3: The test of the feasibility of receiver 
positions can be performed in time O(n2 m).  

B. Recursive Search for the Receiver 
Positions 
Now, one could enumerate all grid positions of 
distance 2-1/2ε and use the test to solve the 
approximation problem resulting in run-time 
O((21/2/ε)2n-3 mn2) much alike the trivial algorithm. 
However, there is a much more efficient method 
which reduces the time behavior in practical 
tests. In fact empirical tests point towards an 
average run-time of O((-ln(ε)) n2m) for the now 
following approach.  



 
We consider a recursive tree construction 
shown in Algorithm 1, where the 2n–3-dimen-
sional subgrid is repartitioned by a factor of two 
in each iteration. It uses the feasibility test 
described in the previous subsection. In the 
uppermost grid (consisting of only one cell) we 
choose ε = 21/2 and decrease this value in each 
level by a factor of two. If we have reached  
ε < εtarget the search algorithm stops. For each 
level we discard non-feasible subcells. This 
way, we avoid exhaustive search by pruning the 
search tree at a higher level. Simulations 
indicate that in the long run the number of sub-
cells remains at most in the hundreds. 
However, we can show only the run-time of the 
trivial method which is not very efficient.  

Theorem 2: Algorithm 1 solves the 
approximation problem in time O(21/2/ε)2n-3 mn2).  

We can create a similar algorithm for 
calculating the positions of three senders. Then, 
the feasibility of the three senders is tested for n 
receivers. 

 
Fig. 2. Cumulative distribution of step numbers given 
10 – 50 signal sources. The mean is 6.7 · 105 steps, 
averaging to 44 seconds on a dual-core CPU. 

IV. Empirical Results 
We concentrate on the case of four receivers 
and a large number of signal sources, since the 
practical impact of this problem is higher. We 
have implemented our algorithm in a computer 
algebra system as well as in C++. As the inner 
nodes of the search tree are independent the 
problem is inherently parallel. We profit from 
this characteristic and execute multiple threads 
on modern multi-core CPUs.  

 
Fig. 3. Correlation of minimum distance between 
receivers and step numbers: If any two receivers are 
close the search space increases. 

For our experiments we generate the positions 
of four receivers randomly in the unit circle. 
They are transformed such that the first location 
is in the origin, the second is on the positive leg 
of the x-axis, and the third receiver is in the 
upper two quadrants.  

Now m signals are sampled at random positions 
in the unit circle. For m we choose a series from 
5 to 50 signals with 100 runs for each number 
of signals. The time differences of arrival are 
calculated and passed to the algorithm, which is 
the only information given to the algorithm.  

We have evaluated the algorithm in terms of 
inspected search nodes, search queue length, 
duration and correctness of the calculation, i.e. 
the receiver positions.    

In some under-determined cases with few 
signal sources, or malicious receiver positions, 
where any two receivers are very close to each 
other, we observe run-times as indicted by the 
worst case analysis. Then, the width of the 
search tree grows rapidly resulting in high run-
times. In these cases we abort the algorithm 
after 10 minutes and mark the attempt failed 
(although the algorithm would eventually find 
the solution).  

The number of required evaluation steps 
depends on the location characteristics of the 
receivers, on the traversal strategy through the 



tree, and on the number of signals. In our 
simulations we choose breadth-first search, 
which is the slowest search type, but with 
deterministic characteristics. Then, given a 
sufficient number of signals, the number of 
traversed nodes varies between 104 and 107 
with a cumulation at 105. With decreasing 
number of signals the algorithm has increased 
difficulty to eliminate possible locations, 
increasing the number of steps by a factor of 
101 and more, shifting the cumulation towards 
higher step numbers (Fig. 2).  

 
Fig. 4. Total run-time of an example with four 
receivers and 20 signals on an Intel Core-i5 quad-
core CPU to achieve precision ε.The recursion level 
is δ = 0.5−log2(ε). The run-time is proportional to the 
number of processed nodes.  

On an Intel Core-i5 machine we could process 
a number of 105 nodes in about 4 – 8 seconds, 
running on four processor cores (Fig. 4).  
A typical execution time given 40 signals is 8 
seconds, which is the mode of the distribution 
of runtimes, with some ill-conditioned settings 
raising the mean to 10.5 seconds. Alltogether, 
the typical execution time is 10 seconds with a 
mean of 44 seconds.  

At the current stage our implementation is too 
slow for real-time applications on standard PC 
hardware. However the prospects are great, as 
the search algorithm can be so easily run in 
parallel. On typical computers, and even 
smartphones, the number of processing cores 
increases permanently and our algorithm can 
benefit with efficiency: Our search algorithm 
does speed up with both higher core 
performance and higher number of cores, other 
than iterative algorithms which usually profit 
only from increases in per-core performance.  

V. Conclusions and Future Work 
In this contribution we have presented what is, 
to our knowledge, the first solution for the 
TDOA-Self- Localization problem given the 
minimum number of four receivers. In our 
model the uncertainties of TDOA measures are 
expressed by an ε-approximation scheme, 
returning the best explanation of receiver 
locations for the given time-of-arrival data of 
signals from unknown locations. If the data is 
precise up to an error of ε then also the receiver 
locations are determined up to an error in the 
order of ε.  

For refining the estimation of our ε-model we 
use a fully polynomial time approximation 
scheme running in time O((21/2/ε)2n-3 n2m) for the 
receiver problem and in O((21/2/ε)2m-3 nm log(m)) 
for the analogous problem of estimating small 
numbers of at least three signals. This implies 
the following corollary.  

Corollary 1: The approximation of the four 
receiver localization problem can be solved in 
time O(ε-5m) for m signal sources. The problem 
of the three signal localization can be solved in 
time O(ε-5n) for n receivers.  

We have implemented the algorithm in a multi-
threaded simulation of randomized receiver 
locations in the unit disc. We could show the 
feasibility of our approach and we could show 
that we traverse the search tree in a couple of 
seconds in most cases.  

In some cases our approach suffers from an 
illconditioned configuration of the receiver 
locations, i.e. some of the four receivers are 
close to each other or near to a line, rendering 
the problem close to under-determined. Then, 
our algorithm is forced to generate a very large 
search tree, resulting in a long duration for the 
traversal. However, when we find a solution we 
are guaranteed that it is correct, up to the order 
of ε.  

One open problem is whether the intersection 
of n halfspaces bordered by hyperbolas can be 
computed in time O(n log(n)) like the intersection 
of disks. To our knowledge nobody has 
addressed this non-trivial problem so far.  

We have seen that our algorithm suffers from a 
large search tree in some cases, and according 
to that long execution times. There are worst-
case inputs where this is inevitable, i.e. if the 
receivers are located within a radius of ε. But 
also for non-degenerated inputs we see plenty 
of room for improvements, as we use Breadth-
First-Search for now to traverse the tree in a 
deterministic manner, which allows to draw 
conclusion about the expected runtime.  



If we use Depth-First-Search we can use 
heuristics to choose branches of the search 
tree. The task is to develop such a model using 
elementary approximation schemes as for 
example presented in [5] and [13].  

This work has been published in [22]. 
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