
Network Synchronization and Localization
based on Stolen Signals

Christian Schindelhauer1, Zvi Lotker2, and Johannes Wendeberg1

1 Department of Computer Science, University of Freiburg, Germany,
{schindel, wendeber}@informatik.uni-freiburg.de

2 Department of Communication Systems Engineering, Ben-Gurion
University of the Negev, Israel, zvilo@bgu.ac.il

Abstract. We consider an anchor-free, relative localization and syn-
chronization problem where a set of n receiver nodes and m wireless
signal sources are independently, uniformly, and randomly distributed in
a disk in the plane. The signals can be distinguished and their capture
times can be measured. At the beginning neither the positions of the
signal sources and receivers are known nor the sending moments of the
signals. Now each receiver captures each signal after its constant speed
journey over the unknown distance between signal source and receiver
position. Given these nm capture times the task is to compute the rela-
tive distances between all synchronized receivers. In a more generalized
setting the receiver nodes have no synchronized clocks and need to be
synchronized from the capture times of the stolen signals.
For unsynchronized receivers we can compute in time O(nm) an approx-
imation of the positions and the clock offset within an absolute error of

O
(√

logm
m

)
with probability 1 − m−c − e−c′n (for any c ∈ O(1) and

some c′ > 0).
For synchronized receivers we can compute in time O(nm) an approxi-
mation of the correct relative positions within an absolute error margin

of O
(

log2 m
m2

)
with probability 1−m−c − e−c′n. This error bound holds

also for unsynchronized receivers if we consider a normal distribution of
the sound signals, or if the sound signals are randomly distributed in a
surrounding larger disk.
If the receiver nodes are connected via an ad hoc network we present
a distributed algorithm which needs at most O(nm logn) messages in
total to compute the approximate positions and clock offsets for the

network within an absolute error of O
(√

logm
m

)
with probability 1−n−c

if m > n.



1 Introduction

Localization and synchronization are fundamental and well researched problems.
In this paper we take a fresh look at this problem. Basic principles in localiza-
tion are synchronized clocks and anchor points – points with known positions.
Some localization methods like DECCA, LORAN and cellular localization have
a fixed and known set of anchor points. In other methods, like GPS, the anchor
points are moving, but communicate their position to the receivers. In some
methods, like WLAN based communication, the position of the anchor points,
i.e. the WLAN base stations, needs to be learned. In this paper we do not use
anchors at all.

For localization one can use the direction, the runtime or the strength (re-
ceived signal strength indicator – RSSI) of signals. Runtime based schemes may
know the time of arrival (TOA), where the time while the signal travels is known,
or the time difference of arrival (TDOA) where the time difference of the signal
arriving at two receivers is used.

In this paper we use the time difference of arrival of abundantly available,
distinguishable signal sources of unknown location and timing, called “stolen”
signals, which can be received at a set of receivers. Assuming that the senders
and receivers are on the plane the task is to find the locations of all receivers.
Furthermore, we consider the case where the receivers are unsynchronized and
try to synchronize their clocks from these stolen signals.

As an application we envisage wireless sensor networks in a noisy area utiliz-
ing otherwise interfering signals, e.g. a sensor network with microphones within
a swamp with quaking frogs or laptop computers which receive encrypted sig-
nals from other WLAN clients and base stations of unknown locations. Then,
position information can be used for geometric routing.

In this work we will steal the received sound or radio signals to synchronize
the clocks of our network and to compute the locations of our network nodes. For
this, we assume that a subset of the senders of the stolen signals are randomly
distributed around the receivers. For simplicity we assume a uniform distribution
in a disk of same or larger size. The localization and synchronization approach
is briefly introduced in [1].

After collecting all the time information from all receivers we want to com-
pute the time offsets and positions of all nodes without knowing where or when
the stolen signals are produced. We only assume that we can distinguish stolen
signals and they reach all nodes of our network. We are also interested in a dis-
tributed algorithm for an ad hoc network minimizing the number of messages.

Problem Setting

Given n synchronized receiver nodes r1, . . . , rn ∈ R2 and m signals s1, . . . , sm ∈
R2 that are produced at unknown time points ts1 , . . . , tsm . The signals travel
with fixed speed, which we normalize to 1, and are received at time tri,sj for
signal sj and receiver ri.



Given tri,sj as the only nm inputs we have the following nm equations:

tri,sj − tsj = ‖ri − sj‖

where (tsj )j∈[m], (sj)j∈[m] are unknown and (ri)i∈[n] need to be computed.
Since no locations are based at the beginning translation, rotation and mir-

roring symmetries occur. This can be easily resolved by choosing one receiver
as the origin (0, 0), assuming a second receiver lying on the x-axis and a third
receiver having a positive y coordinate. Further complications are possible mea-
surement inaccuracies for the time.

The given problem is a non-linear non-convex optimization problem for which
no efficient solution for the general case has been known so far. Non-linear non-
convex optimization is known to be NP-hard. However, for this specific problem
no computational complexity results are known.

2 Related Work

Localization of wireless sensor networks is a broad and intense research topic,
where one can distinguish range-based and range-free approaches.

Range-based approaches include techniques based on RSSI [2][3] or time of
arrival (TOA, “time of flight”) [4][5] to acquire distance information between
nodes. The DILOC algorithm uses barycentric coordinates [6]. In many cases a
first rough estimation is refined in iterative steps [7][8][9]. Usually, range-based
systems require expensive measurement equipment in terms of power consump-
tion and money.

We use the term of time of arrival to denote a range measurement by send-
ing a signal to a transponder and measuring the time of the signal flight. In
contrast, the term time differences of arrival (TDOA) describes the reception of
an unknown signal without any given range information. In some contributions
a set of receivers is used to locate one or more beacons by evaluation of the
TDOA [10][11]. Maybe closest to our problem setting is the iterative solution
of Biswas and Thrun [12]. They also implement a distributed approach [13]. A
very elegant solution for a fixed number of 10 microphones in three-dimensional
space is shown by Pollefeys and Nister [14].

Range-free systems do not require the expensive augmentations that range-
based systems do. In the centralized approach [15] the connectivity matrix be-
tween nodes is evaluated and a set of distance constraints is generated, which
leads to a convex optimization problem. A general disadvantage of centralized
algorithms is the lack of scalability and communication overhead. Distributed
algorithms avoid this issue [16][17]. A common representation for the communi-
cation ranges of nodes in range-free approaches are unit disk graphs (UDG) [18].

In [19] we present a technique for robust distance estimation between micro-
phones by evaluating the timing information of sharp sound signals. We assume
synchronized receivers and that signals originate from a far distance, but we
have no further information about their location. We consider this a range-
based approach because we estimate distances between receivers using the time
differences of signals between nodes.



A question that occurs in many wireless sensor network schemes is synchro-
nization. Many synchronization algorithms rely on the exchange of synchroniza-
tion messages between nodes in the network, assuming that the message delay
is symmetric. Another method uses an external radio signal from a base station
(e.g DCF77) or a satellite system (e.g. GPS) carrying the current time infor-
mation. In some approaches a network is assumed to be synchronized in round-
based algorithms [20]. An overview of techniques and synchronization issues is
given in [21]. Our TDOA-based distance estimation approach [19] implements a
synchronization protocol based on the Network Time Protocol algorithm.

Most of the referred algorithms perform effectively in a very specific environ-
ment and on safe ground conditions. There are attempts to survey the numerous
approaches and to compare them quantitatively [22] and qualitatively [23]. Or
the Cramér-Rao bound is calculated to determine the lower variance bounds of a
position estimator [24][25][26]. Few is actually known about the general solvabil-
ity of localization problems in wireless sensor networks. Stéwenius examines the
required minimum of microphones and signal sources for convergence towards
unique solutions [27]. Eren et al. inspect the uniqueness of ranged networks by
analyzing the graph rigidity [28].

3 Estimating Distances

The localization problem that we face is vastly overconstrained for large n and
m. While we have n + m unknown receiver and sender locations, m unknown
signal time points and n unknown clock offsets between the receivers, we face nm
equations on the other side. So, the clue for an efficient solution of the problem
is to concentrate on the most helpful information.

For this we consider only two receivers. As we have pointed out in [19] it is
possible to estimate the distance between two receiver nodes if the signals are
uniformly distributed on a circle around the receivers at a large distance. Here,
we show that this method also results in a reasonable estimation if the signals
are distributed in the same disk where the receivers lie.

Max-Min-Technique Given two vertices i, j (1 ≤ i < j ≤ n) and the relative time
differences of the stolen signals: tri,sk − trj ,sk for all stolen signals s1, . . . , sm, we
compute the estimated distance di,j between i and j as

– di,j := maxk{|tri,sk − trj ,sk |} if the receivers are synchronized and as
– di,j := 1

2

(
maxk{tri,sk − trj ,sk} −mink{tri,sk − trj ,sk}

)
if the receivers are

not synchronized. The estimated relative time offset will be computed using
the time signal k∗ := arg maxk{tri,sk − trj ,sk}. Then, tri,sk∗ − trj ,sk∗ − di,j
yields the approximation of the correction for the clocks at i and j.

Clearly, this estimation is only an approximation. But a surprisingly good
one. First, note that in both cases the estimation is always upper-bounded by
the real distance: ‖ri− rj‖ ≥ di,j . We now describe a sufficient condition for the
accuracy of the estimator. For this we define the ε-critical area.



Fig. 1. The 0.2-critical areas of two nodes at (−1, 0) and (1, 0) are on the left and right
side of the hyperbolas.

Definition 1. The ε-critical area of two nodes (u, v) is the set of points p in the
plane where

‖u− v‖ − (‖p− v‖ − ‖p− u‖) ≤ ε .

This convex area is bounded by a hyperbola containing the point u, see
Fig. 1. If in this critical area signals are produced, then the distance estimation
is accurate up to an absolute error of ε.

Lemma 1. If in both of the ε-critical areas of (u, v) and (v, u) signals are pro-
duced, then the Max-Min distance estimation du,v is in the interval du,v ∈
[‖u − v‖ − 2ε, ‖u − v‖]. The time offset between the clocks of u and v can be
computed up to an absolute error margin of 2ε.

If at least in one of the ε-critical areas of (u, v) and (v, u) a signal is produced,
then for synchronized receivers the Max-Min distance estimation du,v is in the
interval du,v ∈ [‖u− v‖ − ε, ‖u− v‖].

These signals can be found in time O(m).

Proof. The proof of the accuracy of the distance estimators follows from the
definition of the critical areas. For the accuracy of the time offset consider that
one clock u is assumed to be correct, then the other node’s clock offset is chosen
such that the signal arrives later at time du,v if the signal was detected at the
ε-critical area of u.

The best signals can be found by computing the minimum or maximum of
the differences of the time points at the receivers u and v. �

Lemma 2. For two receivers u, v with ` := ‖u − v‖ the intersection of the ε-
critical area (v, u) of a disk with center 1

2 (u+ v) and radius r has

– at least an area of min{π`2, 12ε
2} if r = ` and

– at least an area of min{πr2, (r − `)2
√
ε/`} if r > `.

Since the critical areas are rather large there is a good chance that a signal
could be found in one of these areas.



Theorem 1. For m stolen signals the Max-Min distance estimator for two re-
ceiver nodes u, v with distance ` := ‖u−v‖ within the disk with center (0, 0) and
radius 1 outputs a result du,v with du,v ∈ [‖u − v‖ − ε, ‖u − v‖] with probability
1− p, where for ε and p we have:

1. If u and v are unsynchronized and the m signal sources are uniformly dis-

tributed in the unit disk we have ε = O
(√

logm
m

)
and p = 1

mc for any c > 1.

2. If u and v are unsynchronized and the m signal sources are independently

normal distributed with mean (0, 0) and variance 1 we have ε = O
(

log2 m
m2

)
and p = 1

mc for any c > 1.
3. If u and v are unsynchronized, u and v are not close to the unit disk bound-

ary, i.e. |u| < 1−k and |v| < 1−k for some constant k > 0, and the m signal

sources are uniformly distributed in the unit disk we have ε = O
(

log2 m
m2

)
and

p = 1
mck2 for any c > 1.

4. If u and v are synchronized, u or v are not close to the unit disk boundary,
i.e. |u| < 1 − k or |v| < 1 − k for some constant k > 0, and the m signal

sources are uniformly distributed in the unit disk we have ε = O
(

log2 m
m2

)
and p = 1

mck2 for any c > 1.

Using this information we do not need to consider the signals at all, again.
From now on, we will only use the distance estimation information and compute
the locations of the receiver nodes. Now the goal is to avoid any further loss of
precision when we compute coordinates out of the distance estimates.

4 Centralized Localization and Synchronization

Now we discuss how the distance estimation can be converted into cartesian
coordinates without increasing the inaccuracy by more than a constant factor.
The usual approaches to reconstruction of node positions from distances are
iterative force-directed algorithms [29] or non-linear optimization schemes to
minimize a function

min
ri,rj

 n∑
i=1

n∑
j=i+1

‖ri − rj‖2 − d2i,j


where di,j denotes the distances yielded by the Max-Min approximation tech-
nique. Examples are the gradient descent method, Newton’s method [30] or the
Levenberg-Marquardt algorithm. The common problem of all these methods is
their lack of reliability. They cannot guarantee successful convergence to the
correct network topology and they are prone to local minima of the error func-
tion. In such cases the induced error is disproportionately higher than one would
expect from changes in parameters.



We require an algorithm with constant propagation of error where the in-
duced uncertainty can be bounded below a function of the input error ε. For this
we have to consider the rigidity and precision.

– Rigidity: If the number of receivers is small or the accuracy is high, then
different topologies are valid solutions to the problem. This problem is known
as the rigidity problem [28]. We will prove that our distance estimations are
so precise that this problem can occur only with a very small probability.

– Precision: In some situations small measurement errors of the distance result
in much larger changes of the coordinates. Sometimes, there seems to be no
valid solution. We will prove that for any triangle (with non-collinear points),
the problems can be solved if the distance estimation error is small enough.
The coordinates will suffer from a higher estimation error. This increase
can be bounded by a constant factor if the triangles are not too extreme.
Furthermore, the probability that such receivers exist grows exponentially
with the number of receivers.

Assuming that all distance estimations are precise up to an additive error of
at most ε0 we will present algorithms which produce an output with an additive
error of at most ε = O(ε0) with probability 1 − e−cn for n receiver nodes and
a constant c > 0. In this section we assume that a central node has complete
knowledge of the nm capture times of all nodes. In fact our algorithms use only
the

(
n
2

)
distance estimations du,v for all receiver nodes u, v.

Our basic method for localization is bilateration with a symmetry breaker.
Given two anchor points u, v where u = (0, 0) and v = (du,v, 0) and the estimated
distances du,p, dv,p ≥ 0 we want to compute the location of a point p such that
‖u − p‖ = r1 and ‖v − p‖ = r2. We know that the given distances are only an
approximation of the real distances which could be longer by an additive term
of ε0. Of course, there are two symmetric solutions for p. So, we also assume a
third anchor point w with given coordinates, called symmetry breaker, which is
used for deciding which solution is valid.

At the beginning we assume that d, r1, r2 are the correct values of the triangle
distances and compute the coordinates of p by

p1,2 = (du,p cosαu,±du,p sinαu) , where cosαu =
d2u,p − d2v,p + d2u,v

2du,pdu,v
.

However, this method fails if du,p, dv,p, du,v do not fulfill the triangle inequality.
Then, we are not able to find the locations. For deciding between p1 and p2 we
use the symmetry breaker w. If | ‖w−p1‖−dw,p| ≤ | ‖w−p2‖−dw,p| we choose
p1, and p2 otherwise.

Using only bilateration it is not possible to locate all points in the plane. But
if we have three anchor points we have three possibilities to apply bilateration.
The third point is used as a symmetry breaker. Actually every triangle can be
used for the localization as long as the points are not collinear.

Theorem 2. For every set of non-collinear points u, v, w and for every disk D
of radius r containing u, v, w there exists an ε0 > 0 such that each point in D



can be located with an absolute error of ε′ ≤ cu,v,w,r · ε, if ε ≤ ε0. Here, ε is the
precision of the distance measurements and cu,v,w,r is a constant which depends
solely on u, v, w and the disk radius r.

So, the distance information provides enough rigidity if the number of signals
is large enough, since the larger the number of signals the smaller the starting
error ε0.

The factor cu,v,w,r describes the loss of quality of the localization depending
on u, v, w and r.

1. cu,v,w,r increases with growing disk radius r.
2. cu,v,w,r decreases with growing minimum edge length.
3. If a triangle angle of u, v, w approaches 0 or π, then cu,v,w,r also increases.

So, best results can be achieved if the edge lengths are large and if they are
the same. Since we are only interested in asymptotic results we use the following
corollary.

Corollary 1. Fix some 0 < δ1 < π/6, δ1 < δ2 < π and 0 < r0 ≤ r. Then
there is some ε0 > 0 and a constant c such that all triangles, where all inner
angles are in the interval [δ1, δ2] and all edge lengths are at least r0, can be used
for localization of all points in the disk of radius r within an accuracy of c · ε.
This localization is based on distances which are only known with some absolute
precision of ε < ε0.

In the case of unsynchronized receivers we experience an accuracy of ε =

O
(√

logm
m

)
with high probability. It remains to find the best base triangle based

on the distance estimations. This can be done by computing all
(
n
2

)
distances

within time O(n2m) and testing all
(
n
3

)
= O(n3) triangles.

Since we look for any triangle obeying the properties of inner angles and
some reasonable minimum edge length r0, one can use a faster approach.

Algorithm 2 Finding a base triangle

1: Start with an arbitrary node s
2: Find the node u maximizing ds,u
3: Find the node v maximizing du,v
4: Find the node w maximizing min{du,w, dv,w}
5: Use u, v, w as a base triangle for trilateration of all other points

Note that each step of this algorithm can be solved by estimating O(n)
distances. Each distance estimation needs time O(m). So the overall running
time is O(nm).

Using this algorithm a centralized algorithm can solve the localization in
nearly all cases for sufficiently large m and n.



Theorem 3. For n receivers and a subset of m signals produced uniformly dis-
tributed in a disk the nodes can be synchronized and localized in time O(m) with

an accuracy of ε = O
(√

logm
m

)
in running time O(m + n) with probability

1− 1
mc − e−nc

′
for any c and some c′ > 0.

1. If the m signals are produced independently with a Gaussian normal distri-
bution with mean (0, 0) and variance 1 or

2. if the m signals are independently and uniformly produced in a disk with
radius r > 1 and center (0, 0)

then the receiver nodes can be be synchronized and localized in time O(m + n)

with a maximum error of ε = O
(

log2 m
m2

)
with probability 1− 1

mc − e−nc
′

for any

c and some c′ > 0.

The proof follows by combining the distance estimation with the triangulation
results. The exponential bound for the receivers follows from the observation
that there is a constant probability for three receiver nodes to satisfy the tri-
angle property. Adding three more receiver nodes independently results in the
multiplicative decrease of this failing probability, thus leading to an exponential
probability function with respect to n.

Of course these bounds also hold for synchronized receivers. We now con-
centrate on the case where signals and receivers are produced in the same disk,
since the accuracy can be increased considerably for this case. The key point is
to find a second base triangle where all receiver nodes have a constant distance
to the boundary of the disk. Then, the distance estimations to all other points

are accurate to an error of O( log2 m
m2 ).

Algorithm 3 Finding an inner base triangle

1: Find a base triangle u0, v0, w0

2: Compute the coordinates of all receiver nodes with low precision
3: Based on this information find a base triangle u, v, w with a minimum distance of

1
8

to the border of the disk

The distance 1
8 is an arbitrary non-zero choice. Decreasing this distance will

increase the distance estimation error but will increase the probability of finding
such triangles.

Theorem 4. For n synchronized receivers and a subset of m signals produced
uniformly distributed in a disk the nodes can be localized in time O(m) with

an accuracy of ε = O
(

log2 m
m2

)
in running time O(m + n) with probability

1− 1
mc − e−nc

′
for any c and some c′ > 0.



The proof is analogous to the one above.

Our centralized Algorithm 2 can be extended for distributed localization,
as for example in a wireless sensor network. In such an ad hoc network each
node broadcasts its capture times, which costs O(nm) messages for each receiver
node with a total communication complexity of O(n2m). The upper bound for
the message broadcast in the distributed network is described by the following
theorem.

Theorem 5. For n receiver nodes and m > n signals a distributed algorithm
requires O(nm log n) messages and computes the coordinates and the clock offset

of all receiver nodes within an error of ε = O
(√

logm
m

)
with probability 1−n−c

for any constant c, if the receiver and signal nodes are independently, randomly,
and uniformly distributed in the same disk.

5 Outlook

While our focus is the localization and synchronization of the receiver nodes, it
is straight-forward to determine the time and position of the signals using the
receivers as anchor points.

Synchronization based on stolen signals can provide a helpful feature for
wireless sensor networks or ad hoc networks. While the speed of light could be
too fast for an accurate localization, it is always a good source for synchronizing
clocks. Our approach solves the problem that distant nodes might suffer from
the delay of the synchronization signal since we compensate with other stolen
signals.

A remarkable property of this localization problem is the decrease of complex-
ity with increasing problem size. If the number of receivers and stolen signals
increases, the precision of the approximation improves, while the algorithm’s
running time remains linear. In case the number of signals is too large, a set of
node can agree to consider only a random subset of signals. While the accuracy
decreases, the number of messages and the computational effort can be reduced
to fit the wireless network’s capabilites.

On the other side, the problem is very complex when few signals and receivers
are known. We have observed this for approximation methods based on iterative
improvement of local solutions like force-directed algorithms and gradient-based
search in previous work. For four receivers, which is the minimum number of
receivers in the plane to solve this problem, all considered methods can run
into local minima. In the successful cases they converge slower to the solution
than in large scenarios. If one also reduces the number of signals to the absolute
minimum of six signals in the plane (where we conjecture that the solution is
unique for non-degenerated input) it appears to be the hardest problem setting.
It is an open problem how to solve this localization problem for four receivers
and six signals in the plane.
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18. A. Kröller, S. Fekete, D. Pfisterer, and S. Fischer. Deterministic boundary recog-
nition and topology extraction for large sensor networks. In Proceedings of the
seventeenth annual ACM-SIAM Symposium on Discrete Algorithms, pages 1000–
1009. ACM, 2006.

19. T. Janson, C. Schindelhauer, and J. Wendeberg. Self-Localization Application for
iPhone using only Ambient Sound Signals. In Proceedings of the 2010 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 259–268,
Nov. 2010.

20. A. Anta, M. Mosteiro, and C. Thraves. Deterministic Recurrent Communication
and Synchronization in Restricted Sensor Networks. INRIA RR, 486277, 2010.

21. B. Sundararaman, U. Buy, and A.D. Kshemkalyani. Clock Synchronization for
Wireless Sensor Networks: A Survey. Ad Hoc Networks, 3(3):281–323, 2005.

22. K. Langendoen and N. Reijers. Distributed localization in wireless sensor networks:
a quantitative comparison. Computer Networks, 43(4):499–518, 2003.

23. G. Stupp and M. Sidi. The expected uncertainty of range-free localization protocols
in sensor networks. Theoretical Computer Science, 344(1):86–99, 2005.

24. A. Savvides, W. L. Garber, R. L. Moses, and M. B. Srivastava. An Analysis of Error
Inducing Parameters in Multihop Sensor Node Localization. IEEE Transactions
on Mobile Computing, pages 567–577, 2005.

25. S. Dulman, P. Havinga, A. Baggio, and K. Langendoen. Revisiting the Cramer-
Rao Bound for Localization Algorithms. 4th IEEE/ACM DCOSS Work-in-progress
paper, 2008.

26. R. L. Moses, D. Krishnamurthy, and R. M. Patterson. A Self-Localization Method
for Wireless Sensor Networks. EURASIP Journal on Advances in Signal Process-
ing, pages 348–358, 2003.
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