eCULTS: energy autarctic Configuration-free **Ultrasonic Tracking System**

A. Ens ⁽¹⁾, F. Höflinger ⁽¹⁾, T. Jansen ⁽²⁾, J. Wendeberg ⁽²⁾, L.M. Reindl ⁽¹⁾, C. Schindelhauer ⁽²⁾

(1) Laboratory for Electrical Instrumentation, IMTEK, University of Freiburg, Germany

(2) Chair of Computer Networks and Telematics, Department of Computer Science, University of Freiburg, Germany

Summary

Aim of the eCULTS project is to localize mobile objects by ultrasonic communication. This require a communication system without medium access control. The communication model is derived and the hardware design is shown. The simulation results demonstrate the performance of the communication system.

Communication

- Chirp Spread Spectrum (CSS) with constant slope
- Frequency Range 38 42 kHz
- 8 Bit Transmission
- Binary coding of the chirp slope:
 - Positive slope → binary 1
 - Negative slope → binary 0

Design of Transmitter

- Simple Low Power µC with PWM Output
- Chirp sequence stored in Flash/EEPROM in µC
- Low cost design
- Energy autarctic operation possible
- No need of synchronization between receivers

Figure 2: Schematic of the Transmitter.

Figure 3: Schematic of the Receiver.

Design of Receiver

- Wide Dynamic range
- o variable gain amplifier (VGA) → 0 46 dB
- o Analog-to-Digital-Converter (ADC) → 70 dB SINAD
- Digital Signal processing on dual-core ARM Cortex-A9
- ADC with 12 Bit and up to 3 MSps → Oversampling
- Network interface for data forwarding
- Free resources on DSP for user applications

Discrete Transmission Model

- Quantization noise w_{DAC} , w_{ADC}
- Linear no fading channel
- Additive white Gaussian noise $w_w \sim N(0, \sigma_w^2)$
- Modulation by $f_{Mod} := f_{Start}$ and decimation
- Matching Filter correlation
- Correlation shape for up slope $\left|\rho_{Up}\left(t_{c}\right)\right| = \frac{\sqrt{2}}{16\pi s|t_{c}|}\sqrt{1-\cos(4\pi t_{c}f_{\Delta})}$
- Chirp $s_{ChirpU} = \cos(2\pi n f_{Abtast} (f_{Start} + f_{\Delta} n f_{Abtast} / \tau))$

Figure 4: Discrete Transmission model.

Simulation results

Envelope of correlation for different frequency modulation

Figure 4: Simulation for different frequency modulation

Future Work

- Analyze logarithmic amplifier
- Implement algorithms in C++ on ARM
- Measurements in noisy environment

Acknowledgement

project "Smart-Systems-Integration eCULTS" is founded by the German Federal Ministry of Education and Research BMBF.

GEFÖRDERT VOM

